

Pulse-pulse repeatability in high-voltage capacitor charging power supplies

Praveen Desireddy Director of Engineering TDK-Lambda Americas, High Power Division, USA.

IEEE LI Power Electronics Symposium

Outline

- High voltage capacitor charging power supplies
- Pulse-to-pulse repeatability & factors affecting
- Reason for pulse-to-pulse voltage variation
- > P-P repeatability under varying output voltage at constant repetition rate
- > P-P repeatability under varying repetition rate
- > CC, CP and CP-adaptive frequency control mode to achieve high P-P repeatability
- Energy absorbing circuit to achieve highest P-P repeatability

High Voltage Capacitor charging power supply

- > A typical capacitor charging power supply uses a resonant topology with constant current characteristics.
- > High voltage transformer parasitic components can be part of the resonant network.

公TDK

High Voltage Capacitor charging power supply

- **Attracting Tomorrow**
- 公TDK

- Important specifications
 - Average and Peak Power Rating
 - Output voltage rating and polarity •
 - Pulse repetition rate •
 - Pulse to pulse repeatability
- CCPS Applications
 - High voltage pulse generators •
 - Flashlamp drivers •
 - X-ray imaging •
 - Semiconductor testing •
 - Pulsed plasma thruster •
 - Accelerators •

© TDK-Lambda Americas, A TDK Group Company

Capacitor charging power supply topologies

- Series resonant topology
 - Simple to implement
 - Low component stress
 - Soft switching capability
 - Only two resonant elements
 - Better pulse-pulse repeatability for large loads
 - Leakage inductance of HV transformer absorbed into Lr
 - Poor no-load regulation
 - Not inherently short-circuit proof
 - Large frequency variation for control

Capacitor charging power supply topologies

- Parallel resonant topology
 - Only two resonant elements
 - Inherent short circuit protection
 - Transformer parasitic components can be absorbed into the resonant network
 - Pulse-pulse repeatability up to 0.1% can be achieved
 - Poor part-load efficiency
 - Repetition rate limited due to energy stored in the resonant components

Capacitor charging power supply topologies

- LCL-T resonant topology
 - Constant frequency of operation
 - Phase shifted full bridge
 - Better pulse-pulse repeatability
 - Multiple resonant elements
 - No inherent DC blocking

Attracting Tomorrow

Pulse to pulse repeatability

- Repeatability measures a power supply's ability to charge a load capacitor to the same voltage from one charge cycle to the next.
- Repeatability is expressed as a percentage variation of end of charge voltage, relative to the rated output voltage of the power supply.
- High-performance applications requiring high P-P repeatability include –
 - Excimer lasers
 - High energy X-ray
 - Radar

Attracting Tomorrow

- > The following factors affect pulse-pulse repeatability
 - Accuracy of the voltage reference signal
 - Noise in the End Of Charge (EOC) signal
 - Delay from the EOC signal to the inverter turn-off
 - Energy stored in the resonant components at EOC
 - Load capacitor
 - Repetition rate
 - Output voltage
 - Switching frequency

Output current, switching frequency, and load cap

- The current output from the supply is formed by multiple consecutive charge 'buckets'.
- The size of the charge buckets is determined by the output current rating and the switching frequency of the power supply.
- > Every charge bucket delivered to the load raises the potential on the load capacitor by a small voltage ' Δ V'.
- > The voltage step (ΔV) depends on the load capacitor value as shown in the equation.

$$\Delta V = \frac{I_{out} * t}{C_{load}}$$

 ΔV = voltage variation from one pulse to the next

Attracting Tomorrow

t = half of the inverter switching period

 C_{load} = Load capacitor

Repetition rate

- With a higher repetition rate, the load capacitor is small, assuming the total power delivered / power supply max output is constant.
- With the load capacitor being small, pulse-to-pulse repeatability is higher for the same charge bucket.
- The graph on the right shows pulse to pulse repeatability for a standard TDK 802 capacitor charging power supply.

Pulse-to-pulse repeatability vs. output rep rate

© TDK-Lambda Americas, A TDK Group Company

Factors affecting pulse-pulse repeatability

Output voltage

- High pulse-pulse repeatability is achieved when end of charge occurs away from the device turn-on instance in the full bridge inverter.
- Top waveform shows the end of charge signal with respect to the inverter device switching instance.
- Bottom waveform shows pulse-pulse repeatability over 3000 pulses.
- This data corresponds to the TDK-Lambda 802 power supply series.

YOKOGAWA 🔶 2024/10/16 15:46:38

Output voltage

- > Poor pulse-pulse repeatability due to end of charge occurring close to the inverter switch turnon instance.
- Top waveform shows EOC occurring right after the switch turn-on instance.
- Bottom waveform shows EOC occurring right before the switch turn-on instance.
- Waveform on right-hand side shows variation in output voltage at the end of charge over the period of 3000 pulses.

Edge CH1 7 7.0 \

Attracting Tomorrow

公TDK

Pulse-pulse repeatability Improvement techniques

- > Following techniques can be implemented to improve P-P repeatability
 - Constant power mode operation
 - Constant power mode with adaptive frequency control
 - Energy absorption circuit

公TDK

Attracting Tomorrow

Pulse-pulse repeatability Improvement techniques

Constant power mode operation

- Power supply operation in quasi-constant power mode
 - CCPS provides almost twice the rated current at the beginning of the charge and approximately 70% of the rated current towards the end of the charge.
 - This helps in achieving high P-P repeatability due to smaller charge bucket size towards the end of charge.
 - Higher component stress and peak power to compensate for the lower output current towards the EOC.

Attracting Tomorrow

Pulse-pulse repeatability improvement techniques

Constant power mode with adaptive frequency control

- > Adaptive control of converter switching frequency
 - Switching frequency is controlled to achieve the desired current gain for 90-95% of the charge cycle.
 - For the last 5-10% of the charge cycle, the switching frequency is adjusted to decrease the current output.
 - Higher component stress and peak power to compensate for the lower output current towards the EOC.

Attracting Tomorrow

Pulse-pulse repeatability improvement techniques

Energy absorption circuit

- Energy absorption circuit
 - Stored energy in the resonant network is dissipated in the energy absorption circuit instead of transferring to the load capacitor after the EOC is detected.
 - Additional circuitry for detection and implementation and increased component count.

Attracting Tomorrow

Pulse-pulse repeatability improvement techniques

CC, CP, CP-AFC, CC-EAC comparison

- CP-AFC operation advantages
 - No additional components required
 - Simple to implement
- CP-AFC operation drawbacks
 - Higher inverter RMS current
- CC-EAC operation advantages
 - Less than +/-0.2% pulse-pulse repeatability at repetition rates up 1kHz can be achieved
- CC-EAC operation drawbacks
 - Additional components and control circuits

Pulse-to-pulse repeatability comparison with various techniques

Attracting Tomorrow

303

Rack mount capacitor charging and DC power supplies

PRR up to 1kHz

Products ranging from 1kV up to 50kV

PRR up to 300Hz

- Some models can be configured as continuous DC power supply
- Power supplies can be connected in parallel to achieve higher power

PRR up to 300Hz

HV out up to 50kV PPR of 2% PRR up to 100Hz

