
LABVIEW 2013 NEW FEATURE DEMO SCRIPT (WHAT’S NEW)

SUMMARY

This demo explores many of 2013’s new features, including:

 LabVIEW Bookmark Manager

 Attachable Comments
 New Excel Integration (Optional)
 Mouse Wheel Support for Controls

 Event-Based Programming Improvements
o Static Event for Mouse Wheel Interaction
o Event Inspector Window
o High Priority User Events

 Simplified Web Service Experience
o Project Item
o Debugging
o Deploy with Executable

DEMO REQUIREMENTS

 LabVIEW 2013

 Application Builder

SETUP INFORMATION (PRIOR TO PRESENTATION)

1. Download the What’s New in LabVIEW 2013 VI Package file, and double-click on the VI

package file.

2. Choose to “Install” the VI package file.

3. From the next dialog, choose “Continue”.

4. From the resulting dialog, choose “Finish”.

NOTE: If Package Manager claims it cannot access LabVIEW over VI Server, open

LabVIEW and Tools >> Options drop-down menu. Look at the “VI Server” category, and

ensure both “Machine Access” and “Exported VIs” subcategories have “*” items. This

will be absolutely sure that Package Manager may access LabVIEW.

5. From the LabVIEW Getting Started Screen, choose “Create Project”.

6. Under “Demonstrations”, choose “What’s New in LabVIEW 2013” and click “next”

then “finish” through the remaining dialogs.

NOTE: Once the VI Package file has been installed. You only need to begin this

presentation and demo from the “create project” dialog to start with the same files each

time. All necessary files will be accessible from the project created through this dialog.

LABVIEW 2013 NEW FEATURE DEMO SCRIPT, Page 5 of 21

STEP-BY-STEP INSTRUCTIONS

1. DO: PRESENT THE WHAT’S NEW SLIDE DECK THROUGH THE DATA DASHBOARD 2.2

SLIDE.

2. Explain: Each year, NI strives to incorporate user feedback when determining the features

we’ll add to LabVIEW. Now that we’ve discussed some of the new hardware for 2013, I’d

like to jump over to LabVIEW and show you some of the new features we’ve implemented

to help you be more productive.

3. DO: Ensure the “Whats New in 2013” project is open.

4. DO: Open Main.VI and Run It

5. Explain: Anyone who has ever inherited and had to interpret existing LabVIEW code knows

the value of good documentation.

6. DO: Open the Bookmark example VI by clicking the “Bookmark Example” button on the

Main.vi front panel.

7. Explain: Let’s imagine we inherited this particular application, based on a LabVIEW sample

project, and were tasked with adding additional data logging functionality. Where to start?

LABVIEW 2013 NEW FEATURE DEMO SCRIPT, Page 6 of 21

8. DO: Point out the “Logging Message Loop” VI, open it, and switch to its block diagram.

9. Explain: For many applications, our code and VI hierarchies quickly become so complex we

cannot identify, at a glance, where specific functionality resides. In this case, where I want

additional data logging functionality, I could continue to parse through this code, ultimately

determining where modifications were necessary, but what if there was a better way? In

LabVIEW 2013, there is, and it’s called bookmarks.

10. DO: Click the “View” dropdown and select “Bookmark manager”.

11. Explain: In 2013, I can turn any comment into a bookmark by simply beginning the comment

with a hash tag (#). This prompts LabVIEW to recognize that comment as a bookmark, and

aggregate it into this bookmark manager window.

LABVIEW 2013 NEW FEATURE DEMO SCRIPT, Page 7 of 21

12. DO: Highlight the bookmark titled “#1-Bookmark”.

13. Explain: Notice I’ve left a to-do bookmark for, perhaps, another developer, indicating I want

this parameter change made.

14. DO: Double-click on the “#1-Bookmark” bookmark.

15. Explain: By simply double-clicking this bookmark, I am able to navigate them directly to the

location in my application I wished for them to view and modify. In LabVIEW 2013, all sample

projects will make use of the bookmarks and this feature will help single and multi developer

efforts alike by simplifying the process of code navigation and note aggregation. NI considers

this to be a best practice for code documentation moving forward.

NOTE: You may not navigate to Bookmarks contained in running LabVIEW code. In this

demo, the Main VI is running, but the sample project code, used to show Bookmarks, is not

running to facilitate this demo.

16. Explain: Another feature we’ve implemented, to complement the addition of bookmarks, is

the ability to attach comments on the block diagram. In past, LabVIEW developers used free

labels to describe algorithms, leave placeholder notes, and generally put their thoughts onto

block diagrams. But, aside from decorations, there has never been a way to create a direct

and visual relationship between a comment and the code it describes. LabVIEW 2013

changes this by allowing us to attach our comments to any structure, function, or constant

on the block diagram.

17. Explain: To attach this comment to any function, structure, or constant on my block diagram,

I simply move my mouse to the bottom right, click the arrow icon that appears and click

again on the entity on my diagram I care about.

18. DO: Move mouse to bottom-right of “#1-Bookmark” comment, look for yellow boxed arrow

to appear, click and move mouse to show the carried arrow. Move mouse to the border of

LABVIEW 2013 NEW FEATURE DEMO SCRIPT, Page 8 of 21

the case structure and click after the structure is highlighted.

19. Explain: Now that I’ve attached this comment, I may move the comment wherever I like and

still maintain a visual relationship with this control I’ve chosen.

20. DO: Click and move the comment around to show this relationship.

21. Explain: Another great attribute of attached comments is their persistence through block

diagram cleanup. After attaching, LabVIEW’s block diagram cleanup utility will now take this

attachment into account, and attempt to keep the comment close to the item it’s attached

to. No longer will documentation be sent adrift when using this convenient utility.

22. DO: Close the “Log Data” VI, Bookmark Manager Window, and “Bookmark Example” VI.

Save no changes. – You should now be back to the front panel of Main.VI

23. Explain: We’ll use this project to show you some additional new productivity features of

LabVIEW 2013. This project is designed to simulate a temperature alarming application, and

is based on the common producer/consumer, event-based architecture.

OPTIONAL FEATURE DEMO

24. Do: Double-click Bookmark #3-XLSX_Integration to open the Log Data VI.

LABVIEW 2013 NEW FEATURE DEMO SCRIPT, Page 9 of 21

25. Do: Double-click the “Write to Measurement File” Express VI

26. Explain: In LabVIEW 2013, you may now write data directly to an Excel file type from the

Write to Measurement File Express VI. So, if all I need to do is take my data and export it, I

have a quick way to do this using LabVIEW 2013, without needing to use the .lvm text file

format.

NOTE: This functionality is WRITE-ONLY. We cannot read this file back using the Read From

Measurement File Express VI. Also, this functionality makes use of the Open Office file

format. So, once the resultant .xlsx file has been opened and saved in Microsoft Excel, the

NI Report Generation Toolkit for Microsoft Office would then be necessary to use this file in

LabVIEW. Moreover, no extensive formatting options are available, so the Report Generation

Toolkit is still recommended for any report creation in LabVIEW.

27. Explain: Each year, we try to incorporate our user’s feedback, and a highly requested feature

has been native mouse wheel support for front panels. We’ve added this support in 2013,

allowing simplified programming of mouse wheel interaction with LabVIEW UIs.

LABVIEW 2013 NEW FEATURE DEMO SCRIPT, Page 10 of 21

28. DO: Click the “Acquire” button to populate the temperature graph.

29. Explain: In this example application, I’m performing some logic on my simulated temperature

readings to determine if I should alarm my user, based on a limit they’ve set. [The default

limit value is 65, which should alarm when you click “acquire”] If I want to quickly change

my limit value, I can now accomplish that with my mouse wheel.

30. DO: Hover the mouse over the “Temperature Limit” control and mouse wheel up and down

to change the control value. This should also update the cursor value on the graph. [You may

also use your touchpad’s scroll if there is no mouse]

31. Explain: As I mentioned, this program captures UI interaction with events. In 2012, we

introduced new templates and sample projects as starting points and references for best

practice architectures. Many of these center around using Event Structures to capture user

interaction. And, in adding mouse wheel support, we’ve added an event to capture any

mouse wheel interaction with items on our front panel. This allows me to do things like

better visualize the data I’ve taken by zooming in and out on my graph.

LABVIEW 2013 NEW FEATURE DEMO SCRIPT, Page 11 of 21

32. DO: Mouse wheel up and down on the “Temperature Graph”. This should automatically

adjust the X and Y scale to simulate a zoom-in and zoom-out effect.

33. Explain: In this case, I’ve written a VI to programmatically adjust the scales of my graph.

[Just to point out this is not built-in functionality] But, this mouse interaction could be

captured to prompt any response your application requires.

34. Explain: I mentioned templates and sample projects, and their use of event structures. We

consider it best practice for any application, which must respond to user input, to leverage an

event structure. In 2013, we’re making it simpler to debug event-based programs. We have

always been able to use standard LabVIEW debugging tools for events, but this wasn’t

always sufficient for applications processing a high volume of events.

35. DO: Move the front panel to the left side of the screen.

36. Explain: To better facilitate troubleshooting event-based code, we’ve introduced the event

inspector window. This window allows us to view what events have been processed by our

event structure, and also see any that are waiting to be processed. If you are new to event

programming, you may be interested to know there is a queue working behind the scenes of

an event structure to ensure we do not lose any user interaction we’d like to process.

37. DO: Move the block diagram to the right side of the screen. Snap to the right side if using

Windows 7. Right-click on the event structure border in the “User Interface Loop” and click

“Event Inspector Window”. Move the Event Inspector Window to the right so front panel

and inspector window are side-by-side.

LABVIEW 2013 NEW FEATURE DEMO SCRIPT, Page 12 of 21

38. Explain: Notice that as I interact with my application, I see those events being captured in

real-time. This can help me better understand how my application is behaving. And, the

Event Inspector Window allows me to save my event logs to a text file, for documentation

purposes.

39. DO: Disable “Log Timeout Events”.

LABVIEW 2013 NEW FEATURE DEMO SCRIPT, Page 13 of 21

40. DO: Increase the “Application Timing (ms)” to 2000ms or greater. This will slow down the

event handling loop to better show events stacking in the event queue.

LABVIEW 2013 NEW FEATURE DEMO SCRIPT, Page 14 of 21

41. DO: Click “Acquire” or scroll the mouse wheel on the graph several times to build up a set

of events in the event queue, shown in the Event Inspector Window.

42. Explain: If anyone has done event-based programming in past, they may be familiar with user

events. These are simply events which are generated by logic in our program, rather than by

a UI interaction. If anyone has taken the new Core 3 training, which uses the Queued

Message Handler architecture, this leverages user events.

43. Explain: To build on templates and sample projects, and to encourage best practice

architecture choices using event-based programming, we’ve implemented a highly

requested feature, which is the ability to specify the priority of a user event. I mentioned

there is a queue behind the scenes of an event structure, ensuring we do not lost any UI

interaction from one loop iteration to the next. In past, user events always received the same

priority as other events. This mean that system-critical tasks, such as a shutdown to avoid

overheating, might require an extra queue or notifier in a large application, so they could be

given the correct response priority.

44. Explain: In LabVIEW 2013, we’re helping users leverage the event-based architectures they

are implementing, and handle these system-critical tasks with less development effort.

45. DO: Show the block diagram, and make sure the “Acquire” case is shown in the

“Processing Loop”

LABVIEW 2013 NEW FEATURE DEMO SCRIPT, Page 15 of 21

46. Explain: In this example application, I’m going to alarm my user if the result of my

temperature data acquisition and subsequent analysis is above the limit they’ve specified.

However, I’m going to consider this a system-critical response, something that must be

processed before all other actions, in the event an operator shutdown was required in

response to this excessive temperature. I’m facilitating this with a high priority user event.

47. DO: Point out the temperature comparison and the “Generate User Event” function, which

generates a “high priority” user event when called.

48. Explain: To show the way LabVIEW responds to high priority events, I’ve slowed down this

application so we can observe what happens in the event queue when this high-priority

event occurs.

49. DO: Bring the Event Inspector Window to the front so the UI and Event Inspector are side-

by-side. Clear all events and ensure that timeouts are not being logged. Click the “Acquire”

button, and then initiate several mouse wheel events on the “Temperature Graph” to fill up

the event structure queue.

50. Explain: Notice that when a high priority event is fired, it automatically goes to the top of the

event structure’s list of items to process. Thus, we can make efficient use of this already-in-

LABVIEW 2013 NEW FEATURE DEMO SCRIPT, Page 16 of 21

place structure to handle system-critical responses.

51. DO: Close the block diagram

52. Explain: We talked about some new development environment enhancements, available in

LabVIEW 2013. I’d like to shift over toward the subject of deployment.

53. Explain: For anyone needing secure remote access to LabVIEW applications, whether

running on a desktop or embedded target, web services are a great option for this

communication. They allow SSL security, are industry standard and may be accessed by thin

clients over a network, and are IT friendly. Web Services have been available in LabVIEW

since 8.6, but we’ve gone to great lengths to simplify the process of creating, deploying, and

debugging web services.

54. Explain: Web Services are now created as a project item. To do this, we simply right-click on

“My Computer”, then choose “New” and “Web Service” which creates a new item for us.

55. DO: Steps listed above

LABVIEW 2013 NEW FEATURE DEMO SCRIPT, Page 17 of 21

56. Explain: I’ve already added a web service, to show the new experience.

57. DO: Expand “Broadcast Alarm” web service project item and “Web Resources” folder.

LABVIEW 2013 NEW FEATURE DEMO SCRIPT, Page 18 of 21

58. DO: Open the “Web Service VI.vi”, move both front panel and block diagram to the right

side of the screen and overlay as shown.

59. Explain: In LabVIEW 2013, not only may I create and deploy web services to remotely access

my LabVIEW applications, but I am able to debug the web method VIs, comprising that web

service, directly from the LabVIEW project. This is an all new feature of LabVIEW 2013 web

services. Moreover, you’ll notice this web service VI uses global variables. LabVIEW 2013

web services are created in the same namespace as regular LabVIEW applications, and

therefore may use global variables and functional global variables to communicate, where

before we’d have need to use TCP/UDP etc. to facilitate this cross-environment

communication.

60. Explain: I can “publish” my web service, like you might be used to in LabVIEW.

61. DO: Right-click the “Broadcast Alarm” web service name, choose “Application Web Server”

and show the options to “publish” and “unpublish”.

62. Explain: But, in LabVIEW 2013, I can begin a debugging session on my web method VI. I do

this by right-clicking my “Broadcast Alarm” web service project items and choosing “start”.

Notice that my Web method VI is now reserved and waiting to run.

LABVIEW 2013 NEW FEATURE DEMO SCRIPT, Page 19 of 21

63. DO: Right-click “Broadcast Alarm” and choose “start”. Then, point out the VI being

reserved.

64. Explain: I may now use standard LabVIEW debugging tools to understand the behavior of my

web service. To run the web service, I may obtain the URL of my web service by right-

clicking on my web method VI.

65. DO: Turn on highlight execution for the Web Service VI. Right-click on Web Service VI.vi

(GET) and choose “Show Method URL”. Mention that LabVIEW automatically generates the

URL for you. [This used to be a pain point for customers] Click on “Copy URL” and close the

“HTTP Method URL” dialog.

66. DO: Open a browser and snap it to the left-side of the screen so both the browser window

and Web Service VI block diagram are shown at a time. Paste the URL into the browser’s

URL bar and hit enter.

67. Explain: This starts my web method, allows me to observe the web service VI’s behavior

with standard LabVIEW debugging tools [in this case highlight execution], and ultimately I

LABVIEW 2013 NEW FEATURE DEMO SCRIPT, Page 20 of 21

get my results in the browser window.

68. DO: Close the browser, close the web service VI, right-click on “Broadcast Alarm” web

service item and choose “stop” to end debug session.

69. DO: Expand the “Whats New in LabVIEW 2013” project’s build specifications, right-click on

“LabVIEW 2013 EXE” and choose “Properties”.

70. Explain: We did not forget about deployment when it comes to web services. In past there

were many preparations necessary to deploy an application (EXE) which leveraged a web

service. In 2013, we’ve streamlined this process by including a web service category in EXE

build specs. Now, you can choose any web service included in your project, select SSL

options, and build this web service into your EXE. It will then deploy automatically when the

EXE runs, making remote access to both desktop and embedded LabVIEW applications a

LABVIEW 2013 NEW FEATURE DEMO SCRIPT, Page 21 of 21

breeze.

71. DO: Close the EXE build.

72. Explain: Now I’m going to switch back to slides and show you a few more deployment

related features we’ve added in LabVIEW 2013.

