Network Analysis

Agenda

Page 2

- Transmission Lines
- S-Parameters
- The Smith Chart
- Network Analyzer Block Diagram
- Network Analysis Measurements
- Calibration and Error Correction

RF Energy Transmission

RF

Transmission Line Basics

Low frequencies

- Wavelengths >> wire length
- Current (I) travels down wires easily for efficient power transmission
- Measured voltage and current not dependent on position along wire

High frequencies

- Wavelength » or << length of transmission medium
- Need transmission lines for efficient power transmission
- Matching to characteristic impedance (Zo) is very important for low reflection and maximum power transfer
- Measured envelope voltage dependent on position along line

Transmission line Z_o

- Z_o determines relationship between voltage and current waves
- Z_o is a function of physical dimensions and ε_r
- Z_o is usually a real impedance (e.g. 50 or 75 ohms)

Power Transfer Efficiency

For complex impedances, maximum power transfer occurs when $Z_L = Z_S^*$ (conjugate match)

Maximum power is transferred when $R_L = R_S$

Transmission Line Terminated with Zo

For reflection, a transmission line terminated in Zo behaves like an infinitely long transmission line

Transmission Line Terminated with Short, Open

For reflection, a transmission line terminated in a short or open reflects all power back to source

Transmission Line Terminated with 25 Ohms

Standing wave pattern does not go to zero as with short or open

Reflection Parameters

Reflection Coefficient [S11] =
$$\Gamma = \frac{V_{\text{reflected}}}{V_{\text{incident}}} = \rho \angle \Phi = \frac{Z_{\text{L}} - Z_{\text{o}}}{Z_{\text{L}} + Z_{\text{o}}}$$

Return loss = -20 log(ρ), $\rho = |\Gamma|$

(ZL = open, short)

Transmission Parameters

Port 1
Port 2

Transmission Coefficient [S21] = T =
$$\frac{V_{\text{Transmitted}}}{V_{\text{Incident}}} = \tau \angle \phi$$

Insertion Loss (dB) = -20 Log $\left| \frac{V_{\text{Trans}}}{V_{\text{Inc}}} \right|$ = -20 Log(τ)

Gain (dB) = 20 Log $\left| \frac{V_{\text{Trans}}}{V_{\text{Inc}}} \right|$ = 20 Log(τ)

Demonstration:

Waves on a Transmission Line

Impact of Load Value

© T Agenda

Page 13

- Transmission Lines
- S-Parameters
- The Smith Chart
- Network Analyzer Block Diagram
- Network Analysis Measurements
- Calibration and Error Correction

High-Frequency Device Characterization

Characterizing Unknown Devices

Using parameters (H, Y, Z, S) to characterize devices:

- Gives linear behavioral model of our device
- Measure parameters (e.g. voltage and current) versus frequency under various source and load conditions (e.g. short and open circuits)
- Compute device parameters from measured data
- Predict circuit performance under any source and load conditions

H-parameters	<u>Y-parameters</u>		<u>Z-parameters</u>
$/_1 = h_{11}I_1 + h_{12}V_2$	$I_1 = y_{11}V_1 + y_{12}$	y 12V2	$V_1 = z_{11}I_1 + z_{12}I_2$
$_2 = h_{21}I_1 + h_{22}V_2$	$I_2 = y_{21}V_1 + y_{21}V_1$	y 22V2	$V_2 = \mathbf{z}_{21} \mathbf{I}_1 + \mathbf{z}_{22} \mathbf{I}_2$
Y	$h_{11} = \frac{V_1}{I_1} \Big _{V_2=0}$ $h_{12} = \frac{V_1}{V_2} \Big _{I_1=0}$	(require (require	s short circuit) s open circuit)

Why Use Scattering, S-Parameters?

- Relatively easy to **obtain** at high frequencies
 - Measure voltage traveling waves with a vector network analyzer
 - Don't need shorts/opens (can cause active devices to oscillate or self-destruct)
- Relate to familiar measurements (gain, loss, reflection coefficient ...)
- Can **cascade** S-parameters of multiple devices to predict system performance
- Can compute H-, Y-, or Z-parameters from S-parameters if desired
- Can easily import and use S-parameter files in **electronic-simulation** tools

Measuring S-Parameters

Equating S-Parameters With Common Measurement Terms

 S_{11} = forward reflection coefficient *(input match)* S_{22} = reverse reflection coefficient *(output match)* S_{21} = forward transmission coefficient *(gain or loss)* S_{12} = reverse transmission coefficient *(isolation)*

Demonstration 4 S-Parameters with Correction Off

Demonstration 4 S-Parameters with Correction On

Agenda

Page 21

- Transmission Lines
- S-Parameters
- The Smith Chart
- Network Analyzer Block Diagram
- Network Analysis Measurements
- Calibration and Error Correction

Smith Chart Review

Demonstration: Smith Chart Short, and Open, and a Matched Impedance

Agenda

Page 24

- Transmission Lines
- S-Parameters
- The Smith Chart
- Network Analyzer Block Diagram
- Network Analysis Measurements
- Calibration and Error Correction

Generalized Network Analyzer Block Diagram (Forward Measurements Shown)

Source

- Supplies stimulus for system
- Can sweep frequency or power
- Traditionally NAs had one signal source
- Modern NAs have the option for a second internal source and/or the ability to control external source
 - Can control an external source as a local oscillator (LO) signal for mixers and converters
 - Useful for mixer measurements like conversion loss, group delay

Signal Separation

- Measure incident signal for reference
- Separate incident and reflected signals

splitter

Directional Coupler

desired through signal

Directivity

Directivity is a measure of how well a directional coupler or bridge can separate signals moving in opposite directions

Directivity = Isolation (I) - Fwd Coupling (C) - Main Arm Loss (L)

Interaction of Directivity with the DUT (Without Error Correction)

Detector

Vector narrowband (magnitude and phase)

Detector: Narrowband Detection - Tuned Receiver

Dynamic Range and Accuracy

Error Due to Interfering Signal

Dynamic range is very important for measurement accuracy!

Demonstration VNA - 2 port Block Diagram

Processor / Display

- Markers
- Limit lines
- Pass/fail indicators
- Linear/log formats
- Grid/polar/Smith charts
- Time-domain transform
- Trace math

Agenda

Page 36

- Transmission Lines
- S-Parameters
- The Smith Chart
- Network Analyzer Block Diagram
- Network Analysis Measurements
- Calibration and Error Correction

Why Do We Need to Test Components?

- Verify specifications of "building blocks" for more complex RF systems
- Ensure distortion-free transmission of communications signals
 - Linear: constant amplitude, linear phase / constant group delay
 - Nonlinear: harmonics, intermodulation, compression, X-parameters
- Ensure good match when absorbing power (e.g., an antenna)

The Need for Both Magnitude and Phase

S₂₁ 1. Complete characterization S₁₁ S₂₂ of linear networks S₁₂ 4. Time-domain characterization 2. Complex impedance needed to design Mag Deta Math Off matching circuits Data Trace Memory Trace Data and Memory Time 3. Complex values 5. Vector-error correction needed for device Error C5 C= 960 (modeling HARMONIC BALANCE Freq[1]=1780 MHz L1 L=2.7 nl Measured 01 C=56 pF Actual 56 pF 6. X-parameter (nonlinear) characterization

Linear Versus Nonlinear Behavior

Linear behavior:

- Input and output frequencies are the same (no additional frequencies created)
- Output frequency only undergoes magnitude and phase change

Nonlinear behavior:

- Output frequency may undergo frequency shift (e.g. with mixers)
- Additional frequencies created (harmonics, intermodulation)

KEYSIGHT TECHNOLOGIES

Phase Variation with Frequency

Deviation from Linear Phase

Use electrical delay to remove linear portion of phase response

Low resolution

High resolution

Group Delay

Why Measure Group Delay?

Same peak-peak phase ripple can result in different group delay

Why the Time Domain?

With the time domain information we can:

Identify and Remove Unwanted Responses

Frequency Domain S₁₁ Response of Semirigid Coax Cable

Time Domain S₁₁ Response of Semirigid Coax Cable

Gain Compression

- Parameter to define the transition between the linear and nonlinear region of an active device.
- The compression point is observed as x dB drop in the gain with VNA's power sweep.

Gain Compression Measurement Example

Multiport Measurement

Application Examples

- RF front end modules / antenna switch modules
- Channel measurements of MIMO antennas
- Interconnects (ex. cables, connectors)
- General-purpose multiport devices

Agenda

Page 51

- Transmission Lines
- S-Parameters
- The Smith Chart
- Network Analysis Measurements
- Calibration and Error Correction

The Need For Calibration

- Why do we have to calibrate?
 - It is impossible to make perfect hardware

- It would be extremely difficult and expensive to make hardware good enough to entirely eliminate the need for error correction
- How do we get accuracy?
 - With vector-error-corrected calibration
 - Not the same as the yearly instrument calibration
- What does calibration do for us?
 - Removes the largest contributor to measurement uncertainty: systematic errors
 - Provides best picture of true performance of DUT

Systematic error

Measurement Error Modeling

CAL

Systematic errors

- Due to imperfections in the analyzer and test setup
- Assumed to be time invariant (predictable)
- · Generally, are largest sources or error

Random errors

- Vary with time in random fashion (unpredictable)
- Main contributors: instrument noise, switch and connector repeatability

– Drift errors

- Due to system performance changing after a calibration has been done
- Primarily caused by temperature variation

Systematic Measurement Errors

Six forward and six reverse error terms yields 12 error terms for two-port devices

Types of Error Correction

- Response (normalization)

• Simple to perform

thru

- Only corrects for tracking (frequency response) errors
- Stores reference trace in memory, then does data divided by memory

- Vector

- Requires more calibration standards
- Requires an analyzer that can measure phase
- · Accounts for all major sources of systematic error

What is Vector-Error Correction?

– Vector-error correction…

- · Is a process for characterizing systematic error terms
- Measures known electrical standards
- Removes effects of error terms from subsequent measurements

- Electrical standards...

- Can be mechanical or electronic
- Are often an open, short, load, and thru, but can be arbitrary impedances as well

Using Known Standards to Correct for Systematic Errors

- 1-port calibration (reflection measurements)
 - ^D Only three systematic error terms measured
 - Directivity, source match, and reflection tracking

- Full two-port calibration (reflection and transmission measurements)
 - Twelve systematic error terms measured
 - ^D Usually requires 12 measurements on four known standards (SOLT)
- Standards defined in cal kit definition file
 - Network analyzer contains standard cal kit definitions
 - **CAL KIT DEFINITION MUST MATCH ACTUAL CAL KIT USED!**
 - ¹ User-built standards must be characterized and entered into user cal-kit

Reflection: One-Port Model

- Assumes good termination at port two if testing two-port devices
- If using port two of NA and DUT reverse isolation is low (e.g., filter passband):
 - Assumption of good termination is not valid
 - Two-port error correction yields better results

Before and After A One-Port Calibration

Two-Port Error Correction

- E_D = fwd directivity
- E_s = fwd source match
- E_{RT} = fwd reflection tracking
- $E_{D'}$ = rev directivity
- $E_{S'}$ = rev source match
- $E_{RT'}$ = rev reflection tracking

- E_L = fwd load match
- E_{TT} = fwd transmission tracking
- $E_X =$ fwd isolation
- $E_{L'}$ = rev load match
- E TT' = rev transmission tracking
- E x' = rev isolation
- Each actual S-parameter is a function of all four measured S-parameters
- Analyzer must make forward and reverse sweep to update any one S-parameter
- Luckily, you don't need to know these equations to *use* a network analyzers!!!

ECal: Electronic Calibration

- Variety of two- and four-port modules cover 300 kHz to 67 GHz
- Nine connector types available, 50 and 75 ohms
- Single-connection calibration
 - dramatically reduces calibration time
 - makes calibrations easy to perform
 - minimizes wear on cables and standards
 - eliminates operator errors
- Highly repeatable temperature-compensated characterized terminations provide excellent accuracy

USB Controlled

Microwave modules use a transmission line shunted by PIN-diode switches in various combinations

Errors and Calibration Standards

Demonstration VNA showing Band Pass Filter Uncalibrated, Response Cal and Full 2 port calibration

TECHNOLOGIES

Wrap-Up

Page 64

- Transmission Lines
- S-Parameters
- The Smith Chart
- Network Analysis Measurements
- Calibration and Error Correction

For more information, <u>www.keysight.com/find/na</u>

