
Introducing The Benefits Of Software To Your Hardware
Design Workbench

IEEE Long Island Power Electronics Conference
November 7th 2024

C. R. Swartz; Senior Principal Engineer/Manager

Joshua Lapierre, Engineering Aid

Advanced Systems Design Engineering

©2024 Vicor

Forward

©2024 Vicor

 Has anyone ever designed a power supply that requires communication just to turn on?

 How about programming the power supply and trimming compensation, output etc.?

 Ever try to buy a turn-key test solution that works with your existing test equipment?

 These solutions also have to communicate with your power supply too!

 Often you have to buy a rack along with new test equipment to get automation.

 You would still have to write customized code and spend a lot of money (and time)

This seminar

©2024 Vicor

It became necessary to dig in to developing software to help me in the product
development. I don’t profess to be an expert coder, but thanks to the great (free) and low
cost tools available today, you don’t have to be one to get some very meaningful things
accomplished. There’s always time to learn to be more proficient.

Today I hope to show you how to:

 Become familiar with Python® from a non-expert, practical point of view
 Utilize your existing test equipment and make measurements at low cost!
 Create a simple test code that can be used to control PMBus® power supplies
 Log and save your data in a common, simple format.

Benefits

©2024 Vicor

 Ultra-low cost since most of the development tools are free
 Low development time as there are examples to learn from
 Your test programs are like building blocks, easy to reuse or modify
 Learn to be a better programmer as you go
 No internet connection required once you install all of the software
 Can use virtually any PC or old laptop as even old laptops are fast enough
 Final result is a very stable platform that is easily modifiable.

 With some C experience in my background, I had a working test station in (4) four days

Our examples use our new industrial PRM3735

©2024 Vicor

Evaluation board for the PRM3735

©2024 Vicor

Comparing languages

Python®
 High-level language – python code is

highly readable, and easy to learn.
Allows dynamic typing

 Extensive libraries – provides diverse
libraries for different applications

 Interpreted language – interprets code
directly without converting to machine
code first. Results in slower execution of
code.

C:
 Mid-level language – C code has more

complex syntax and lower level
constructs such as pointers. Is more
difficult to learn but offers fine grain
control over memory

 Smaller libraries – provides a smaller
amount of libraries but offers powerful
low-level system functions

 Compiled language – source code is
translated into machine code by the
compiler before the computer can
execute it. Results in efficient and fast
code.

©2024 Vicor

Downloading…………

 Visit https://www.python.org/downloads/

 Python® is compatible with Windows, macOS®, and Linux®
 Download and execute an installer for the latest version of that is compatible with your

OS

©2024 Vicor

Installing……..

 Click on install now or customize installation if you wish to choose your file location,
here we are using version 3.8 on this machine

©2024 Vicor

Additional software requirements

 NI-VISA is a national instruments driver that uses the VISA I/O standard – download
from National Instruments Inc.

 PyVISA is a Python package that enables you to control various measurement
equipment remotely via the python program using the NI-VISA program installed on
your system

©2024 Vicor

Equipment drivers

 PythonEquipmentDrivers are a collection of files that use pyVISA to communicate with
ATE instruments

 Is available on GitHub at https://github.com/AnnaGiasson/PythonEquipmentDrivers

©2024 Vicor

Serial host adapter

 The Aardvark™ is a host adapter that allows the communication between Windows,
Linux® , or macOS® through USB to an external device using I2C or SPI protocols

 Total Phase™ offers drivers, API and Control Center Serial Software to use with the
Aardvark unit

©2024 Vicor

Downloading……USB driver and GUI

 Visit https://www.totalphase.com/products/aardvark-i2cspi/
 Scroll down the page and click the drop down labeled “What’s Included”
 Download Control Center Serial Software, Aardvark™ Software API, USB Drivers

©2024 Vicor

Serial host adapter software description

 Control Center Serial Software – provides an interface to communicate with an
Aardvark™ I2C/SPI Host Adapter. Useful for testing connections and debugging, but not
suitable to ATE applications as it can’t be synched to your test station code

 Aardvark™ Software API – provides Application Programming Interface and Python®
libraries as well as other programming languages

 USB Drivers – software that enables the computer to communicate to the serial device
through a USB port

©2024 Vicor

Debuggers

 PyScripteris an open-source Integrated Development Environment (IDE) for Python®
 PyScripter includes an integrated debugger, which features remote debugging, variable

and watch windows, conditional breakpoints, post-mortem analysis, and the ability to
run or debug files without saving them first

 PyScripter was used in the development and testing of this project and will be used
going forward in this presentation

 There are many other options available, browse and choose one you like best

©2024 Vicor

Set-up files

 Open the downloaded file “aardvark-api-windows-x86_64-v6.00” from Aardvark™
Software API

 The python folder will have the API named “aardvark_py.py”, and the DLL file named
“aardvark.dll”

 Copy “aardvark_py.py”, and “aardvark.dll” and place them into your project file
 The python folder has script examples using “aardvark_py.py”

– This folder provides multiple useful examples that can help you to understand
how the module is used

©2024 Vicor

Set-up files

©2024 Vicor

Our telemetry module

 The goal was to create a module named “aardvark_functions.py” that can be called to
perform PMBus® commands from a main test program, using the API supplied by Total
Phase

 These functions will constitute complete commands in a simple and compact format
 “aardvark_functions.py” will then be used in conjunction with

“PythonEquipmentDrivers” in order to create tests that evaluate the telemetry and
control capabilities of a PRM3735 unit

©2024 Vicor

Creating needed functions

 Two types of sub-functions need to be created
– Command function
– Conversion functions

 Command function – writes a command to an external PMBus® compatible device, then
reads the device response

 Conversion functions – takes the external device response and converts it to the desired
output format

©2024 Vicor

Defining constants

 Constants will be used to store the address and data to be sent to the external device
 “aardvark_py.py” uses the Python® module array
 Command constants need to be defined using arrays of data type “B” (int, 1 byte min)
 Example: OPERATION_ON = array('B', [0x01, 0x84])
 Pre-defined constants will be used as arguments in the command function to send

commands to the unit

©2024 Vicor

PRM3735 commands and data format

©2024 Vicor

Opening and closing the port

 In order to communicate with the Aardvark™ a port needs to be opened with the
aa_open() function

 The function needs to be placed in your main program before any commands are sent
 The function takes the desired port number as an argument, in this case zero, and

returns the handle value
 The handle variable should be saved to the aardvark_functions module, to be used in

the command function which will facilitate communication to the Aardvark™ unit

 At the end of the program it is good practice to close the port using the aa_close()
function, which uses the handle as an argument

©2024 Vicor

Address

 The command function needs to know the child address of the unit it is controlling
 Find the address of the unit to be communicated with and save it to a variable for the

command function at the top of the aardvark_functions module for the command
function to use

©2024 Vicor

Command function

 The command function will be constructed with the aa_i2c_read function and
aa_i2c_write function

 It will always write a command to the PMBus line and read its response.
 If there is no anticipated response, then run the command without saving the returned

value

©2024 Vicor

Command function

©2024 Vicor

Conversion functions created

 Takes the output of the command function and converts it to a useful value
– convert_linear11 - converts LINEAR11 binary value to real-world value
– convert_ulinear16 - converts ULINEAR16 binary value to real-world value
– convert_hex - converts bytes to hex
– convert_bit - converts byte from bit data format to hex
– convert_ascii - converts byte from ASCII data format to hex

©2024 Vicor

Conversion functions

©2024 Vicor

Convert from LINEAR11

 The convert_linear11(array) function takes the output of a command and converts the
array from LINEAR11 to a real-world value

 The array received will have the high byte and low byte stored separately as decimal
numbers

©2024 Vicor

Convert from LINEAR11

©2024 Vicor

Binary conversion

 The high byte of the array is multiplied by 256, so that when converted to binary the
high byte will be shifted 8 digits left.

 The high and low byte are then added together to produce a single value that is then
converted to a string using the format function.

 The format function is specified with the code ‘#018b’.
 The ‘b’ specifies that the output should be in binary.
 The ‘#’ adds the prefix ‘0b’ to the output value.
 The ‘018’ directs the output length to be 18 characters long.

©2024 Vicor

Linear11
High Byte Low Byte

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
N (exponent) Y (mantissa)

• The received array is two bytes long
• The exponent value is encoded into the 5 most significant bits, while

the mantissa is in the 11 least significant bits
• The mantissa and exponent are signed numbers in twos compliment

form

©2024 Vicor

Finding the mantissa and exponent

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

• The mantissa and exponent value need to be extracted from their two’s compliment
form.

• The first value of each number will be selected separately from the rest, then
multiplied by its negative place value, and finally added to the rest of the number

0 0 1 1 1 1 0 0 0 0 0
Y (mantissa)

0 0 1 1 1 1 0 0 0 0 0binary_value[7:8] = binary_value[8:18] =

𝑚𝑎𝑛𝑡𝑖𝑠𝑠𝑎 = 𝑏𝑖𝑛𝑎𝑟𝑦 𝑣𝑎𝑙𝑢𝑒 7: 8 ∗ −1024 + 𝑏𝑖𝑛𝑎𝑟𝑦 𝑣𝑎𝑙𝑢𝑒[8: 18]

©2024 Vicor

Solving for the real-world value

୒

X is the real-world value

Y is the mantissa

N is the exponent

 The mantissa value and the exponent value are now plugged into the LINEAR11
equation to find the real-world value

 The result is then returned as the functions output value

©2024 Vicor

Pairing functions……..

 In order to create PMBus® commands; we will combine constants, the command
function and conversion functions

 The constant will determine the command code address byte and any additional data
bytes sent

 The command function will send the message to the unit then return the response
 The conversion function will convert the response to the desired format

©2024 Vicor

Available command functions

 run_operation()

 run_operation_on()

 run_operation_off()

 run_vout_mode()

 run_read_temperature()

 run_vout_command()

 run_slew_read()

 run_read_vin()

 run_read_vout()

 run_read_iout()

 run_capability()

 run_status_byte()

 run_status_word()

 run_mfr_id()

 run_mfr_status_faults()

 run_ic_device_id()

©2024 Vicor

Our example program

 Tests the PRM3735 unit at different VIN, IOUT and VOUT conditions
 Use developed commands to set VOUT and to measure VIN, VOUT, IOUT, and internal

temperature in degrees C
 Saves data to datum as a list

©2024 Vicor

Main program

©2024 Vicor

Create the directory in advance

Define the port

Assign the port

Main loop

1 second delay per pass

Write the file when done

Close the port

Set the output voltage
Here we are sending 4800 in Hexadecimal, which converts to
36.00V when using the default exponent of -9 in ULINEAR16
format

©2024 Vicor

Read input voltage telemetry

The upper byte is sent first followed by the lower byte. The
result to be decoded is E8F6 in Hexadecimal

©2024 Vicor

Read input voltage telemetry - checking the math

 E8F6 in Hex is “1110 1000 1111 0110” in Binary

 Our measured value in our program should be 30.75 Volts
 We can check this in our test results .CSV file

The first 5 bits are a signed integer. This represents N.
So we get -16 + 13 = -3

The remaining 11 bits convert to 246 Decimal, which is our
data to be converted

©2024 Vicor

Read output voltage telemetry

The upper byte is sent first followed by the lower byte. The
result to be decoded is 49E0 in Hexadecimal

©2024 Vicor

Read output telemetry- ULINEAR16 math check

 49E0 in Hex is “0100 1001 1110 0000” in Binary

 Exponent is fixed in this case at -9 by design

 Our measured value in our program should be 36.938 Volts
 We can check this in our test results .CSV file

All of the read 16 bits are used for higher resolution and
convert to 18912 Decimal, which is our data to be converted

©2024 Vicor

Read temperature command LINEAR11

The upper byte is sent first followed by the lower byte. The
result to be decoded is 0021 in Hexadecimal

©2024 Vicor

Read temperature command- LINEAR11 math

 0021 in Hex is “0000 0000 0010 0001” in Binary

 Our measured value in our program should be 33 C
 We can check this in our test results .CSV file

The first 5 bits are a signed integer. This represents N.
So N in this case is zero

The remaining 11 bits convert to 33 Decimal, which is our data
to be converted

©2024 Vicor

Test file produced by our program (testfile.csv)

Hardware (meter)

Telemetry

©2024 Vicor

Closing comments

©2024 Vicor

 We have shown how to create a simple test program in Python®
 This program can control a power supply and measure telemetry using PMBus®
 It can also measure external voltages using a bench DMM through USB
 Both measurements can be combined in a .CSV data file which can then be imported
 This simple program can and has been extended to include scopes, oven control, chiller

control, network analyzers, current monitors, loads, sources etc. to make a complete,
very low cost, customizable and stable automated test system

 It is my hope that you will be able to embark on creating your own automated test
bench!

Acknowledgements

©2024 Vicor

 Windows is a trademark of Microsoft Corportation
 NI-VISA is a registered trademark of National Instruments Corporation
 macOS® is a registered trademark of Apple Inc.
 Python and Python® are registered trademarks of the Python Software Foundation
 PMBus® and PMBus are registered trademarks of the System Management Interface Forum Inc. (SMIF Inc.)
 Linux® is a registered trademark of Linus Torvalds in the U.S. and other countries
 Aardvark™, Aardvark I2C/SPI, Control Center and Total Phase are all trademarks of Total Phase Inc.

 Other company names and product names may be service marks, trademarks or registered trademarks of their respective companies

Questions?

©2024 VicorVICOR CONFIDENTIAL

