\V4 [S)

Introducing The Benefits Of Software To Your Hardware
Design Workbench

IEEE Long Island Power Electronics Conference
November 7t 2024

C. R. Swartz; Senior Principal Engineer/Manager
Joshua Lapierre, Engineering Aid
Advanced Systems Design Engineering

©2024 Vicor

Forward

Has anyone ever designed a power supply that requires communication just to turn on?
How about programming the power supply and trimming compensation, output etc.?
Ever try to buy a turn-key test solution that works with your existing test equipment?
These solutions also have to communicate with your power supply too!

Often you have to buy a rack along with new test equipment to get automation.

You would still have to write customized code and spend a lot of money (and time)

VICOR ©2024 Vicor

This seminar

It became necessary to dig in to developing software to help me in the product
development. | don’t profess to be an expert coder, but thanks to the great (free) and low
cost tools available today, you don’t have to be one to get some very meaningful things
accomplished. There’s always time to learn to be more proficient.

Today | hope to show you how to:
Become familiar with Python® from a non-expert, practical point of view
Utilize your existing test equipment and make measurements at low cost!

Create a simple test code that can be used to control PMBus® power supplies
Log and save your data in a common, simple format.

VICOR ©2024 Vicor

Benefits

Ultra-low cost since most of the development tools are free

Low development time as there are examples to learn from

Your test programs are like building blocks, easy to reuse or modify

Learn to be a better programmer as you go

No internet connection required once you install all of the software

Can use virtually any PC or old laptop as even old laptops are fast enough
Final result is a very stable platform that is easily modifiable.

With some C experience in my background, | had a working test station in (4) four days

VICOR ©2024 Vicor

Our examples use our new industrial PRM3735

VICOR
-

Product Ratings

36.6 x 35.4 x 7.4mm SM-ChiP™

Viy = 31.0 - 58.0V Pour = 2500W
Weight: 409 N ol
Wide input range 31 - 58Vp¢ (36_?]/0_“5:_3'3\4”@ lour = 52.1A

Wide output range 36 — 54Vp¢

99.2% peak efficiency (48V input, 48V output)
Up to 2.5kW continuous operation

4.3kW/in3 power density

Thermally-adept SM-ChiP package
PMBus®-compatible telemetry

VICOR ©2024 Vicor

Evaluation board for the PRM3735

SYNCI2 T

Q000

VDR/EAN

TP51 @3
+N

®)
0
o
o
(o]
o)
o]

PN# 50433 LT

VICOR ©2024 Vicor

Comparing languages

Python®

High-level language — python code is
hi§hly readable, and easy to learn.
Allows dynamic typing

Extensive libraries — provides diverse
libraries for different applications

Interpreted language — interprets code
directly without converting to machine
coge first. Results in slower execution of
code.

VICOR

Mid-level language — C code has more
complex syntax and lower level
constructs such as pointers. Is more
difficult to learn but offers fine grain
control over memory

Smaller libraries — provides a smaller
amount of libraries but offers powerful
low-level system functions

Compiled language — source code is
translated into machine code by the
compiler before the computer can
exgcute it. Results in efficient and fast
code.

©2024 Vicor

Downloading............

Visit https://www.python.org/downloads/

Python® is compatible with Windows, macOS®, and Linux®

Download and execute an installer for the latest version of that is compatible with your
OS

& python’ . I

About Downloads Documentation Community Success Stories News Events

Download the latest version for Windows {‘ﬁ\ "\ \
f \\\

Download Python3.12.4

Looking for Python with a different 0S? Python for Windows,
Linux/UNIX, macOS5, Other

Want to help test development versions of Python 3.13? Prereleases,
Docker images

VICOR /

©2024 Vicor

Installing........

Click on install now or customize installation if you wish to choose your file location,
here we are using version 3.8 on this machine

Z» Python 3.8.0 (64-bit) Setup - X

) Install Python 3.8.0 (64-bit)
. Select Install Now to install Python with default settings, or choose

Customize to enable or disable features.

® install Now
C\Users\ @i\ AppData\Local\Programs\Python\Python38
Includes |DLE, pip and documentation

Creates shortcuts and file associations

—> Customize installation
Choose location and features

python

for I Install launcher for all users (recommended)

windows [] Add Python 3.8 to PATH . Cancel
VICOR ©2024 Vicor

Additional software requirements

NI-VISA is a national instruments driver that uses the VISA /O standard — download
from National Instruments Inc.

PyVISA is a Python package that enables you to control various measurement
equipment remotely via the python program using the NI-VISA program installed on

your system

VICOR ©2024 Vicor

Equipment drivers

PythonEquipmentDrivers are a collection of files that use pyVISA to communicate with
ATE instruments

Is available on GitHub at https://github.com/AnnaGiasson/PythonEquipmentDrivers

VICOR ©2024 Vicor

Serial host adapter

The Aardvark™ is a host adapter that allows the communication between Windows,
Linux®, or macOS® through USB to an external device using I12C or SPI protocols

Total Phase™ offers drivers, APl and Control Center Serial Software to use with the
Aardvark unit

."TOTAL PHASE
i) g

VICOR ©2024 Vicor

Downloading...... USB driver and GUI

Visit https://www.totalphase.com/products/aardvark-i2cspi/

Scroll down the page and click the drop down labeled “What’s Included”

Download Control Center Serial Software, Aardvark™ Software API, USB Drivers

What's Included -~
Hardware Software (web downloads)
s Aardvark I2C/SPI Host Adapter » Control Center Serial Software
* 5 ft USB-Ato USB-B Cable * Flash Center Software

* OneYear Warranty * Aardva are AP

* Agrdvark LabVIEW Driver
* LSB Drivers

* Linux USB Hot Plug Configuration files

VICOR ©2024 Vicor

Serial host adapter software description

Control Center Serial Software — provides an interface to communicate with an
Aardvark™ [2C/SPI Host Adapter. Useful for testing connections and debugging, but not
suitable to ATE applications as it can’t be synched to your test station code

Aardvark™ Software APl — provides Application Programming Interface and Python®
libraries as well as other programming languages

USB Drivers — software that enables the computer to communicate to the serial device
through a USB port

VICOR

©2024 Vicor

Debuggers

PyScripteris an open-source Integrated Development Environment (IDE) for Python®

PyScripter includes an integrated debugger, which features remote debugging, variable
and watch windows, conditional breakpoints, post-mortem analysis, and the ability to

run or debug files without saving them first

PyScripter was used in the development and testing of this project and will be used
going forward in this presentation

There are many other options available, browse and choose one you like best

VICOR ©2024 Vicor

Set-up files

Open the downloaded file “aardvark-api-windows-x86_64-v6.00” from Aardvark™
Software API

The python folder will have the APl named “aardvark_py.py”, and the DLL file named
“aardvark.dll”

|II

Copy “aardvark_py.py”, and “aardvark.dll” and place them into your project file

The python folder has script examples using “aardvark_py.py”

This folder provides multiple useful examples that can help you to understand
how the module is used

VICOR ©2024 Vicor

Set-up files

> This PC » USB Drive (E) » IEEE Demo

oy

Name

_ pycache__
data

.| aardvark.dll

aardvark_functions.py

5]

aardvark_py.py

R R RD

prm_12C_test.py

VICOR

Date modified

11/5/2024 3:24 PM
11/5/2024 3:16 PM
11/5/2024 9:39 AM
11/5/2024 9:46 AM
11/5/2024 9:39 AM
11/5/2024 3:36 PM

Type

File folder
File folder
Application extension
Python File
Python File
Python File

Size

57 KB
9 KB
48 KB
2 KB

©2024 Vicor

Our telemetry module

The goal was to create a module named “aardvark_functions.py” that can be called to

perform PMBus® commands from a main test program, using the API supplied by Total
Phase

These functions will constitute complete commands in a simple and compact format

“aardvark_functions.py” will then be used in conjunction with

“PythonEquipmentDrivers” in order to create tests that evaluate the telemetry and
control capabilities of a PRM3735 unit

VICOR

©2024 Vicor

Creating needed functions

Two types of sub-functions need to be created
Command function

Conversion functions

Command function — writes a command to an external PMBus® compatible device, then
reads the device response

Conversion functions — takes the external device response and converts it to the desired
output format

VICOR ©2024 Vicor

Defining constants

Constants will be used to store the address and data to be sent to the external device
“aardvark_py.py” uses the Python® module array
Command constants need to be defined using arrays of data type “B” (int, 1 byte min)

Example: OPERATION_ON = array('B', [0x01, 0x84])

Pre-defined constants will be used as arguments in the command function to send
commands to the unit

VICOR

©2024 Vicor

PRM3735 commands and data format

Supported Command List and Supported Commands Transaction Type

VICOR

Command Name

OPERATION
CLEAR_FAULTS

STORE_USER_CODE

CAPABILITY

VOUT_MODE
VOUT_COMMAND

VOUT_TRANSITION_RATE

IOUT_OC_FAULT_LIMIT

STATUS_BYTE
STATUS_WORD
READ_VIN
READ_VOUT
READ_IOUT

READ_TEMPERATURE_1

MFR_ID
IC_DEVICE_ID
MFR_STATUS_FAULTS

Command
Code

0t1h
03h

17h

19h

20h
21h

27h

46h

78h
79h
88h
8Bh
8Ch

8Dh

99h
ADh
FOh

Function

PMBus enable/disable
Clear fault status register

Writes variable parameter
to non-volatile memory

PRM key capabilities set
by factory

Format for
VOUT_COMMAND

Set PRM output voltage

Set PRM output voltage
slew rate in operation

Set PRM constant
current limit

Fault Readback
Generic Fault Readback
PRM Input Voltage
PRM Output Voltage
PRM Output Current

PRM Temperature at
Regulator Controller

Manufacturer ID
Device identification
PRM Specific Faults

Default SMBus SMBus
Data Write Read
Content Transaction Transaction Data Bytes
84h Send Byte Read Byte
n/a Send Byte n/a
n/a Write Byte n/a
AOh n/a Read Byte
17h n/a Read Byte
6000h Write Word | Read Word
1900h Write Word | Read Word
E3FOh Write Word | Read Word
n/a n/a Read Byte
n/a n/a Read Word
n/a n/a Read Word
n/a n/a Read Word
n/a n/a Read Word
n/a n/a Read Word
N n/a Block Read
"4210008" n/a Block Read
n/a n/a Read Word

Number
of

1
0

1

NN NN

Data
Format

bit

bit

bit

bit

bit
ULINEAR16

LINEART1

LINEART1
bit
bit
LINEART1
ULINEAR16
LINEART1

LINEART1

ASCII
ASCII
bit

PEC

Supported
Unsupported

Unsupported
Supported

Supported
Supported

Supported

Supported

Supported
Supported
Supported
Supported
Supported

Supported

Unsupported
Unsupported
Supported

Opening and closing the port

In order to communicate with the Aardvark™ a port needs to be opened with the
aa_open() function

The function needs to be placed in your main program before any commands are sent

The function takes the desired port number as an argument, in this case zero, and
returns the handle value

The handle variable should be saved to the aardvark functions module, to be used in
the command function which will facilitate communication to the Aardvark™ unit

port = @

af.handle = aa open(port)

At the end of the program it is good practice to close the port using the aa_close()
function, which uses the handle as an argument

af.handle)
VICOR ©2024 Vicor

Address

The command function needs to know the child address of the unit it is controlling

Find the address of the unit to be communicated with and save it to a variable for the
command function at the top of the aardvark_functions module for the command
function to use

child addr =]

VICOR ©2024 Vicor

Command function

The command function will be constructed with the aa_i2c_read function and
aa_i2c_write function

It will always write a command to the PMBus line and read its response.

If there is no anticipated response, then run the command without saving the returned
value

VICOR

©2024 Vicor

Command function

def command(data out, byte num):
convert bit{array, bytes)
sends PMBus signal from aardvark to unit and reads units response
Returns:
: hex value
count = aa i2c write(handle, child addr, AA I2C NO FLAGS, data out)
if count < @:
: print("error: %s" % aa_status string(count))

count, data in = aa i2c read(handle, child addr, AA I2C NO FLAGS, byte num)
if count < @:

] print{"error: %s" % aa_status_string(count))

return data_in

VICOR ©2024 Vicor

Conversion functions created

Takes the output of the command function and converts it to a useful value
convert_linearll - converts LINEAR11 binary value to real-world value
convert_ulinearl6 - converts ULINEAR16 binary value to real-world value
convert_hex - converts bytes to hex
convert_bit - converts byte from bit data format to hex

convert_ascii - converts byte from ASCII data format to hex

VICOR ©2024 Vicor

Conversion functions

—_u;;neafiﬁﬂarray_UEIUE}:

convert ulinearl6(array)

converts ulinearl6 binary code to real world value.
Returns:

: ulinearlt decoded value

mantissa = array_value[1]*256 + array value[@]

a4 -:.:i::l: _i
2 r

return mantissa

©2024 Vicor

VICOR

Convert from LINEAR11

The convert_linearl1(array) function takes the output of a command and converts the
array from LINEAR11 to a real-world value

The array received will have the high byte and low byte stored separately as decimal
numbers

VICOR

©2024 Vicor

Convert from LINEAR11

def convert linearill{array value):

convert_linearll(array)

converts linearll binary value to real world value.
Returns:

: floating-point real world value

binary_value = format(array_value[1]*256 + array_value[@], '#218b")
mantissa = int(binary value[7:8])*-1024 + int(binary value[8:18], 2)
exponent = int(binary value[2:3])*-16 + int(binary value[3:7], 2)

VICOR ©2024 Vicor

Binary conversion

The high byte of the array is multiplied by 256, so that when converted to binary the
high byte will be shifted 8 digits left.

The high and low byte are then added together to produce a single value that is then
converted to a string using the format function.

The format function is specified with the code ‘#018b’.

The ‘b’ specifies that the output should be in binary.

The ‘# adds the prefix ‘Ob’ to the output value.

The ‘018’ directs the output length to be 18 characters long.

binary value = format(array value[1]*256 + array value[@0],

VICOR ©2024 Vicor

Linear11

Hiih Bite Low Bite

* The received array is two bytes long

* The exponent value is encoded into the 5 most significant bits, while
the mantissa is in the 11 least significant bits

* The mantissa and exponent are signed numbers in twos compliment
form

VICOR ©2024 Vicor

Finding the mantissa and exponent

binary prefix N (exponent) Y (mantissa)
o | b T T T T o | 12 [o | 2 | 1 [12 | o [o | o | 1 | o
0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15 16 17 18

 The mantissa and exponent value need to be extracted from their two’s compliment
form.

* The first value of each number will be selected separately from the rest, then
multiplied by its negative place value, and finally added to the rest of the number

Y (mantissa)
o [o | 12 | 1 | 12 | 121 | o | o | o | o | o

binary_value[7:8]=|{ binary value[8:181=f o0 | 1 | 12 | 12 | 1 | o | o | o | o 0

mantissa = binary value|7:8] * —1024 + binary value[8: 18]

mantiszsa int(binary value[7:8])*-1824 + int(binary value[8:18], 2)

exponent = int(binary value[2:3])*-16 + int(binary value[3:7], 2)

VICOR ©2024 Vicor

Solving for the real-world value

X=Yx2N
X is the real-world value
Y is the mantissa

N is the exponent

The mantissa value and the exponent value are now plugged into the LINEAR11
equation to find the real-world value

The result is then returned as the functions output value

return mantissa *

VICOR ©2024 Vicor

Pairing functions........

In order to create PMBus® commands; we will combine constants, the command
function and conversion functions

The constant will determine the command code address byte and any additional data
bytes sent

The command function will send the message to the unit then return the response

The conversion function will convert the response to the desired format

ommand (v_out_set):

run_vout command()
sends PMBus VOUT COMMAND command to unit then converts response from

ulinearle data format to hex

Returns:
: hex value

return convert_ulinearl6(command(v_out set, 2))

VICOR ©2024 Vicor

Available command functions

run_operation()
run_operation_on()
run_operation_off{()
run_vout_mode()
run_read_temperature()
run_vout_command)
run_slew_read()

run_read_vin()

VICOR

run_read_vout()
run_read_iout()
run_capability()
run_status_byte()
run_status_word()
run_mfr_id()
run_mfr_status_faults()

run_ic_device_id()

©2024 Vicor

Our example program

Tests the PRM3735 unit at different V|, |5, and Vg conditions

Use develope_d commands to set Vr and to measure V, Vo1, loup @and internal
temperature in degrees C

Saves data to datum as a list

VICOR

©2024 Vicor

import modules
i pythonequipment
aardvark py in

Main program —— it

file s
Create the directory inadvance ————» EEE e RS S8l

ave Location
e name = "C:

connect to meter using pyvisa
v_out meter = ped.multimeter.Keysight 34461A(°

open port @ and get handle
Define the port ————————> [slslmaET]

Assign the pot ————>» af.handle = aa_open(port)

test Loop

v_out_conditions WND 48V, af.VOUT CoMManD 54V
data = [['v e Pl f) s temp-]]
for v_out set in v_out conditions:
af.run_vout command(v_out set)
sleep
Main loop Edatu:m
v_out _meter.measure_voltage(),
i af.run_read_iout
: ¢ af.run_read_temperature(),]
data.append(datum)
1 second delay per pass E—
Write the file when done — I(data_file name, "

writer(file)
~ row in data:
writer.writerow(row)
ed to:

close port
Closethe port ———p EEERTITE] BN ELTIEY!

VICOR ©2024 Vicor

Set the output voltage

Here we are sending 4800 in Hexadecimal, which converts to

PRM3735 PMBUS Set Vout to 36V for presentation 36.00V when using the default exponent of -9 in ULINEAR16
format
/
/ i | TELEDYME LECADY
Age Euvargwisroyoulioc

= = e
| i i
| 1 i
|| | 2 L i i | i i |
256 e -56 s X 14 s (4 = 544 s Tad = 044 = 1144 ma 1 344 e 15H ms 1744 ms
Meagure P1 pkak(G1} P2:mean(C1} P2 phph(C2) P& mean(G2} PO--- P BT--- P8 [PAQ--- Pl P12
value 4240V Zoy 13my Ty
sta[us o Bl C
B¢ Time -Addrlength Address ~RWLength Do o/ ... -Saws -
T, e a0 W W 3 - Gediiag B e e e s oo
2 tomd4. 47 (e R 2 000

VICOR ©2024 Vicor

Read input voltage telemetry

PRM3735 PMBUS Read Vin The upper byte is sent first followed by the lower byte. The

result to be decoded is E8F6 in Hexadecimal

TELEDYNE LECRDY
Evsrpvsbonyouioos

_—-I|.- e | br - 4 1 744
Bv|
o)) —
Ed“._\ I o = o ' S
A4} :
-256 p= S * 144 s D44 s Tdd p= G4d = 1144 ms 15344 me 1544 ms 1744 ms
Measure P phphiG1) P2 mean(C1} P3 phphiC2} P4 mean(C2} Pa--- PG --- PT--- P&--- Pa--- P1Q--- P11--- P12---
value 4766 Y 30y 1Zmy 7o pv
atatus o o o
12€ Time - AddrLength Address -RAW Length - Data - Status
1 i, M T O W Ul
2 12148, 47 060 R 2 odoel

©2024 Vicor

Read input voltage telemetry - checking the math

E8F6in Hex is “1110100011110110” in Binary Low Bits_Value = 246
The first 5 bits are a signed integer. This represents N. The remaining 11 bits convert to 246 Decimal, which is our Low_Bits_Value = 0fSh
Sowe get-16+ 13 =-3 data to be converted
Ndata = -3
Our measured value in our program should be 30.75 Volts . _ _s
“‘data

We can check this in our test results .CSV file

N
Realy, = Low_Bits_Value2

Realy = 30.73

VICOR ©2024 Vicor

Read output voltage telemetry

PRM3735 PMBUS Read Vout

.............. *‘I‘EI.F.D%‘HE LEGHLY
Evrpwrhoroyeuioos
i i s,

BV 1
Clock T
av) = e
L, — + — ! L e
AV | !
| : I
BV | 1 i = | | O
-250 pm - s ¥ T4 s 34 s T4 Tdd = 944 = 1144 ms 1344 = .54 s 1744 ms
Measure PiphpkiC1) P2mean(C1) P3pepkiC2) Pamean(C2) Pha-- Fi-.- PT--- P P P10--- Pi1--- P12~
value 4240V 2566 Y 13my 215V
slatus o 4 o+ o+
2 Time -AddrLengthAddress -RWlength Data .. -Staws
1 -i095 a7 (w62 w1 Oxdib
2 107Tga. 47 OxEa R 2 Ol 4

The upper byte is sent first followed by the lower byte. The
result to be decoded is 49E0 in Hexadecimal

VICOR ©2024 Vicor

Read output telemetry- ULINEAR16 math check

49EQ in Hex is “0100 1001 1110 0000” in Binary

All of the read 16 bits are used for higher resolution and
convert to 18912 Decimal, which is our data to be converted

Exponentis fixed in this case at -9 by design

Our measured value in our program should be 36.938 Volts
We can check this in our test results .CSV file T

VICOR

Read_Data_Value = 18912

Read_Data_Value = 49¢0h

N =9
Nexp = 9h

Nexp
Real jjinaarig = Read_Data_Value-2

Realuhnwlﬁ = 36.958

©2024 Vicor

Read temperature command LINEAR11

PRM3735 PMBUS Read Temp

TELED'YNE LECROY|
Eugirywhoyoulcos’
i
. i ! 1 |
I Tl L 4 ¥ 4 Fild | ey A T 4 44 1 T4
BV@' —— - & i . 1. :_ s
av ngg_h\ | ; = :
e e e
4\ | i I
| H
L I i | (. . I e
-256 5 -6 s % 144 = IS G4 s T44 = 44 s 1144 m3 T34 e 154 e 1744 ms
Measure P1pkphiC1) F2meaniCG1h P3 phpk(C2) P4 mean (G2} Pa--- P --- PT--- Pé--- Pa--- P1Q--- P11 --- P12---
valie 4293V 2TV 13my 409y
Statis i o 2 c
12¢ Time - Addrlength Address -RMW Length -Data . ! ! e — ! ! - Status
LB 0BT 47 D€y W 1 OBl SR
2 10040, 47 g R 2 1 00

nm‘m 744 5| Trigges
The upper byte is sent first followed by the lower byte. The SR NEIS LA =i

result to be decoded is 0021 in Hexadecimal

VICOR ©2024 Vicor

Read temperature command- LINEAR11 math

0021 in Hex is “0000 Q000 0010 0001” in Binary

The first 5 bits are a signed integer. This represents N.
So N in this case is zero

Our measured value in our program should be 33 C

The remaining 11 bits convert to 33 Decimal, which is our data
to be converted

We can check this in our test results .CSV file

VICOR

Read Temp Value = 33

Read Temp Value = 21h

N
Realyppy, = Read_Temp_Value-2 =pt

Real gy = 33

©2024 Vicor

Test file produced by our program (testfile.csv)

Hardware (meter)

\A,B\I c || F | @

1 v_in v_out{PMBus]?_Eut{meter] i_out temp

2 | 30.75 38.375 36.2302317 0.25 34

3 | 30.75 49.0625 48.0814724 0.25 33

4 430.75 55,3125 54.0982825 (.25 33

4“

Telemetry ?—

8

9

10

VICOR ©2024 Vicor

Closing comments

We have shown how to create a simple test program in Python®

This program can control a power supply and measure telemetry using PMBus®

It can also measure external voltages using a bench DMM through USB

Both measurements can be combined in a .CSV data file which can then be imported

This simple program can and has been extended to include scopes, oven control, chiller
control, network analyzers, current monitors, loads, sources etc. to make a complete,
very low cost, customizable and stable automated test system

It is my hope that you will be able to embark on creating your own automated test
bench!

VICOR ©2024 Vicor

Acknowledgements

Windows is a trademark of Microsoft Corportation

NI-VISAis a registered trademark of National Instruments Corporation

macOS® is a registered trademark of Apple Inc.

Python and Python® are registered trademarks of the Python Software Foundation

PMBus® and PMBus are registered trademarks of the System Management Interface Forum Inc. (SMIF Inc.)
Linux® is a registered trademark of Linus Torvalds in the U.S. and other countries

Aardvark™, Aardvark I2C/SPI, Control Center and Total Phase are all trademarks of Total Phase Inc.

Other company names and product names may be service marks, trademarks or registered trademarks of their respective companies

VICOR

©2024 Vicor

Questions?

VICOR VICOR CONFIDENTIAL ~ ©2024 Vicor

