
ni.com

The Essentials of File
Management with LabVIEW

Courtney Lessard

LabVIEW Product Manager

Presented by Alexandra Valiton, NI Field Engineer, Long Island

ni.com

How many files in your biggest application?

• .lvproj

• .vi

• .ctl

• .lvlib

• .dll

• Dependencies

• Source files

• Readme

ni.com

Avionics Applications Space Exploration Large Physics Applications

High-Volume Production Test Structural Health Monitoring Medical Devices

Large System Development Powered by LabVIEW

ni.com

Session Goals

This session focuses on best practices for:

Organizing and Managing LabVIEW Applications

Managing a Code Base with Source Code Control

Building and Distributing Reuse Libraries

ni.com

Sample Project

Automated Test Project

1. Initialize Equipment

2. Load Test Parameters

3. Perform Tests

4. Log Results

5. Create Report

6. Shutdown Equipment

File Types: Main VI, subVIs, test docs, readmes, custom controls, variables

Development Teams: Architect, test experts, DUT experts

Reusable Code: Instr libraries, Database connectivity, logging practics

ni.com

Organizing and Managing
LabVIEW Applications

ni.com

Defining a LabVIEW Application

Source Code

Type Definitions

Configuration and

Data Files

Shared Libraries and

Additional Code

Documentation

ni.com

Recommendations for Organizing Files

Single Root

Directory

Separated

Top-Level VI

Group

related files

using folders

Clear

Documentation

Logical

names

ni.com

The Project Explorer

A tool to improve developer

efficiency by providing:

• Easy file navigation

• Smart linking when moving files

• Integration with Application Builder

• Deploy code to LabVIEW targets

• Access to source code control

However, the project explorer

does not duplicate files.
LabVIEW

Best Practice

ni.com

Improved File Management

Items View Files View

If you move a file using the Files View, LabVIEW will be

aware of the change and will update callers and preserve

links automatically.

ni.com

Managing Project Files

Virtual Folders

Update to reflect the

contents of folders on

disk

Customize how and

where files are

displayed

Auto-populating Folders

ni.com

Project Dependencies

LabVIEW automatically

identifies the files required

by each item in a project.

• Ensure you’re using the

correct version of a subVI

• Understand which files

should be added to the

project

ni.com

LabVIEW Directory Structure

vi.lib
Contains libraries of built-in VIs, which LabVIEW displays

in related groups on the functions palette.

user.lib
Directory in which you can save controls and VIs you

create. LabVIEW displays controls on User Controls

palettes and VIs on User Libraries palettes.

instr.lib
Contains any installed instrument drivers. These drivers

will appear on the Instrument I/O palette.

ni.com

DEMO

Files on Disk and the LabVIEW Project

ni.com

Dynamically Loaded Files

Dynamically loaded VIs

are not in memory until

they are loaded by the

caller VI.

• Reduce load time of

large caller VIs

• Optimize memory use

Will not be listed in

Project Dependencies

Dyn Lib A

Dynamic

VI Calls

Startup VI

Application-Specific,

Statically Linked Code

SubVIs SubVIs SubVIs SubVIs SubVIs

ni.com

Tracking Dynamically Loaded Files

Dynamically loaded files are not statically linked by any

callers in the project. Any action that changes the path to a

dynamically loaded file can prevent the project from

loading the file.

To ensure that dynamically loaded files are in the

correct location:

• Group the files in a separate folder.

• Refer to the files using relative paths.

• If you need to move a project or distribute an application,

remember to include the folder in which you grouped dynamic

dependencies.

ni.com

LabVIEW Search Order

You cannot load two VIs with the same name in memory

Multiple VIs with the same name can exist on disk.

• What happens when you load a VI from disk

• What about when a calling VI loads a subVI?

ni.com

Load

“analysis.vi”

from disk

VI with the

same name

open in

memory?

Load

“analysis.vi”

from disk

Use copy of “analysis.vi”

in memory

Load a VI From Disk

no yes

click replace

click view

ni.com

Calling VI

attempts to

load subVI

VI with the

same name

open in

memory?

Use copy in

memory

Load a SubVI

no yes

Look for

subVI at

location

on disk

Use subVI at

specified

location Search for subVI in**:

1. vi.lib

2. user.lib

3. instr.lib

4. \Labview2012\Resource

find missing

**default

 configuration

ni.com

Cross-Linking Defined

Calculator.vi

Analysis.vi
Simple

Display.vi

Scientific
Calculator.vi

Analysis.vi
Enlarged
Display.vi

???
Analysis.vi not

found at

expected location

ni.com

When Can Cross-Linking Occur?

If you back-up working directories by creating multiple

copies, you will end up with many copies of a given VI on

your machine.

ni.com

Cross-Linking Notification

ni.com

Preventing Cross-Linking

 Add all files to a LabVIEW project

 Be aware of dependencies

 Avoid duplicating code to create multiple back-ups

 Share code between projects via reuse library

 Ensure unique VI names

ni.com

Summary

The project explorer is a valuable tool to organize

applications and prevent common development pitfalls.

• Use Auto-populating and Virtual folders to customize

organization

• Preserve linking by moving files with File View

• Group dynamically linked resources together

• Be aware of dependencies

ni.com

Managing a Code Base with
Source Code Control

ni.com

Introducing Source Code Control

Source Code Control is a tool used to track, store,

and manage all files related to an application

during development.

Central

Code

Repository

code

checked in

code

checked in

code

checked out

code

checked out

dev

1

dev

3

dev

2

dev

4

ni.com

Why Use Source Code Control?

Increase productivity by allowing multiple developers to

contribute in a controlled environment

• Avoid code loss from overwriting

Manage files throughout the development cycle

• Code revision history let’s developers track bugs quickly &

document changes

Speed development with merge and diff tools

Source Code Control is a best practice for

any modern software development project,

regardless of complexity or team size.

LabVIEW

Best Practice

ni.com

What Tools Are Available?

 Recommended

Perforce

Subversion

Additional Options

Microsoft Visual Source Safe

Microsoft Team Foundation Server
Rational ClearCase

PCVS (Serena) Version Manager

MKS Source Integrity

Seapine Surround SCM

Borland StarTeam

Telelogic Synergy

ni.com

What Files Should I Put Under SCC?

 VIs

 Documentation
o Track revisions to a Requirements Document with SCC

 Configuration Files

 Type Definitions

What about the *.lvproj file itself?

ni.com

Should I Put My *.lvproj File Under SCC Too?

A LabVIEW *.lvproj file is an XML file that contains:

• Links to files contained in the project

• Settings for the project

• “Virtual items” such as build specifications

It’s critical that all developers have the most recent version

of the *.lvproj file to ensure they have all of the latest

dependencies and resources

ni.com

Should I Put My *.lvproj File Under SCC Too?

.lvlib files are represented in the Project File by library name only. As

long as the name of the library remains the same, the contents of the

library can change without modifying the .lvproj file.

Individual VIs are also represented by name in a project. This means

that anytime a new VI is added or removed from the project, the

.lvproj file is modified.

Anytime a file in the project is renamed or added, the

*.lvproj file is altered and must be checked out of source

code control, impacting all developers using the project

ni.com

Best Practices for Managing Project Files with SCC

Determine your application framework before development

begins.
• Create placeholders for all future code to avoid altering the project file

• Use .lvlib files to avoid modifying the project file

If a change needs to be made, have a single developer

check out the project file and make the change
• Ensure that all other developers begin using the new version of the

project file immediately

ni.com

Considerations When Storing VIs Under SCC

When you edit a VI, LabVIEW recompiles the VI code.

LabVIEW may also recompile the callers of that VI to

optimize code.

Front Panel
Block

Diagram

Connector

Pane
Icon

Compiled

Code

Inplacenes

s Info

Contents of a VI

Graphical

Source Code

Compiled

Code

ni.com

Considerations When Storing VIs Under SCC

When you edit a VI, LabVIEW recompiles the VI code.

LabVIEW may also recompile the callers of that VI to

optimize code.

 Calling VIs that have not

been modified by a

programmer may indicate

that they have been modified,

and therefore require

resubmitting to SCC. *

*

modified by

developer

NOT modified

 by developer,

but code was

recompiled

Calling VI

SubVIs

ni.com

Considerations When Storing VIs Under SCC

 Eliminate the need to re-save and re-submit files to

source code control unless the graphical source code has

been changed by the developer

Front Panel
Block

Diagram

Connector

Pane
Icon

Contents of a VI

Limited to graphical source code

Contains compiled code

Compiled

Code

Inplacenes

s Info

Separate .viobj file

ni.com

Deciding When to Separate Compiled Code from

VIs

Consider separating compiled code to:

• Simplify source code control

• Prepare VIs under SCC to be upgraded to a new version of LabVIEW

• Improve load time of VIs

Do not separate compiled code:

• If you intend to run the VI using the LabVIEW Run-Time Engine. In

this case, consider building a source distribution instead

ni.com

Graphical Diff and Merge Utilities

Since the source code for a VI is binary, specific

comparison and merge utilities must be used.

 Diff and Merge Utilities

LVCompare.exe

LVMerge.exe

Must configure for

command-line

integration

Call directly from SCC

utility

SCC provider must

support Microsoft API

Call directly from

LabVIEW Development

Environment

ni.com

Graphical Differencing

ni.com

Graphical Merge

Simplify your development cycle by using Graphical

Merge to automate code recombination.

Use this tool when modifications to a base VI are made by

multiple individuals and saved separately.

ni.com

Group Development Recommendations

• Use Source Code Control

• Document changes at each submission

• Use VI Compare to assess changes

• Use VI Merge to reconcile code contributions

ni.com

Building and Distributing Reuse
Libraries

ni.com

Challenge

How can I leverage common code among independent

projects that all use different development cycles?

• What if the code I want to reuse is still being developed? How

can I manage multiple revisions of reuse code?

• Copying common code is cumbersome and can lead to cross-

linking

Solution: Build a reuse library

ni.com

Managing Reuse Libraries

Reuse libraries are designed to be used across multiple

projects. They may have a different development cadence

than the projects they serve.

Reuse Libraries should be:

• De-coupled from the projects they are used in

• Easily upgraded or downgraded when maintaining multiple

versions of an application

Application 1

S
rc

 1

S
rc

 2

Application 2

S
rc

 1

S
rc

 2

Reuse

Library

ni.com

Source Distributions

A collection of files that you can package and send to

users.

• Contains VI files, which allows you to move multiple VIs between

developers as a single file

Create a directory or a zip file containing VIs

Configure which VIs are included, can choose to exclude

vi.lib, user.lib, and instr.lib

ni.com

The Project Library

A collection of VIs, typedefs,

shared variables, palette

files, and other files.

.lvlib file is an xml file that includes

references to files that the library

owns as well as library properties

A .lvlib file does not contain the

actual files it owns

ni.com

When Should I Use a Project Library?

Use a Project Library to:

• Encapsulate large sections of an application

• Organize a virtual hierarchy of items

• Qualify names of VIs to prevent cross-linking

• Modify contents without modifying the Project (*.lvproj) file

• Limit access to certain types of files by configuring the library to be

public or private

Good choice when distributing an API

ni.com

Packed Project Library Files *.lvlibp

A Packed Project Library is a precompiled .lvlib file that

allows users to access public VIs in the library, but does

not allow them to modify the code.

Why should I use a *.lvlibp file?

• Reduce build time for stand-alone applications

• Deploy fewer files by packaging multiple VIs into a single

.lvlibp file

• Distribute an API of public VIs that cannot be modified

ni.com

DEMO

Using the Project Library

ni.com

Session Summary

Organizing and Managing LabVIEW Applications

Efficient Group Development Practices

Managing Reuse Libraries

ni.com

Software Engineering Best-Practices

ni.com/largeapps

Software Engineering Tools

Development Practices

LargeApp Community

