Introduction to LabVIEW

Robert Berger

Course Goals

- Become comfortable with the LabVIEW environment and data flow execution
- Ability to use LabVIEW to solve problems
- LabVIEW Concepts
 - -Acquiring, saving and loading data
 - Find and use math and complex analysis functions
 - -Work with data types, such as arrays and clusters
 - Displaying and printing results

The Virtual Instrumentation Approach

LabVIEW Graphical Development System

- Graphical Programming Environment
- Compile code for multiple OS and devices
- Useful in a broad range of applications

LabVIEW Graphical Development Platform for Design, Control, and Test									
Embedded Design and Prototyping		Industrial Monitoring and Control			Automated Test and Measurement				
Filter Design/DSP		Advance Control	dvanced HMI/S Control		CADA	Data Logging and NVH		g	Communications Test
System Prototyping Industr		rial Control (PID) Mac an		nine Vision 1 Motion			ATE		
Computing Targets									
Desktop		Industrial		Mobile		Embedded			

Virtual Instrumentation Applications

• Design

- Signal and Image Processing
- Embedded System Programming
 - (PC, DSP, FPGA, Microcontroller)
- Simulation and Prototyping
- And more...
- Control
 - Automatic Controls and Dynamic Systems
 - Mechatronics and Robotics
 - And more...

Measurements

- Circuits and Electronics
- Measurements and Instrumentation
- And more…

ni.com

A single graphical development platform

The NI Approach – Integrated Hardware Platforms

Embedded Control

High-Speed High-Resolution Multifunction Dynamic Instrument Digital I/O Counter/ Machine Motion Digitizers Digitizers and DMMs Data Acquisition Signal Acquisition Control Timers Vision Control

Section I – LabVIEW Environment

A. Getting Data into your Computer

- Data Acquisition Devices
 - NI-DAQ
 - Simulated Data Acquisition
 - Sound Card

B. LabVIEW Environment

- Front Panel / Block Diagram
- Toolbar /Tools Palette
- C. Components of a LabVIEW Application
 - Creating a VI
 - Data Flow Execution

D. Additional Help

- Finding Functions
- Tips for Working in LabVIEW

A. Setting Up Your Hardware

- Data Acquisition Device (DAQ) Track A
 - Actual USB, PCI, or PXI Device
 - Configured in MAX
- Simulated Data Acquisition Device (DAQ) Track B
 - Software simulated at the driver level
 - Configured in MAX
- Sound Card Track C

ni.com

Built into most computers

What type of device should I use?

.....

ni.com

	Sound Card*	NI USB DAQ	NI PCI DAQ	Instruments*
AI Bandwidth	8–44 KS/s	10–200 KS/s	250 K–1.2 Ms/s	20kS/s–2 GS/s
Accuracy	12–16 bit	12–16 bit	14–18 bit	12–24 bit
Portable	x	x	—	some
AI Channels	2	8–16	16–80	2
AO Channels	2	1–2	2–4	0
AC or DC	AC	AC/DC	AC/DC	AC/DC
Triggering	—	x	x	X
Calibrated		X	X	X

* The above table may not be representative of all device variations that exist in each category

What is MAX?

- MAX stands for Measurement & Automation Explorer.
- MAX configures and organizes all your National Instruments DAQ, PCI/PXI instruments, GPIB, IMAQ, IVI, Motion, VISA, and VXI devices.
- Used for configuring and testing devices.

Exercise 1 – Setting Up Your Device

- Use Measurement and Automation Explorer (MAX) to:
 - Configure and test your Data Acquisition (DAQ) device

Track A

Exercise 1 – Setting Up Your Device

- Use Measurement and Automation Explorer (MAX) to:
 - Configure and test your Simulated Data Acquisition (DAQ) device

Track B

Microphone

Ralance:

Exercise 1 – Setting Up Your Device

• Use Windows to:

ni.con

-Verify your Sound Card

	(b) 6
Sound - Sound Recorder Eile Edit Effects Help Position: Length:	Volume:
0.00 sec. 0.00 sec.	
Un-Mute Microphone	- I -

Open and Run LabVIEW

start

ni.com

Start»All Programs»National Instruments LabVIEW 8.6

» 🎦 National Instruments LabVIEW 8.6

LabVIEW Programs Are Called Virtual Instruments (VIs)

Each VI has 2 Windows

Front Panel

- User Interface (UI)
 - Controls = Inputs
 - Indicators = Outputs

Block Diagram

- Graphical Code
 - Data travels on wires from controls through functions to indicators
 - Blocks execute by Dataflow

Functions (and Structures) Palette

(Place items on the Block Diagram Window)

Status Toolbar

Run Button

Continuous Run Button

Abort Execution

Additional Buttons on the Diagram Toolbar

Demonstration 1: Creating a VI

Front Panel Window

Dataflow Programming

- Block diagram execution
 - Dependent on the flow of data
 - Block diagram does NOT execute left to right
- Node executes when data is available to ALL input terminals
- Nodes supply data to all output terminals when done

Debugging Techniques

Finding Errors

Click on broken **Run** button. Window showing error appears.

Execution Highlighting

Click on **Execution Highlighting** button; data flow is animated using bubbles. Values are displayed on wires.

Probes

Right-click on wire to display probe and it shows data as it flows through wire segment.

You can also select Probe tool from Tools palette and click on wire.

Exercise 2 – Acquiring a Signal with DAQ

- Use a LabVIEW template to:
 - Acquire a signal from your DAQ device

Track C

Exercise 2 – Acquiring a Signal with the Sound Card

- Use LabVIEW to:
 - Acquire a signal from your sound card

Context Help Window

- Help»Show Context Help, press the <Ctrl+H> keys
- Hover cursor over object to update window

Additional Help

- Right-Click on the VI icon and choose Help, or
- Choose "<u>Detailed Help</u>." on the context help window

Tips for Working in LabVIEW

Keystroke Shortcuts

- -<Ctrl+H> Activate/Deactivate Context Help Window
- <Ctrl+B> Remove Broken Wires From Block Diagram
- –<Ctrl+E> Toggle Between Front Panel and Block Diagram
- -<Ctrl+Z> Undo (Also in Edit Menu)
- Tools» Options... Set Preferences in LabVIEW
- VI Properties–Configure VI Appearance, Documentation, etc.

Section II – Elements of Typical Programs

A. Loops

- While Loop
- For Loop

B. Functions and SubVIs

- Types of Functions
- Creating Custom Functions (SubVI)
- Functions Palette & Searching
- C. Decision Making and File IO
 - Case Structure
 - Select (simple If statement)
 - File I/O

Loops

•While Loops

- Derminal counts iteration
- Always runs at least once
- Runs until stop condition is met

• For Loops

- Run according to input N of count terminal

While Loop

For Loop

Drawing a Loop

1. Select the structure

ni.com

2. Enclose code to be repeated

3. Drop or drag additional nodes and then wire

3 Types of Functions (from the Functions Palette)

Express VIs: interactive VIs with configurable dialog page (blue border)

Standard VIs: modularized VIs customized by wiring (customizable)

Extract Single Tone Information.vi

Functions: fundamental operating elements of LabVIEW; no front panel or block diagram (yellow)

Multiply

What Types of Functions are Available?

Input and Output

- Signal and Data Simulation
- Acquire and Generate Real Signals with DAQ
- Instrument I/O Assistant (Serial & GPIB)
- ActiveX for communication with other programs

Analysis

- Signal Processing
- Statistics
- Advanced Math and Formulas
- Continuous Time Solver
- Storage
 - File I/O

ni.com

Express Functions Palette

Search o-	, view	
Programmin	g	
Instrument	I/O	
Mathematics	5	
Signal Proce	ssing	
▶ Data Comm	unication	
 Connectivity 	/	
▼ Express		
Input Signal Manipu.	Signal Analysis	Output
▶ Favorites		
Select a VI		

Searching for Controls, VIs, and Functions

- Palettes are filled with hundreds of VIs
- Press the search button to index the all VIs for text searching
- Click and drag an item from the search window to the block diagram
- Double-click an item to open the owning palette

ctions			
Fearch S View			
Programming			
Measurement I/O			
Instrument I/O			
Mathematics			
Signal Processing			
Data Communication			
Connectivity			
Express			
ignal Manipu Exe	Return 0		
Favorites Select a VI	Basic Multitone with Am Basic Multitone.vi Extract Multiple Tone In Extract Single Tone Info Multitone Generator.vi Tone Measurements [N] Tone Measurements [N] Tones and Noise Wavef	plitudes.vi formation.vi prmation.vi (_ExpressFull.lvlib] (_ExpressFull.lvlib] iorm.vi	< <signal analysis="">> <<waveform measure<="" th=""></waveform></signal>
	Search Options		Help

Create SubVI

- Enclose area to be converted into a subVI.
- Select Edit»Create SubVI from the Edit Menu.

LabVIEW Functions and SubVIs operate like Functions in other languages

Track A,B,&C

Exercise 3.1 – Analysis

• Use LabVIEW Express VIs to:

- Simulate a signal and display its amplitude and frequency

Exercise 3.2 – Analysis

- Use LabVIEW Express VIs to:
 - -Acquire a signal and display its amplitude and frequency

Exercise 3.2 – Analysis

- Use LabVIEW Express VIs to:
 - -Acquire a signal and display its amplitude and frequency

How Do I Make Decisions in LabVIEW?

1. Case Structures

2. Select

File I/O

ni.com

File I/O – passing data to and from files

- Files can be binary, text, or spreadsheet
- Write/Read LabVIEW Measurements file (*.lvm)

Exercise 3.3 – Decision Making and Saving Data

- Use a case structure to:
 - -Make a VI that saves data when a condition is met

File I/O Programming Model – Under the hood

Section III – Presenting your Results

A. Displaying Data on the Front Panel

- Controls and Indicators
- Graphs and Charts
- Loop Timing
- **B. Signal Processing**
 - MathScript
 - Arrays
 - Clusters

ni.com

Waveforms

What Types of Controls and Indicators are Available?

Numeric Data

- Number input and display
- Analog Sliders, Dials, and Gauges
- Boolean Data
 - Buttons and LEDs
- Array & Matrix Data
 - Numeric Display
 - Chart
 - Graph
 - XY Graph
 - Intensity Graph
 - 3D graph: point, surface, and model
- Decorations
 - Tab Control
 - Arrows
- Other
 - Strings and text boxes
 - Picture/Image Display
 - ActiveX Controls

Express Controls Palette

🔍 Search 🛛 👫 Vi	ew	
Modern		
▶ System		
🕨 Classic		
▼ Express		
Num Ctrls	Buttons DEDs	Text Ctrls
▶ .NET & Active>	<	
Select a Contr	ol	

Charts – Add 1 data point at a time with history

Waveform chart – special numeric indicator that can display a history of values

• Chart updates with each individual point it receives

Functions»Express»Graph Indicators»Chart

Graphs – Display many data points at once

Waveform graph – special numeric indicator that displays an array of data

- · Graph updates after all points have been collected
- May be used in a loop if VI collects buffers of data

Functions»Express»Graph Indicators»Graph

Building Arrays with Loops (Auto-Indexing)

- Loops can accumulate arrays at their boundaries with auto-indexing
- For Loops auto-index by default
- While Loops output only the final value by default
- Right-click tunnel and enable/disable autoindexing

Auto-Indexing Disabled

Creating an Array (Step 1 of 2)

ni.com

From the Controls»Modern»Array, Matrix, and Cluster subpalette, select the Array icon.

Controls	
Search O View	
I ▼ Modern L Array, Matrix & Cluster	
i 123 i 123 k L L L L L L L L L L L L L	
Array Cluster RealMatrix.ctl	Drop it on the Front Panel.
ComplexMatri Error In 3D.ctl Error Out 3D.ctl	Array
II ► System	- The
Elassic	
Express	
► .NET & ActiveX	
Select a Control	

Create an Array (Step 2 of 2)

- 1. Place an Array Shell.
- 2. Insert datatype into the shell (i.e. Numeric Control).

How Do I Time a Loop?

- 1. Loop Time Delay
 - Configure the Time Delay Express VI for seconds to wait each iteration of the loop (works on For and While loops).
- 2. Timed Loops
- Configure special timed While loop for desired dt.

Control & Indicator Properties

- Properties are characteristics or qualities about an object
- Properties can be found by right clicking on a Control or Indicator
 - Properties Include:
 - -Size
 - -Color
 - -Plot Style
 - -Plot color
 - Features include:
 - -Cursors
 - -Scaling

Waveform Graph		Plot 0							
10-									
5- 									
-0 Amplit	🛂 Graph Pro	perties: Waveform	Graph				X		
-5 -	Appearance	Format and Precision	Plots	Scales	Cursors	Documentation	< >		
-10-	Label	Label Visible			Caption Visible				
	Wavefor	Waveform Graph							
	Enabled St Enable Disable Disable	Enabled Disabled Disabled & grayed							
	 Show graph palette Show plot legend Auto size to plot names 1 Plots shown Show x scroll bar Show scale legend 			Show cursor legend					
					ок	Cancel	Help		

Exercise 4.1 – Manual Analysis

• Use the cursor legend on a graph to:

- Verify your frequency and amplitude measurements

This exercise should take 15 minutes.

ni.com

Track A,B,&C

Textual Math in LabVIEW

- Integrate existing scripts with LabVIEW for faster development
- Interactive, easy-to-use, hands-on learning environment
- Develop algorithms, explore mathematical concepts, and analyze results using a single environment
- Freedom to choose the most effective syntax, whether graphical or textual within one VI

Supported Math Tools:

MathScript script node Mathematica software Maple software

ni.com

MathSoft software MATLAB[®] software Xmath software

MATLAB[®] is a registered trademark of The MathWorks, Inc.

Math with the MathScript Node

- Implement equations and algorithms textually
- Input and Output variables created at the border
- Generally compatible with popular m-file script language
- Terminate statements with a semicolon to disable immediate output

Prototype your equations in the interactive MathScript Window.

The Interactive MathScript Window

- Rapidly develop and test algorithms
- Share Scripts and Variables with the Node
- View /Modify Variable content in 1D, 2D, and 3D

ni.com

(LabVIEW»Tools»MathScript Window)

Exercise 4.2 – Using MathScript

Track A,B,&C

Use the MathScript Node and Interactive Window to process the acquired signal (logarithmic decay) in the MathScript and save the script.

This exercise should take 25 minutes.

Review of Data Types Found in LabVIEW

Exercise 5 – Apply What You Have Learned

This exercise should take 20 minutes.

Track A,B,&C

Section IV – Advanced Data Flow Topics (optional)

- A. Additional Data types
 - Cluster
- B. Data Flow Constructs
 - Shift Register
 - Local Variables
- C. Large Application Development
 - Navigator Window
 - LabVIEW Projects

Introduction to Clusters

- Data structure that groups data together
- Data may be of different types
- Analogous to struct in C
- Elements must be either all controls or all indicators
- Thought of as wires bundled into a cable
- Order is important

Creating a Cluster

ni.com

1. Select a **Cluster** shell. 2. Place objects inside the shell.

Controls»Modern»Array, Matrix & Cluster

Cluster Functions

- In the Cluster & Variant subpalette of the Programming palette
- Can also be accessed by right-clicking the cluster terminal

Using Arrays and Clusters with Graphs

Waveform Graph

The Waveform Datatype contains 3 pieces of data:

- t0 = Start Time
- dt = Time between Samples
- Y = Array of Y magnitudes

tΟ

0.001

00:00:00.000 PM

MM/DD/YYYY

0123450

ni.com

Two ways to create a Waveform Cluster:

Build Waveform

 \sim

ΕŌ

Build Waveform (absolute time)

Shift Register – Access Previous Loop Data

• Available at left or right border of loop structures

- Right-click the border and select Add Shift Register
- Right terminal stores data on completion of iteration
- Left terminal provides stored data at beginning of next iteration

Local Variables

ni.com

• Local Variables allow data to be passed between parallel loops.

• A single control or indicator can be read or written to from more than one location in the program

- Local Variables break the dataflow paradigm and should be used sparingly

LabVIEW Navigation Window

- Shows the current region of view compared to entire Front Panel or Block Diagram
- Great for large programs

* Organize and reduce program visual size with subVIs

LabVIEW Project

- Group and organize VIs
- Hardware and I/O management
- Manage VIs for multiple targets
- Build libraries and executables
- Manage large LabVIEW applications
- Enable version tracking and management

(LabVIEW»Project»New)

Additional Resources

- NI Academic Web & Student Corner
 - http://www.ni.com/academic
- Connexions: Full LabVIEW Training Course
 - <u>www.cnx.rice.edu</u>
 - Or search for "LabVIEW basics"
- LabVIEW Certification
 - LabVIEW Fundamentals Exam (free on www.ni.com/academic)
 - Certified LabVIEW Associate Developer Exam (industry recognized certification)
- Get your own copy of LabVIEW Student Edition
 - www.ni.com/academic

ni.com

By <u>Robert H Bishop</u>. Published by Prentice Hall.

The LabVIEW Certification Program

Architect

- Mastery of LabVIEW
- Expert in large application development
- Skilled in leading project teams

Developer

- Advanced LabVIEW knowledge and application development experience
- Project management skills

Associate Developer

- Proficiency in navigating LabVIEW environment
- Some application development experience

Fundamentals Exam

ni.com

Pre-Certification Skills Test

Certified LabVIEW Developer

Certified LabVIEW Associate Developer

Free On-Line Fundamentals Exam

Electronics Workbench and Multisim

- World's most popular software for learning electronics
- 180,000 industrial and academic users
- Products include:

- Multisim: Simulation and Capture
- Multi-MCU: Microcontroller Simulation
- MultiVHDL: VHDL Simulation
- Ultiboard: PCB Layout
- Electronics CBT: Computer-based training
- Low cost student editions available
- www.electronicsworkbench.com

Multisim Integrated with LabVIEW

1. Create Schematic

4. PCB Layout

2. Virtual Breadboard

5. Test

3. Simulate

6. Compare

Your Next Step...

Take the free LabVIEW Fundamentals Exam at ni.com/academic

Your first step to become LabVIEW Certified!

