Evolution of the Electric Power Grid

IEEE LI Section Power Electronics Symposium Thursday, 2018 November 8

GREG TREMELLING

About Oztek

Founded in Merrimack, NH in 1997 by John O'Connor and Dave Zendzian

Specialize in the design and manufacture of:

- DC & AC Motor Drives
- Power Inverters
- DC/DC Converters

About Oztek

Offering complete power electronics solutions - from concept to production

- 24 employees
- 12,000 sq ft facility in Merrimack, NH
- In-house power / controls systems design engineering staff
- Local Production & test geared towards low 1000's
- China based manufacturing partner as needed

Affiliate of Semikron International (www.semikron.com)

– A global leader in power semiconductor assemblies and solutions

CETEK

Key Customer List

World Wide Customer Base

Example Applications

- History of high reliability power conversion
- Legacy of serving high quality brand names
- Examples of the application of cutting edge technology

	Grid Energy Storage	Mobile / Transportation	High Speed Drives			
	 Behind the meter Modular Grid Scale solutions DC to DC converters Grid Connected Flywheel Inverters 	 EV Charging HVAC Compressor drives (Rail) Railway applications Heavy Truck 	 Innovative micro turbine drives Multi stage generator technology High Speed Flywheel Electronics 			
<image/>						

TRADITIONAL GENERATION

 Central Generation depends on averaging loads over large geographical areas
 → Result is very heavily weighted average which changes slowly

TRADITIONAL GENERATION

- Losses are substantial!!
- According to US Energy Information Administration (EIA) estimates that electricity transmission and distribution (T&D) losses average about 5% of the electricity that is <u>transmitted and distributed</u> annually <u>in the United States</u>.

TRADITIONAL DISTRIBUTION

- Other regions around the world suffer much higher losses than the USA
- India example
 - Currently \sim 20% lost in T and D
- Analysis shows that by application of DER
 - → 7% future loss target by 2042

METERING OF THE PAST

- Metering classes designed around types of consumers and size, time, and type of their <u>loads</u>
- Fundamentally does not comprehend accounting for <u>Distributed Energy</u> <u>Resources around the grid</u>
- In some ways early attempts to "bandaid" or update metering to account for DER have failed → Dec 2015 Nevada Example

<u>https://www.greentechmedia.com/articles/read/nevada-regulators-eliminate-retail-rate-net-metering-for-new-and-existing-s#gs.1sk1oWc</u>

• Metering policy will dominate adoption of Distributed Energy Resources

CASE EXAMPLE #1

Hawaii

• "The Net Energy Metering Program Was A Huge Success"

.....So much so that it has since been shut down

- 487MW of Solar installed across Hawaii utilities from 2001 until 2015
- Hawaii achieves 25% clean energy in 2016
- As a direct result of renewable success/net metering was shut down and the model was changed to <u>"self consumption"</u>

REASONS FOR SOLAR PENETRATION

Grading Scale:

 8 out of the 10 best solar states are clustered in New England area

Factors:

- 1) Overall Grade (Outer ring)
- 2) Renewable Portfolio Standard (RPS)
- 3) Solar Carve Out

D

- 4) Electricity Price
- 5) Net Metering
- 6) Interconnection
- 7) Solar Rebates
- 8) State Solar Tax Credits
- 9) Performance Payments
- 10) Sales Tax Exemption
- 11) Property Tax Exemption

CHALLENGES WITH RENEWABLES

- Grid instability
- Abundance of power where / when its not needed (California/Duck; Germany/wind/solar transmission)
- Renewable plants more prone to injecting turbulence into grid network (~20% point of inflection)

©2018 Oztek Corporation, Inc. All rights reserved. Proprietary and confidential.

Megawatts

CHALLENGES WITH RENEWABLES

- (2013 headline..) 'Germany's Green Energy Destabilizing Electric Grids"
 - Location of resources/ + 25 Billion transmission line upgrades
- Poland and the <u>Czech Republic</u>, are building a huge switch-off at their borders to block the import of green energy that is destabilizing their grids and causing potential blackouts in their countries.
- This action by German's neighbors fragments the European electrical grid, turning Germany <u>into an electrical island.</u>

CHALLENGES WITH POLICY

Opposing Forces!

- Net metering puts burden on utility vs. consumer
- Lack of net metering hurts incentive to increase renewable penetration
- So... What is the correct answer then?
- 2017 Study by GE for Hawaii included application of storage

ENERGY STORAGE APPLICATIONS

 GE study concluded that for Hawaii to operate efficiently, reliably, and securely new technologies like Energy storage would need to be deployed

ENERGY STORAGE APPLICATIONS

- GE study indicates majority of applications are between 15 min and 4 hours
 - Snicker...
- Many approaches to achieve grid stability and transactable financial models

Figure 1: Various Applications of a Battery Energy Storage System

18

- ERCOT allows wholesale prices to rise relative to increases in demand, up to a price cap of \$9,000 per megawatthour
- \$9,000MWh*(1MWh/1000Kwh) = 9\$/KWh!

Day-ahead wholesale prices in ERCOT reached close to \$2,000/MWh on the days of record-high peak loads in July.

(MWh).

ENERGY STORAGE APPLICATIONS -BEHIND THE METER

 52% of the energy storage market will be behind the meter by 2022

ENERGY STORAGE APPLICATIONS -BEHIND THE METER

Behind the meter applications will represent ~50% of the market as the overall market grows according to BNEF

ENERGY STORAGE APPLICATIONS -DEMAND CHARGE MANAGEMENT

Demand Charge Management (DCM)

- Utilizes energy storage to "hide" peak power events from the utility to reduce electric bills
- Energy storage is discharged when power consumed from utility exceeds set threshold
- Utility charge is based on single highest 15 min average during the billing cycle

ENERGY STORAGE APPLICATIONS -DEMAND CHARGE MANAGEMENT

Maximum demand charges by utility territory

- Market for demand charge management exists when demand charge pricing is high
- Specific areas of the USA Market can be identified and targeted

ENERGY STORAGE APPLICATIONS -DEMAND CHARGE MANAGEMENT

Number of Customers eligible for Demand Charge > \$20

- Significant number of customers in the USA are eligible for demand charge rates as high as \$20/KW
- Usage profile plays a large role in whether or not a business or facility can benefit from demand charge management

CA, HI, NY and PJM Account for the Bulk of Behind-the-Meter Storage Deployments to Date

OZTEK

California Market Drivers

- SGIP Incentive Program
- Utility procurements including AB 2514 (1.3 GW of storage by 2020, portion must come from customer-sited resources), PRP and LCR
- Grid modernization activity via policies such as Demand Response Auction Mechanism
- · High demand charges
- Residential TOU rates on the horizon for customers subscribing to net-energy metering

New York Market Drivers

- Insert teGrid modernization programs and pilot projects (e.g., NY Reforming the Energy Vision, Brooklyn-Queens Demand Management)
- Non-wires alternative RFPs from electric utilities offer opportunities for behind-the-meter storage participation
- · High demand charges, particularly in New York City
- New York City's recently announced energy storage target of 100 MWh by 2020

PJM Market Drivers

Resiliency programs (e.g., NJ Renewable Electric

Significant historical deployment of behind-the-meter

Hawaii Market Driver

- High electricity rates
- Revisions to net-energy metering rules: In October 2015, HECO ended traditional net metering, new customers must go on grid-supply (allows export at wholesale rate, has caps that self-supply, which encourages solar-plus-storage
- · High solar PV penetration

Regional interest in microgrids

Storage program)

solar PV

The Behind-the-Meter Energy Storage Landscape 2016-2021

gtmresearch 10

EMERGING APPLICATIONS

- **MASS SMART** program incentivizes adding storage to solar by applying a "bonus" adder for every KWh solar produces because storage is present
- **California** has mandated that 100% of homes build in 2020 and beyond have solar
 - Self-Generation Incentive Program (SGIP) has allocated more than 6x more money for energy storage systems >10Kw in size as compared to "small residential" energy storage systems
 - Distributed assets have the potential to more effectively manage the grid as opposed to central assets
 - VPP (Virtual Power Plant Concept)

- **<u>40KW</u>** dual conversion in 19" 2.5U height!
- Air Cooled
- Flexible DC bus voltage/Auto sense AC output voltage

or

- "Ozip" Flexible **<u>100KW</u>** platform
 - Interleaved DC to DC
 - 3 phase grid tied
 - Motor drive

TOPOLOGY AND COMPONENT SELECTION

T-Type NPC

(())

Boost Converter

3 level Bi Directional

Pout = 100kW, T=80C			_	Po	ower loss (W	Efficien			су	
	Module / Device	Nominal VDC (V)	Fs (kHz)	Switch + Diode PF =0.95	Switch + Diode PF =-0.95	Filter (W)	Sourcing	Charging	Average	
	SKIM301MLI07E4	800	12	1390	1456	475	98.2%	98.1%	98.1%	
NDC	SKIM301MLI07E4	800	18	3 1604	1660	350	98.1%	98.0%	98.1%	
NPC	SKiM301MLI12E4	920	12	1825	1841	546	97.7%	97.7%	97.7%	
	SKiM301MLI12E4	920	18	3 2261	2164	403	97.4%	97.5%	97.5%	
ТМРС	SKiM301TMLI12E4B	800	12	2 1127	1110	475	98.4%	98.4%	98.4%	
		800	18	3 1393	1325	350	98.3%	98.4%	98.3%	
3-level Boost	SKM600GB066D	800	20	778	1032	500	98.7%	98.5%	98.6%	
TNPC Conbined			18/20)					97.0%	
SiC 2-Level	SKM350MB120SCH1 7	800	24	793	1038	475	98.7%	98.5%	98.6%	
		800	36	6 952	1196	350	98.7%	98.5%	98.6%	
		800	48	3 1111	. 1354	275	98.6%	98.4%	98.5%	
SiC Conventional Boost	SKM350MB120SCH1 7	800	50	414	426	275	99.3%	99.3%	99.3%	
SiC Combined			48/50						97.8%	

					Normalized
Topology & Conditions	Device Voltage	VDC (V)	Fs (kHz)	Efficiency	Cost
NPC	1200	920	18	97.5%	1.00
			_		
TNPC + 3-level Boost	1200/650	800	18/20	97.0%	1.44
SiC 2-Level + conventional Boost	1200	800	48/50	97.8%	2.01

• NPC MLI came out at the highest efficiency and lowest cost compared to other topologies

OZTEK SOLUTIONS

OZpcs-RS40 Specifications

DC Connection

Operating Voltage Range	330 - 820 VDC
Full Power Voltage Range	550 - 820 VDC
Max DC Current	+/- 75 A
Max DC Power	40 kW
Wiring Configuration	2 Wire
AC Connection	
Max AC Power	40kVA @ 480 V _{RMS}
Max AC Current	50Arms
AC Line Voltage	208 - 480 V _{RMS}
AC Line Frequency	50 / 60 Hz
Power Factor	> 0.97 at rated power
Current Harmonics	IEEE 1547 Compliant, <3%THD
Typical Efficiency	97 %

- Designed for Behind The Meter (BTM) Energy storage applications
- Fully Scalable

- Bolt AC and DC sides together to build higher power solutions
- SunSpec
 Compliant
- Modular solution puts you in control of O and M costs

