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IEEE TOPOLOGY REVIEW

Buck converter theory of operation
Discontinuous vs. Continuous mode of operation
Voltage mode feedback and Current mode feedback
Design considerations

Boost converter theory of operation
Design considerations

Flyback converter theory of operation
Design considerations

SEPIC Converter theory of operation
Design considerations
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Synchronous Buck Waveforms
Continuous Conduction Mode
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Synchronous Buck Waveforms
Continuous Conduction Mode
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Synchronous Buck Waveforms
Discontinuous Conduction Mode
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Basic Relationships
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Inductor Considerations
Benefits of low L values

Lower DCR
Higher Isat
Higher di/dt

Transient response improves
Less output capacitance required for given transient 
performance

Benefits of high L values
Lower ripple current

Lower AC losses (skin effect, hysteresis)
Lower RMS current in FETs
Lower RMS capacitor current (mainly output)
Continuous inductor current over broader load range
Less C required for equivalent output ripple
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General Inductor Guidelines

Size for ∆IL to be 10% to 30% of full load current

Winding losses usually dominate
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Inductor and FETs
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MOSFETs
Both main switch and synchronous rectifier should be  
N-type for best efficiency  

Many interrelated issues
Output capacitance vs. switching loss
Gate capacitance vs. switching speed
Gate capacitance vs. driver power loss

Primary Tradeoffs
Package
Power loss
Cost
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Switch FET
Losses vs. Frequency
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Rectifier FET
Losses vs. Frequency

0.00

0.05

0.15

0.20

0.25

0.35

100 k

0.10

0.30

10 M

Sw
itc

h 
Lo

ss
es

 (W
)

fSW - Switching Frequency - Hz

Channel Conduction
Gate
Diode Conduction

Losses

Note rise in diode conduction loss as Fs rises.
Data assumes 20-ns of diode conduction time per SW edge



14

FET Selection

Compare different FETs in both positions

In general higher F and higher input voltage mean 
Higher switching losses therefore use lower Qg switch 
FET to cut switching losses

For rectifier FET, low RDS(on) is most important, but don’t 
ignore gate power
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SW Node Ringing

Can affect converter operation

Worst on rising edge of SW 
(highest di/dt transition)

Caused by parasitic L and C

L in the FET from the SW node to 
Vin or GND
C from SW node to GND
High layout dependence

Bottom Gate (1 V/div)

SW (1 V/div)

dV/dt Bump

t - Time - 50 ns/div
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SW Node Ringing Remedies

Improve layout
Minimize loop areas
Minimize trace inductance
Keep SW node area low (secondary effect, conflicts 
with cooling rectifier FET)

Slow down SW node edge transitions
Series gate resistor in switch FET gate lead

Add a snubber
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Power Capacitors
Selection Considerations

Power Dissipation
ESR

Ripple Performance
ESR 

Transient Performance
ESR
Capacitance
ESL

Cost
Size
Reliability
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Relative Capacitors Characteristics

Standard Al Electrolytic
High ESR
Low cost
Low current capability
Not really suited to DC/DC converters

OSCON
Low ESR
Medium cost
High current capability
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Relative Capacitors Characteristics

Solid Polymer
Low ESR
Very high cost
Medium current capability

POSCAP
Low ESR
High cost
Medium current capability
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Relative Capacitors Characteristics

Tantalum
Medium ESR
Medium cost
Medium low current capability

Ceramic
Very low ESR
Very high cost
High current capability in bulk
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Capacitor Impedance
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Choosing Capacitor Size

Input Filter
Sized for AC current handling

Output Filter
Transient events on load
Output voltage ripple
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Input Capacitor Current
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Input Ripple Voltage

Cin current

Switch current

ESR Voltage

C

ESL Voltage

Cin Ripple Voltage

Usually a secondary consideration
Contribution from ESR, ESL and capacitance value
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Output Capacitor Criteria
Selection Considerations

Transient performance
Bulk capacitance
ESR
ESL

Output Ripple
ESR
Bulk value
ESL has minor effect
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Transient Performance
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Output Capacitor
Selection Considerations

2A to 10A load step @ 15A/µs
Use 470µF SP: 15mΩ, 3nH
To help reduce spikes, add two 10µF ceramics
Yields

24.5mV undershoot
39mV overshoot
8mV spikes
21mV of ripple
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AC VMC Model for Buck Converter
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AC CMC Model for Buck Converter
Peak CMC PWM is the result of a comparison 
between a control signal, a signal proportional to the 
inductor current, and a fixed saw tooth (for slope 
compensation)
Whether it is:

Current feedback and sawtooth vs. control signal
Current feedback and control signal vs. sawtooth
Control signal and sawtooth vs. current feedback

From a small signal standpoint, the resulting 
modulation is the same!

Sawtooth

Control
Current

+
Modulator Output
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AC CMC Model for Buck Converter
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DC/DC Boost Converter
TPS40210 controller operating ~700 kHz
9- to 18-V input (12-V nominal)
24-V output with 1-A capability
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Assumptions in Steady-State Operation
1. V•s balance across the inductor

Energy “in” during a period equals energy “out” during the 
same period
Net change of charge in a period is zero

2. Charge balance in the output capacitor
Energy “in” during a period equals energy “out” during the 
same period
Net change of charge in a period is zero

3. Ripple voltage across the capacitor is small compared 
to the output DC voltage
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Basics of Operation

No switching: VOUT ~ VIN

SW turns ON:

Voltage across the inductor approaches ~ VIN

Energy is stored as function of input voltage, L, tON

D is biased OFF, blocking discharge of the output capacitor

SW turns OFF:

Stored energy is released through D to the output

Non-pulsating input current – Pulsating output current

Level of ripple determined by CCM or DCM operation……

COUT
Load

Input OutputL

SW

D

+     -
Current

-   +
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Basics of Operation

No Switching: VOUT ~ VIN

SW turns ON:
Voltage across the inductor 
approaches ~ VIN

Energy is stored as function of input voltage, L, tON

D is biased OFF, blocking discharge of the output capacitor

SW turns OFF:
Stored energy is released through D to the output

Non-pulsating input current – Pulsating output current
Level of ripple determined by CCM or DCM operation……

COUT Load

Input OutputL

SW

D

+   --    +

Current
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Right-Half-Plane Zero
The effect of any control 
action during the ON time 
is delayed until the switch 
is turned OFF
Output response is initially 
in the opposite direction of 
the desired 
correction
⇒ RHP Zero
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Continuous-Conduction Mode (CCM)
Switching cycle is composed of two intervals

1. When the switch is ON, stored energy builds in the 
inductor

2. When the switch turns OFF, energy transfers to the 
output through the rectifier

♦ Inductor current 
ON-time slope:

♦ The inductor current 
OFF-time slope:

♦ The switch duty cycle: 
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Loss Elements in CCM
“ON” losses

Inductor DCR
MOSFET RDS(ON)

Current sense resistor

“OFF” losses
Rectifier voltage drop
Inductor DCR
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Discontinuous Conduction Mode (DCM)
Switching cycle is composed of three intervals

1. Energy is stored in the inductor during the ON time of the 
switch 

2. When the switch turns OFF, energy transfers to the output 
through the rectifier

3. A third interval during which the energy in the inductor is zero
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Idle 
period
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tfall
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There is essentially 
no current flowing in 
the power stage 
during the third 
interval
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Designing for CCM or DCM
Given fixed-frequency operation, the only parameter to 
adjust is the inductance

For a given L, this is the CCM/DCM boundary current
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Current in CCM

Continuous 
current flow in 
inductor

Some “pedestal” 
in diode and 
switch current

Diode switching 
and recovery 
losses significant 
in CCM
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Current in DCM

Large peaks in 
all currents

RMS current is 
higher

No reverse 
recovery losses 
in the rectifier
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CCM/DCM - Differences in Current

Peak and RMS 
currents are larger in 
DCM

Conduction losses 
will be higher

Diode-switching and 
recovery losses will 
be higher in CCM

MOSFET turn-OFF 
losses higher in DCM

For the diode rectifier, 
the average current is 
the same
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VMC CCM Small-Signal Model
Simplified small-signal 
block diagram Fm Gvd(s) VOUT
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Peak-Current-Mode Control
Modulator gain
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FLYBACK CONVERTER

+

+
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FLYBACK CONVERTER
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FLYBACK CONVERTER
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FLYBACK CONVERTER

FET DRAIN

PRIMARY 
CURRENT

SECONDARY 
CURRENT

 A ring appears on the drain that is caused by the leakage inductance resonating with the Coss 
of the switch FET the other ring is caused by the dead time when the transformer is reset and 

waiting for the next on  time .
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FLYBACK CONVERTER
Discontinuous  Continuous  

Volt seconds in equals
 volt seconds out

Volt seconds in equals
 volt seconds out
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SEPIC CONVERTER
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SEPIC CONVERTER
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SEPIC CONVERTER
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SEPIC CONVERTER
Design Equations 

IL1avg1
Vout Ioutmax⋅

η Vinmin⋅
:=Duty

Vout
Vout Vin+

:=

IL1pk1 IL1avg1
Vinmin dmax⋅

2 Lact1⋅ fs⋅
+:=

To find an inductor which will keep the converter in 
the continuous conduction mode this value is used 
for both inductors  

L
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4 SWITCH BUCK BOOST

Boost
Gate
Drive

Buck
Gate
Drive

PWM Ramp
Waveform

Boost

Buck
Vin Max

Vin Min

 Vin = Vout
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