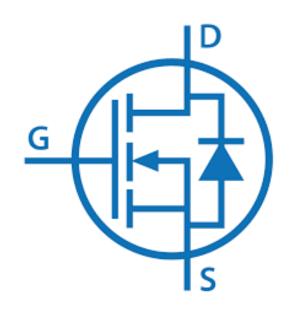


Agenda: GaN @ 125 °C

- Review of GaN Power Devices
- Why focus on 125 °C?
- Efficiency Factors
 - Conduction Loss
 - Switching Loss
 - Deadtime Loss
- Reliability
 - Reliability vs Junction Temperature
- Summary


For PDH Credit:

www.ieee.li/forms/4491

Introduction

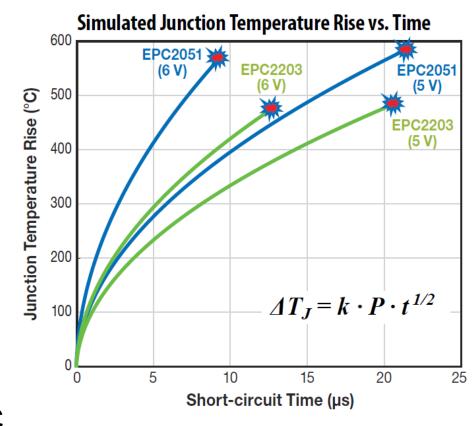
- Why use GaN FETs?
- Advantages vs. silicon MOSFETs:
 - Wide bandgap material GaN allows
 - Smaller FETs
 - Less weight
 - Fast, efficient switching
 - Power supplies can operate at higher frequencies
 - And/or: more efficiency
 - Thermally efficient: heat conducts very well
 - No reverse recovery
 - Because no parasitic PN diode
 - Diode function, but no reverse recovery

Review of GaN FETs

- Many suppliers of GaN FETs and ICs
- Voltage: 15 V to > 1.2 kV
 - 100 V as small as 0.9x0.9 mm
- Frequency: DC to GHz
 - RF GaN FETs were first:
 - depletion mode = normally ON
 - not popular for power FETs
 - Focus here: < 10 MHz power FETs
- Resistance:
 - 3 x 5 mm PQFN, 100 V: as low as 0.75 m Ω (typ)
- Gate Drive:
 - Typical: ON = 5V, OFF = 0V

Why look at 125 °C condition?

- A common top thermal design limit
 - 150 °C max 25 °C margin = 125 °C
- 125°C junction temperature, not ambient!


- Efficiency at design thermal max (125 °C) is often a limiting factor
 - Due to thermal design
 - Different vs. efficiency at 25 °C
 - "Different" = lower efficiency
- Reliability at thermal max (125 deg. C) is often a concern
 - Due to experience with silicon MOSFETs

Why not above 150 °C?

- GaN is wide bandgap, and can remain a semiconductor at high temperatures
- > 400 °C

- But many/most suppliers don't use this ability. Why not?
 - Design trade-offs: lowest Rds,on vs. leakage
 - FR-4 boards temp rating ~ 130 °C
 - Solder may melt (lead 183 °C, lead-free 227 °C
 - EPC doesn't typically qualify above 150 °C
 - So: FETs designed for 150-175 °C max

Reference: EPC Reliability
Report Phase 16, Fig. 3-20

Power Supply Efficiency

Loss Factors in DC-DC converters

- Let's concentrate on DC-DC power supply designs
- Main losses:
 - Conduction Loss
 - Switching Loss
 - Dead Time Loss

- Other losses not covered include:
 - Gate Drive
 - PCB Loss
 - Layout-induced loss variation: Common Mode L, etc.

Conduction Loss

- Conduction loss seems simple
- Just look at the FET's on-resistance (Rds,on)! Right?
- Well... how does it change over temperature
- Depends on the FET
- Graph of Rds, on vs. Junction Temp
 - Normalized curves make it easy to calculate and compare

Figure 9: Typical Normalized On-State Resistance vs. Temp. Normalized On-State Resistance R_{DS(on)} $I_D = 50 A$ $V_{GS} = 5 V$ 25 75 125 150 T_J – Junction Temperature (°C)

Conduction Loss Variation Examples

Let's look at larger, newer FETs

- Measure: 125°C Rds,on / 25°C Rds,on
- EPC's packaged FETs
 - EPC2361 100 V, 0.75 mΩ (typ), 3x5 mm: 1.7 x
 - EPC2366 40 V, 0.8 mΩ (typ) 3.3x2.6 mm: 1.55 x
 - EPC2304 200 V, 3.5 mΩ (typ): 1.65 x
 - EPC2050 350 V, chip scale: 1.75 x
- MOSFET: 100 V Infineon Optimos 6:
 - ISC022N10NM6: 1.7 x
- Infineon GaN:
 - IGC033S10S1: 100 V: 2 x
 - 60 V, 200 V: 2 x
 - 650 V: 1.9 x (IGL65R140D2)
- TI GaN 650 V: 1.75 x
- Navitas 650 V, NV6128C: 2 x

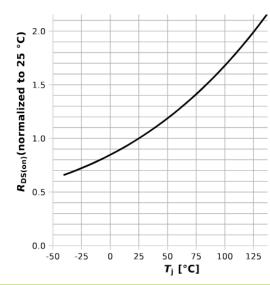
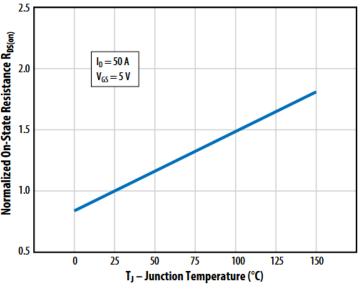



Figure 9: Typical Normalized On-State Resistance vs. Temp.

EPC2361: 100 V 0.75 mΩ typ., 3x5 mm

IGC033S10S1: 100 V x mΩ typ., 3x5 mm

Switching Loss

- Switching Loss:
 - · minimize loss with fast switching
- Parameters:
 - Capacitance not typically characterized at 125 °C
 - Gate Threshold Voltage is given
- Examples:
 - Top: EPC2361
 - Bottom: EPC2016 (obsolete FET): threshold increases with temp
 - Same for Infineon 100 V →
 - < 10% change for all
 - MOSFETs: -20 to -30% change

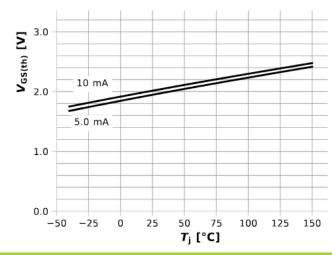
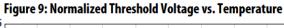
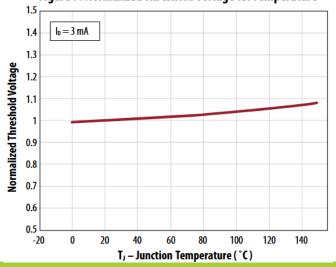
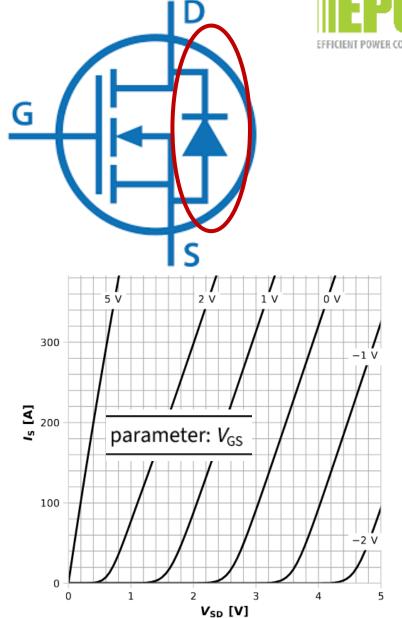




Figure 10: Typical Normalized Threshold Voltage vs. Temp. $I_D = 15 \text{ mA}$ 75 125

T₁ – Junction Temperature (°C)



Dead Time Loss

EFFICIENT POWER CONVERSION

- Vsd, Reverse conduction "Diode" Loss
 - Not a parasitic PN diode, as in MOSFETs
 - Conduction is through the main channel
- Dead Time Loss is easy to calculate
 - P = Vsd * I * Tdt * Freq.
- Parameter Vsd:
 - increases with Temperature
 - decreases as Vgs goes up
 - Increases as Vg,th goes up

 Plot: from Infineon IGC025S08S1 data sheet

Dead Time Loss

- Vsd ("diode" drop):
 - Temperature: increases with Temperature
 - Channel resistance goes up with temperature
 - Gate Threshold: Decreases if Vg,th decreases
 - So, ideally Vg,th will decrease with increasing voltage
 - Current: increases with current
- Putting it all together: data sheet curves

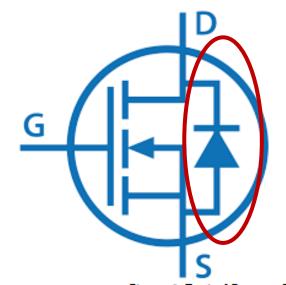
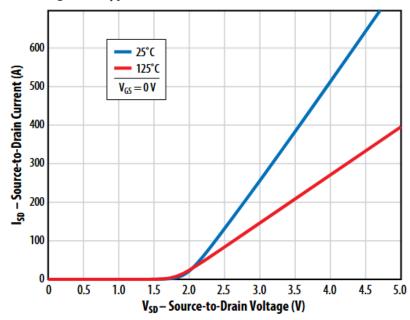
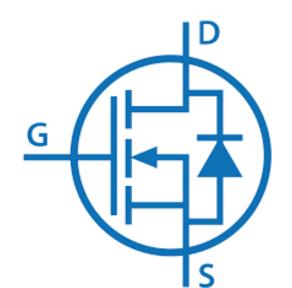



Figure 8: Typical Reverse Drain-Source Characteristics*


Note: Negative gate drive voltage increases the reverse drain-source voltage. EPC recommends 0 V for OFF.

Dead Time Loss

- Dead Time Loss is easy to calculate
 - P = Vsd * I * Tdt * Freq.

- To Minimize Dead Time:
 - Zero Dead Time controller:
 - examples: ADI's LTC7890, -91
 - Gate Driver: propagation time matching
 - To minimize dead time safely
 - Not all half-bridge gate drivers have the same propagation time matching specs

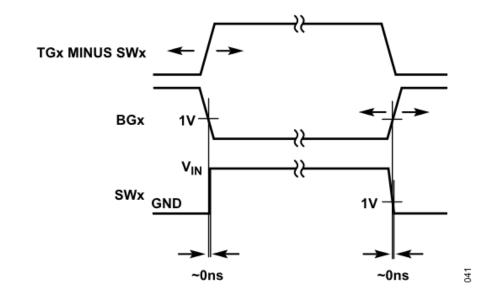
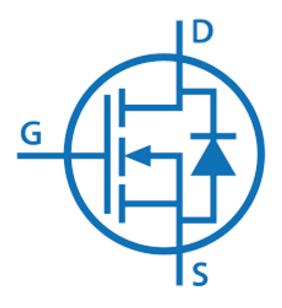


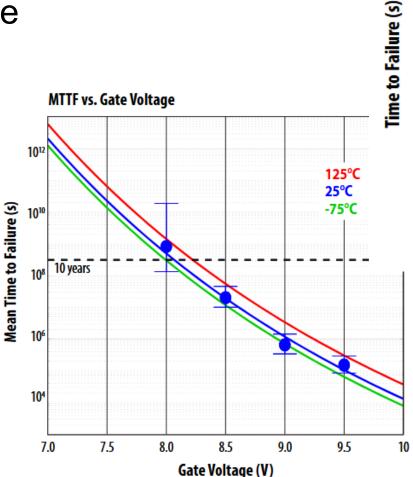
Figure 41. DTCx Pins Tied to INTV_{CC}—Smart Near Zero Dead Time Control

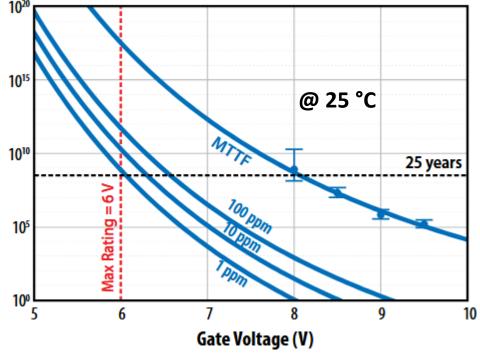


Reliability

Reliability Background

- Most engineers' experience starts with Silicon MOSFETs
- "everyone knows": as Temperature goes up, Reliability goes down
- How about GaN FETs
 - How do they fail?
 - How bad is the situation at 125 °C?




Gate Reliability (EPC GaN FETs)

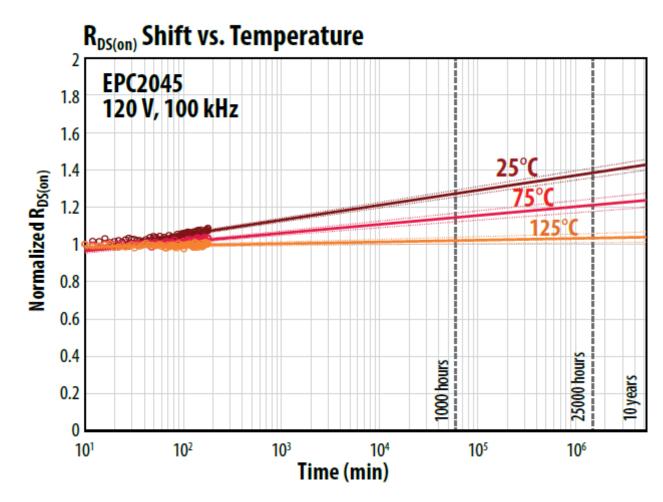
- Various GaN FETs have different gate structures
- EPC info. shown here
 - Absolute max = 6 V
- What about 125 °C?
 - Red line = 125 °C
 - Slightly better
 - Worst-case -75 °C

 Phase 17 has most recent update, section 4.1.2

Reference: EPC Reliability
Report Phase 17, Fig. 4-2

Reference: EPC Reliability
Report Phase 16, Fig. 3-3

What is a Drain-Source FET Failure?


Seems obvious: FET doesn't function

- But long term reliability is mostly less dramatic:
 - No longer meets data sheet limits
 - Rds,on specifications; slow increase in Rds,on
 - When above max. limit = failure
 - Typical is 20% increase

Example Plots (Drain-Source)

- Run a 100 V-rated FET at 25 °C
 - 120 V, 100 V, 80 V, 60 V
 - 120 V: To accelerate the slow increase of Rds,on
 - And to show no catastrophic failure just above 100 V
- Now, run the test at various temperatures (still 120 V)
 - Surprising! For this condition:
 - 25 °C has the shortest lifetime
 - 75 °C is better
 - 125 °C is best

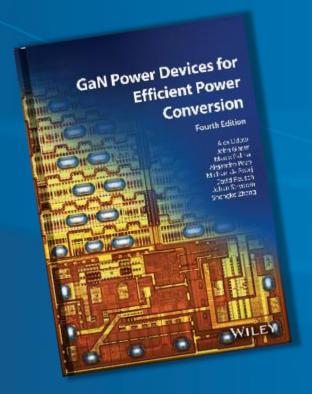
Reference: EPC Reliability
Report Phase 16, Fig. 3-6

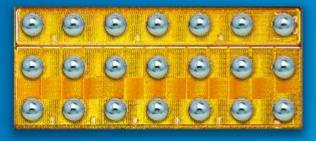
Reliability Details

- GaN FETs are more reliable at 90 °C vs. 25 °C
- Why is this?
- 2 factors
 - One factor decreases reliability with rising temp
 - The other factor increases reliability with rising temp
 - Non-linear
 - Combine to create a peak
- Practical aspects
 - Reliability testing: MOSFET test at high temp
 - GaN FETs: perhaps test at low temp?

Reference: EPC Reliability Report Phase 16

Summary


- 125 deg. C is OK for GaN FETs
- Efficiency:
 - Look for specified parameters
 - Efficiency loss can be minimized
- Reliability
 - Unexpected good news: GaN FET reliability is very good at elevated junction temperature
 - Studies and plots
 - Experimental peak survivable temperatures
- GaN FETs: reliable and relatively efficient at 125 °C


Click on images to learn more

How To GaN Video Series

4th Edition Textbook

eGaN® FETs and ICs

epc-co.com