

NI Multisim - Electronic Design, Circuit Simulation and Prototyping

Patrick Noonan Business Development Manager Electronics Workbench Tools

Integrated Design Flow | Simulation and Virtual Instrumentation

NI Multisim | Schematics Simulation and Analysis

- Graphical based schematic capture and integrated simulation
 - Rapidly build and simulate circuits
 - Analog and Digital co-simulation (SPICE/XSPICE)
- Thousands of components immediately ready for simulation
 - Place components, wire and click run to start the simulation
- Integration with Measurements
 - Simulation is an mathematical approximation
 - Measurements are the *REAL* answer
- Virtual Instruments for immediate testing
- Advanced analyses for design validation
- Integration with NI Ultiboard for Full PCB Design

What is SPICE? | Examples

Schematic Representation

Equivalent SPICE Netlist

Example 1: Voltage divider netlist

* Voltage Divider - comment vV1 1 0 12 rR1 1 2 1000 rR2 2 0 2000

Example 2: Subcircuit model

.subckt biplarjunctiontrans base collector emitter R1 base n100 200 C1 n100 emitter 1.000E-9 D1 n100 emitter DX e1 base n100 collector emitter 12.842917 R2 collector emitter 10 .MODEL DX D(IS=1e-15 RS=1)

SPICE and Virtual Instrumentation

Simulation, Measurements and Automation

- Bring Measurements inside of Multisim
 - Readily available instruments emulate a test lab
 - Custom LabVIEW instruments for everything else

Compare Simulation and Measurements

- Improve Design Process
- Troubleshoot and debug circuits

LabVIEW Multisim Connectivity Toolkit

- Multisim API Controls simulation
- Create Virtual DUT and test with LabVIEW\
- Run, pause, stop simulation
- Change components, view circuit
- Set input, view output

Improving Analysis | Custom LabVIEW Instruments

- Define custom Measurements and Multisim analyses – in the simulation stage.
 - Fully leverage simulation
 - Advanced characterization
 - Analyses outside the realm of traditional SPICE analyses
- Instruments can be defined as input and/or output
- Instruments can import and export real signals to simulation
 - Built-in virtual prototype

ni.com

Step 1 Design a circuit, simulate and analyze in Multisim

Step 2 Create custom instruments

in LabVIEW for simulation

6

Measurements in Multisim

Advanced Control Design (,system ID, Control Design, dynamic system simulation, etc)		Order Analysis (Order Tracking, Spectrum Selection, Tachometer Processing, Waterfall, Orbit / Polar Plots, Bode Plots, etc)	
Digital Filter Design (FIR/ IIR Filter Design, Quantization, Fixed-point Modeling/Simulation, etc)		Spectral Measurements (Zoom FFT, Power-in-Band, Adjacent Channel Power, etc)	
Advanced Signal Processin (Wavelets, Time-Series Analysis Time-Frequency Analysis, etc)	J Sound and Vibration (Distortion, Octave Analysis, Swept Sine, Freq Measurements, Transient, S&V Level, Weighting, Waterfall Plot)	Modulation (Bit Error Rate, AWGN, Phase Noise, Constellation Plots, Eye Diagrams, etc)	
Signal Processing (Signal Gen, Windows, Filters, Transforms, etc)	Mathematics (Numerics, Linear Algebra, Curve Fit, Prob/Stats, Optimization, Diff EQ, etc Generator-XLV1 Pattern Type Curt Curt Curt Curt Curt Curt Curt Curt	Measurements (Spectral, Tone Extraction, Pulse Params, Timing/Transition, Amp/Levels, etc)	Bandpass Filter Use AC Analysis to see the frequency response of the filter at various points in the circuit Choose Simulate/Analyses/AC Analysis
() 2 56-7 () 20 Delay () 0 () 0 17 14 12 2 4 6 4 4 4 4 4 12 0 0 0 0 0 0 0 0 0 0 0 0 0) Channels Topple) Voldpat.tow) 0 0 0 0 Repet: Data 0 0 0 0 0 0 0 0 0 0 0 0 0 0		XLV1 R1 R2 3.96kD 3.96kD C2 1nF
			-7

V2 <u>12</u> V2

⊥ v3 = ¹² v

7 NATIONAL

lowpa

5 U

NTS

C1 ╢

1uF

C2 1nF

Improving Simulation | Virtual Prototype

Step 1 Create a real signal and connect to LabVIEW

Step 2 Save as signal to the LVM format and transfer to Multisim

Step 3 Simulate in Multisim with a real signal

NI for Custom Designs

- Customizing the NI Platform Products
 - RIO Products Series, cRIO, sbRIO
 - DAQ, Instruments
 - Products Can be Customized [Ex. Test Fixtures, Embedded Targets]
- Solution:
 - NI Multisim and NI Ultiboard provide an effective hardware design solution for customizing NI's embedded platforms
- Examples:
 - NI Connector Database
 - sbRIO Custom daugther card reference designs

9

Hardware Design References in Multisim

- Multisim and Ultiboard = Circuit Design Suite
 - Complete low cost and easy to use schematic and PCB layout tool
- NI SW and HW Connectivity
 - Multisim interface toolkit for LabVIEW
 - NI Connector Component Library
- Multisim Design Examples
 - sbRIO Daughter Card Architecture
 - cRIO Module & cRIO Accessories
 - Custom NI connector boards
 - DAQ Accessories & Test Fixtures

Ex: sbRIO Daughter Card Reference Design

Multisim | Recap

- Multisim is integrates *simulation and validation* with LabVIEW
- Improve design models by using *real measurements* with simulation
- Troubleshoot design errors through correlated simulation and measurements
- Programmatically automate and control Multisim with LabVIEW (Virtual DUT)
- Easily create custom NI interfaces and hybrid embedded platforms

NI Multisim | Where to Learn More

- For product information: ni.com/multisim
- Circuit Design Technical Library
 - SPICE Simulation fundamentals
 - Example Circuits
 - Custom LabVIEW Virtual Instruments
 - User Guides and Manuals
 - Interactive Discussion Forum
 - Support Page
- For product information call: 1.800.263.5552

NATIONAL

INSTRUMENTS

ELECTRONICS WORKBENCH GROUP

Highlights