Using LabVIEW for High Performance Computing

March 4, 2010

Terry Stratoudakis terry@aleconsultants.com

Agenda

- 1. What is High Performance Computing?
- 2. HPC Users
- 3. HPC Technologies
- 4. LabVIEW in HPC
- 5. Case Study: Option pricing on an FPGA

What is HPC?

- Solve advanced computation problems
- HPC is successor of Supercomputing
- Complex event processing
- Parallel computing

Users of HPC

- Bioinformatics
- Cryptography
- Defense
- High Energy Physics
- Finance
- Telecommunications
- You

every time you use Google/search for something, you are a user of HPC!

HPC Technologies

• Grid computing

- Multi-core & specialized processors
- Embedded
- Storage

Grid Computing

- Networked computers working together
- Most existing software <u>cannot</u> run "as is"
- Requires knowledge of parallel programming APIs and languages
- SaaS, Cloud, Cluster

Multi-Core Processors

- Solves temperature issues of 1-core
- Many processors on a chip
- Building block of a grid
- Similar challenges as for grid computing

Specialized Processors

- CPUs too generic
- Optimized for certain calculations
- Examples
 - Graphical Processing Units (GPUs)
 - Digital Signal Processing (DSP)
 - Cell Processors
 - Example: grid of 10 networked Sony PlayStation 3

Embedded HPC

- Field Programmable Gate Arrays (FPGAs)
- Configured with Hardware Description Language
- True parallel execution

Storage

- Solid State HD
- RAID Arrays

• Storage Area Networks

LabVIEW in HPC

- Grid Computing VI Server
- Multicore
 - Parallel For Loops
 - Parallel Loops
 - Parallel Code
- GPU CUDA interface to LabVIEW
- DSP LabVIEW DSP Module
- FPGA LabVIEW FPGA Module

VI Server

Open VI Reference

Open Application Reference

- Application reference—Input to property and invoke nodes
- To reference LabVIEW on a remote computer, set machine name to TCP/IP address or domain name

LabVIEW on a Grid Example

Multi-core Parallel For Loop

Multi-core Parallel Code

GPU – LabVIEW to CUDA Interface

http://decibel.ni.com/content/blogs/AndreyDmitri ev/2009/04/09/using-nvidia-gpu-from-labviewwith-cuda-and-cvi

GPU – LabVIEW to CUDA Interface

http://decibel.ni.com/content/blogs/AndreyDmitri ev/2009/04/09/using-nvidia-gpu-from-labviewwith-cuda-and-cvi

OPTION PRICING ON AN FPGA

FINANCE CASE STUDY

Field Programmable Arrays (FPGA)

- Introduced in 1987
- Customizable Integrated Circuit
- Millions of logic gates on a single chip
- Parallel Execution, Low Power Usage
- No Operating System

LabVIEW FPGA Module

- Higher level of Abstraction
 - Reduce FPGA development by 75%

- Add-on to LabVIEW since 2002
- Used in Defense, Biomedical, Telecom., Manufacturing

HPC to LabVIEW FPGA Process

1. Understand algorithm

- a. Look for ability to parallelize
- b. Identify math functions needed
 - e.g. logarithmic, division, multiply, exp, random numbers)
 - See NI IPNet (<u>www.ni.com/ipnet</u>)
- 2. Implement in LabVIEW FPGA
 - a. Goal: run in single-cycled timed loop
 - b. Pipelining
- 3. Test with simulated mode
- 4. Verification with known data

Black-Scholes Option Valuation

- Published in 1973
- Basis for Quantitative Finance

- Equity price modeled as stochastic time series
- Pricing of Options and Corporate Liabilities
- Basis for multi-trillion dollar Options Trading
- Computed with a Monte Carlo Simulation

$$dS_{t} = \mu S_{t} dt + \sigma S_{t} dW_{t} \qquad \qquad \nu = \frac{\partial V}{\partial \sigma}$$
$$u(x,\tau) = \frac{1}{\sigma\sqrt{2\pi\tau}} \int_{-\infty}^{\infty} u_{0}(y) e^{-(x-y)^{2}/(2\sigma^{2}\tau)} dy.$$
$$\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{z^{2}}{2}} dz \qquad \qquad dV = \left(\mu S \frac{\partial V}{\partial S} + \frac{\partial V}{\partial t} + \frac{1}{2} \sigma^{2} S^{2} \frac{\partial^{2} V}{\partial S^{2}}\right) dt + \sigma S \frac{\partial V}{\partial S} dW.$$

Challenge

- Program Black–Scholes Option Valuation:
 - NI Compact-RIO platform (Xilinx FPGA)
 - Running National Instruments LabVIEW 8.6.1
 - Alienware Area-51 7500 Dual Core
 - Running Microsoft Visual C# .NET 2.0
- Benchmark
 - Development time
 - Execution time
 - Energy Consumption

Visual C# on Dual-Core PC

- Microsoft Windows Vista Ultimate Edition
- High-Performance Gaming Machine
- 3.0 GHz Intel Core 2 Duo E6850
- SATA RAID-0 10,000 RPM Hard Drives
- 4 GB RAM
- .NET 2.0 Runtime

Black Scholes - Visual C#

Black-Scholes on LabVIEW FPGA

LabVIEW FPGA – Fixed Point Math

LabVIEW FPGA – Pipelining

Results

- Development times were comparable
- LabVIEW on FPGA ran 59X faster
- LabVIEW on FPGA had 33X energy reduction
- Compact-RIO takes up 1/8 the space

More info at WallStreetFPGA.com

Benefits of LabVIEW FPGA for HPC

- Case Study Results
 - Quick development
 - Energy efficient
 - Fast execution
- LabVIEW for FPGA can be faster than text based programming running on a grid

ALE SYSTEM INTEGRATION

www.aleconsultants.com - info@aleconsultants.com

- Based in Long Island, New York projects nationwide
- National Instruments Certified Alliance Partner
 - All developers have National Instruments Certification
- Experience:

- Over 14 Years Test & Automation experience
- Expertise in variety of instrument manufacturers' products
- Programming:
 - LabVIEW, LabWindows/CVI, TestStand, Visual Studio

Terry Stratoudakis, P.E.

Education/Certifications

- B.S., M.S. in Electrical Engineering, Polytechnic University
- NI Certified LabVIEW Developer and Certified Prof. Instructor
- New York State licensed Professional Engineer

Experience

- Test Engineer at Underwriters Laboratories for six years
- Former Assistant Adj. Prof. at NYC College of Technology
- Co-founder and President of ALE System Integration

