High Performance Computing using FPGAs

ALE System Integration

NI Technical Conference November 10, 2009

ALE SYSTEM INTEGRATION

www.aleconsultants.com - info@aleconsultants.com

- Based in Long Island, New York projects nationwide
- National Instruments Certified Alliance Partner
 - All developers have National Instruments Certification
- Experience:
 - Test Labs, Manufacturers, Mil/Aero, Finance
 - Over 14 Years Test & Automation experience
- Design:
 - LabVIEW, LabWindows/CVI, TestStand, Visual Studio
 - FPGA Design using Xilinx Tools, Impulse C, LabVIEW

Terry Stratoudakis, P.E.

• Education/Certifications

- B.S., M.S. in Electrical Engineering, Polytechnic University
- NI Certified LabVIEW Developer and Certified Prof. Instructor
- New York State licensed Professional Engineer
- Experience
 - Worked at Underwriters Laboratories for six years
 - Former Assistant Adj. Prof. at NYC College of Technology
 - Co-founder and President of ALE System Integration

John Stratoudakis

- Education/Certifications
 - B.S. in Computer Science, Drexel University
 - NI Certified CVI Developer
 - Microsoft Certified Application Developer
- Experience
 - Five years as software developer for financial applications
 - S&P subsidiary Capital IQ, Investment Technology Group
 - LabVIEW FPGA, Visual Basic, .NET, C#, C/C++, Perl
 - Author of several open source software projects

Overview

- Introduction
- Proof of Concept
 - Buffon's Needle
- Physics and Finance HPC Needs
 - Low Latency, Computational Power
- Case Studies
 - Finance: Option Valuation
 - Physics: Tomography and Matrix Math
 - <u>RF:</u> S-Parameter De-embedding
- Benefits of LabVIEW FPGA for HPC

Introduction

- Goal: Use FPGAs in HPC
 - Existing but limited FPGA use in HPC
- Proof of Concept Buffon's Needle
 - Simple Monte Carlo Method
- Develop methods for using FPGAs in HPC
- Coded in LabVIEW for FPGA
 - Finance Stock Option application
 - Physics Tomography application
 - S-parameter de-embedding (RF application)

What is HPC?

- Uses powerful computers to solve advanced computation problems
- HPC is successor of Supercomputing
- Hardware Accelerators
 - Custom Hardware for specialized task
- Cluster, Cloud, Grid, SaaS

HPC Implementations

• Grid computing

- Pros: fast, can be easily programmed
- Cons: energy and space inefficient, high maintenance costs
- Hardware Accelerators (FPGAs)
 - Pros: fast, energy and space efficient
 - Cons: need to know Hardware Description Language (HDL)

Grid Computing

- Many networked computers working together
- Most existing software <u>cannot</u> run "as is"
- Requires special knowledge of parallel programming APIs and languages

Hardware Accelerators

- Field Programmable Gate Arrays (FPGAs)
- Configured with Hardware Description Language
- True parallel execution

Field Programmable Arrays (FPGA)

- Introduced in 1987
- Parallel Execution
- Low Power Usage
- Customizable Integrated Circuit
- Millions of configurable gates on a single chip
- No Operating System

LabVIEW

Introduced in 1986

- Graphical programming language
- Multiple execution targets
- Runs on Windows, Mac, Linux
- Easy to write parallel programs
- Broad industry use:
 - Military/Aerospace, Research, Industrial, Control, and Embedded Applications
- Taught in most educational institutions

LabVIEW FPGA Module

- Add-on to LabVIEW
- Use LabVIEW skill set to quickly program *Xilinx* FPGAs
- Converts LabVIEW Block Diagram to HDL
- Higher level of Abstraction
- IP Net has many tools
 - www.ni.com/ipnet

Overview

- Proof of Concept
 - Buffon's Needle
- Physics and Finance HPC Needs
 - Low Latency, Computational Power
- Case Studies
 - Finance: Option Valuation
 - Physics: Tomography and Matrix Math
- Benefits of LabVIEW FPGA for HPC
 - Fast Development
 - Performance Improvements
 - Energy and Space Savings

Buffon's Needle

- Early Monte Carlo Method for calculating π
- Drop a needle and count how many times it lands on a line (repeat)
- Test case for programming Monte Carlo method on LabVIEW FPGA

Buffon's Needle Results

Proof of concept a success

- Development time One (casual) day
- LabVIEW for FPGA ran faster than PC
- Defined process used in Case Studies
- Identified challenges
 - Understand algorithm
 - Fixed point math
 - Parallelization
 - Verification

HPC to LabVIEW FPGA Process

1. Understand algorithm

- a. Look for ability to parallelize
- b. Identify math functions needed
 - e.g. logarithmic, division, multiply, exp, random numbers)
 - See NI IPNet (<u>www.ni.com/ipnet</u>)
- 2. Implement in LabVIEW FPGA
 - a. Goal: run in single-cycled timed loop
 - b. Pipelining
- 3. Test with simulated mode
- 4. Verification with known data

Overview

- Proof of Concept
 - Buffon's Needle

• Physics and Finance HPC Needs

- Low Latency, Computational Power
- Case Studies
 - Finance: Option Valuation
 - Physics: Tomography and Matrix Math
- Benefits of LabVIEW FPGA for HPC
 - Fast Development
 - Performance Improvements
 - Energy and Space Savings

Physics and Finance HPC Needs

- Goals and motivations are polar opposites
 - Physics: advancement of science
 - Finance: corporate/personal financial gain
- Technical needs are nearly identical
 - Low Latency
 - Fast trade execution and market data routing
 - Routing of research data to super computing nodes
 - Computational Power
 - Matrix Math, large data sets
 - Monte Carlo Methods, custom algorithms

HPC in Big Physics

- Used to process research data from colliders, synchrotrons, etc.
- Large control systems such as telescopes
- Used by Labs, Research Institutes
- Examples:

- Brookhaven National Labs (BNL)
- Princeton Plasma Physics Lab (PPPL)
- National Energy Research Scientific Computing Center (NERSC)

HPC in the Finance Industry

- Used to process market data and value financial instruments
- Used by Exchanges, Investment Banks, Hedge Funds, Mutual Funds
- Recent crashes demonstrate dynamic needs
- Dedicated Conferences & Periodicals

Fat Tails in Finance

- Current models assume events are "well-behaved"
- Fat tail events are rare and not "well-behaved"
 - oil shock
 - large corporate bankruptcy
 - abrupt change in a political situation
- Example:
 - An investment strategy may have an expected return, after one year, that is five times its standard deviation.
 - Assuming a normal distribution, the likelihood of its failure (negative return) is less than one in a million; in practice, it may be higher.

Overview

- Proof of Concept
 - Buffon's Needle
- Physics and Finance HPC Needs
 - Low Latency, Computational Power
- Case Studies
 - Finance: Option Valuation
 - Physics: Tomography and Matrix Math
- Benefits of LabVIEW FPGA for HPC
 - Fast Development
 - Performance Improvements
 - Energy and Space Savings

Black-Scholes Option Valuation

- Published in 1973
- Basis for Quantitative Finance

- Equity price modeled as stochastic time series
- Pricing of Options and Corporate Liabilities
- Basis for multi-trillion dollar Options Trading
- Computed with a Monte Carlo Simulation

$$dS_{t} = \mu S_{t} dt + \sigma S_{t} dW_{t} \qquad \qquad \nu = \frac{\partial V}{\partial \sigma}$$
$$u(x,\tau) = \frac{1}{\sigma\sqrt{2\pi\tau}} \int_{-\infty}^{\infty} u_{0}(y) e^{-(x-y)^{2}/(2\sigma^{2}\tau)} dy.$$
$$\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{z^{2}}{2}} dz \qquad \qquad dV = \left(\mu S \frac{\partial V}{\partial S} + \frac{\partial V}{\partial t} + \frac{1}{2} \sigma^{2} S^{2} \frac{\partial^{2} V}{\partial S^{2}}\right) dt + \sigma S \frac{\partial V}{\partial S} dW.$$

European-style* Option Valuation

$$c = S_0 N(d_1) - K e^{-rT} N(d_2)$$

$$p = K e^{-rT} N(-d_2) - S_0 N(-d_1)$$

$$d_1 = \frac{\ln\left(\frac{S_0}{K}\right) + \left(r + \frac{\sigma^2}{2}\right)T}{\sigma\sqrt{T}}$$

$$d_2 = d_1 - \sigma\sqrt{T}$$

*As opposed to American, Asian, Bermudan, Barrier, Exotic, Vanilla-style options

Challenge

- Program Black–Scholes European Option Valuation on:
 - NI Compact-RIO platform (Xilinx FPGA)
 - Running National Instruments LabVIEW 8.6.1
 - Alienware PC
 - Running Microsoft Visual C# .NET 2.0
- Benchmark
 - Development time
 - Execution time
 - Energy Consumption

Visual C# on Dual-Core PC

- Microsoft Windows Vista Ultimate Edition
- High-Performance Gaming Machine
- 3.0 GHz Intel Core 2 Duo E6850
- SATA RAID-0 10,000 RPM Hard Drives
- 4 GB RAM
- .NET 2.0 Runtime

Black Scholes - Visual C#

Black-Scholes on LabVIEW FPGA

LabVIEW FPGA – Fixed Point Math

Results

• Development times were comparable

- LabVIEW on FPGA ran 49X faster
- LabVIEW on FPGA had 33X energy reduction
- Compact-RIO takes up 1/8 the space

Overview

- Background
 - Buffon's Needle
- Physics and Finance HPC Needs
 - Low Latency, Computational Power
- Case Studies
 - Finance: Option Valuation
 - <u>Physics:</u> Tomography and Matrix Math
- Benefits of LabVIEW FPGA for HPC
 - Fast Development
 - Performance Improvements
 - Energy and Space Savings

Tomography

- Imaging by sections
- Used in various fields
- Computed with Matrix Math

Matrix Math on LabVIEW for FPGA

- One FPGA did not show performance gain
- Designed two FPGA chip solution
 - FPGA 1: Calculate resultant vector
 - FPGA 2: Matrix Math
- Speed gains came from simultaneously multiplying Matrix rows
- Could add more FPGAs for Matrix Math
 - Using FlexRIO

Multi-FPGA Architecture

Parallelized

Matrix Multiplication

Multi-FPGA Performance Gains

Overview

- Proof of Concept
 - Buffon's Needle
- Physics and Finance HPC Needs
 - Low Latency, Computational Power
- Case Studies
 - Finance: Option Valuation
 - Physics: Tomography and Matrix Math
- Benefits of LabVIEW FPGA for HPC
 - Fast Development
 - Performance Improvements
 - Energy and Space Savings

Benefits of LabVIEW FPGA for HPC

- LabVIEW for FPGA is an HPC solution
 - Quick development
 - Energy efficient
 - Fast execution
- Physics & Finance have HPC needs
- LabVIEW for FPGA can be faster than text based programming running on a grid
- Moore's Law still applies to FPGAs

