Agenda

Hazardous Areas Overview

- Electrical Protection Methods
 - XP, Intrinsic Safety, Purge, Non-Incendive
 - General Guidelines
 - Typical Applications
 - Strengths and Weaknesses

- Kleen Energy in Connecticut (2010)
- Imperial Sugar in Georgia (2008)
- West Fertilizer in Texas (2013)
- BP Oil Refinery in Texas (2005)
- Timet Metals in Pennsylvania (2015)

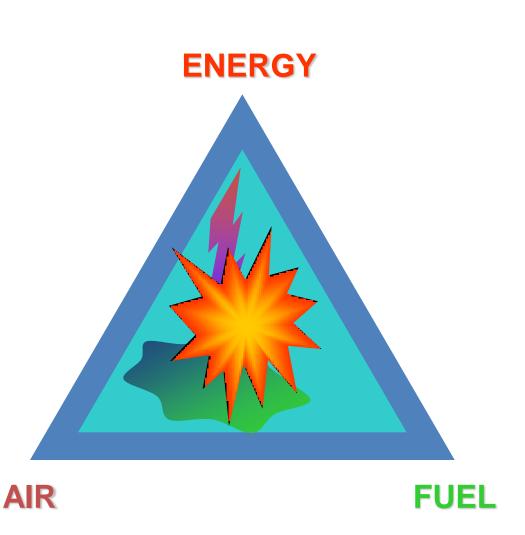
The NASA and Morton-Thiokol lesson learned on Safety Decisions

1986 Space Shuttle Challenger Disaster

A hazardous location is an area containing (or possibly containing) an ignitable concentration of flammable gas, vapor, or dust where a source of sufficient energy (electrical/thermal) cause an

explosion.

- Identified by:
 - Material type
 - Risk

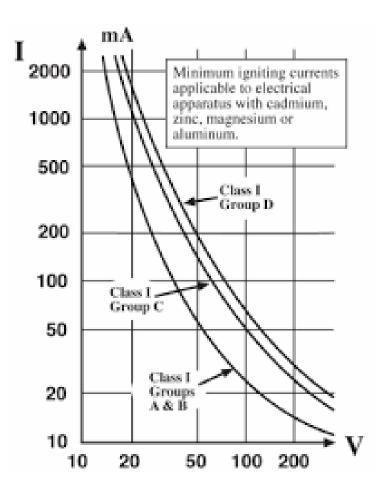

Definition

Boundaries

Ignition Triangle

- Energy
- Air
- Fuel

Elements of a hazardous Location


- Combustible material
 - Gas, vapor, dust
- Energy
 - Electrical
 - Thermal
- Oxygen

Ignitable Energy of a hazardous Location

- Typically very low voltages and currents
- Varies by gas type
- Energy of ignition in some areas as little as a nickel or penny falling over

Classification of the Hazardous Location

- North America Prefers Division Method
- European Prefers Zone Method
- Rest of World Mixture of both

Hazardous Locations – DIVS. Classification – Material Type

Plants and installations are classified according to the <u>nature</u> of the hazard

AREA CLASSIFICATION - DIVISIONS Class I..... Gas Class II..... Dust, Powder Class III......Fibers & Flyings

Hazardous Locations – DIVS Classification – Divisions

- The <u>PROBABILITY</u> that the hazardous atmosphere will be present determines the DIVISION
- <u>Division 1</u> Ignitable mixtures exist during:
 - normal operation
 - <u>repair/maintenance</u>
 - <u>leakage</u>
 - Assumes greater than 10 hours per year of dangerous levels of gas
- <u>Division 2</u> Ignitable mixtures exist during:
 - abnormal operation
 - Area adjacent to Div 1
 - Assumes between 1 hour to 10 hours per year of dangerous levels of gas

Hazardous Locations – DIVS Classification – Material Type

➢ Groups – Division Method

- Group A Acetylene
- Group B Hydrogen
- Group C Ethylene
- Group D Propane
- Group E Metal Dust
- Group F Carbon Dust
- Group G Flour, Grain, Starch Dust

No Group for Fibers/Flyings

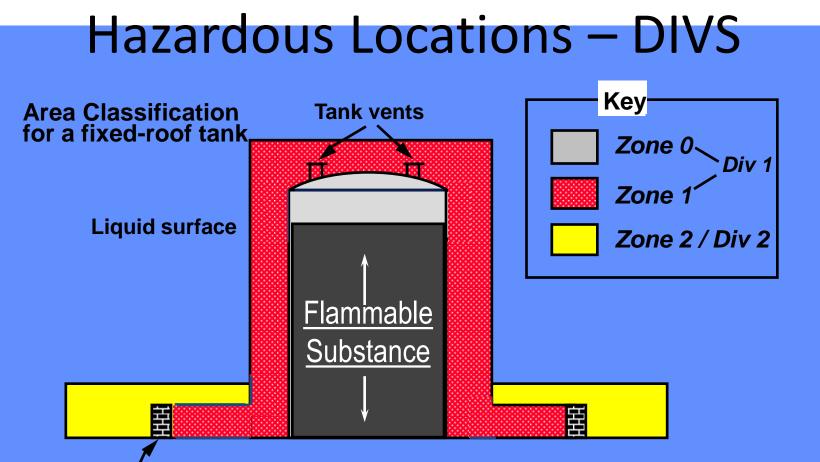
Hazardous Locations – DIVS Classification – Material Group

Representative (Test) GAS	CSA 22.1 NEC 500 Divisions 1 & 2	Spark ignition
Acetylene	Group A	Ease of
Hydrogen	Group B	ignition
Ethylene	Group C	from spark
Propane	Group D	energy

Hazardous Locations – DIVS Classification – Temperature Class

➢<u>Divisions</u>

T1 -	450°C	842ºF
T2 -	300°C	572ºF
T2A -	280°C	536ºF
T2B -	260°C	500°F
T2C -	230°C	446ºF
T2D -	215⁰C	419ºF
Т3 -	200°C	392ºF
T3A -	180ºC	356ºF
T3B -	165ºC	329ºF
T3C -	160ºC	320ºF
T4 -	135⁰C	275⁰F
T5 -	100°C	212ºF
Т6 -	85°C	185ºF



Hazardous Locations – DIVS Classification – Temperature Class

≻Auto Ignition Temperature

Methane – 580 Celsius Hydrogen – 560 Celsius Propane – 493 Celsius Ethylene – 425 Celsius Acetylene – 305 Celsius Naptha – 290 Celsius Carbon Disulfide – 102 Celsius Sugar – 460 Celsius Wood – 340 Celsius Flour – 340 Celsius Grain Dust – 300 Celsius Tea – 300 Celsius

Containment wall

Division/Zone Classification Example

Overview – Divisions

- Division Method Class; Division, Group, Temp
 - Class I, Division 1, Group A,B,C,D; T4 (haz. Present all the time)
 - Class I, Division 2, Group A,B,C,D; T4 (haz present abnormally or adjacent to Div 1)

© QT Luong / terragalleria.com

Hazardous Locations - Zones Classification – Material Type

AREA CLASSIFICATION - ZONES Class I......Flammable Gas or Vapor

Hazardous Locations - Zones

Classification – Zones

- The <u>PROBABILITY</u> that the hazardous atmosphere will be present determines the Zone
- <u>Zone 0</u> Ignitable mixtures exist:
 - Continuously
 - Extended periods of time
- <u>Zone 1</u> Ignitable mixtures likely to exist:
 - Adjacent to Zone 0
 - Normal operation
 - During maintenance
- <u>Zone 2</u> Ignitable mixtures likely to exist:
 - Adjacent to Zone 1
 - <u>Not</u> likely under normal operation
 - For Short periods of time

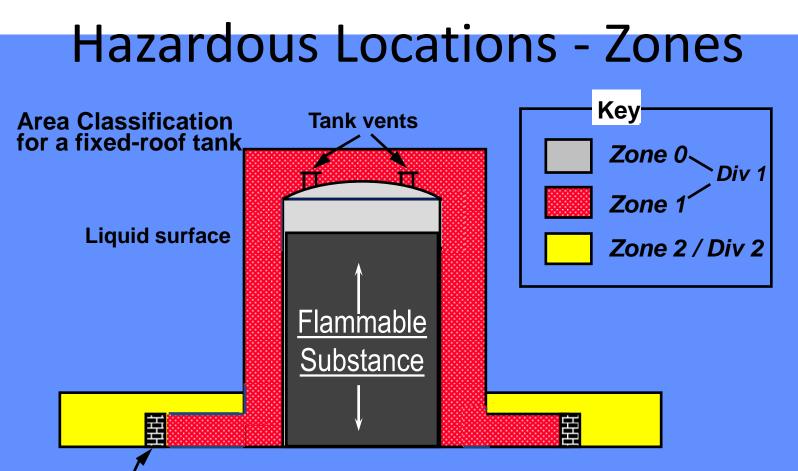
Hazardous Locations - Zones Classification – Material Type

➢<u>Groups</u> – Zone Method

Group I – Methane (mine use only) Group IIC – Acetylene, Hydrogen Group IIB – Ethylene Group IIA – Propane

Hazardous Locations - Zones Classification – Material Group

	CSA 22.1		
Representative	NEC 505		
(Test) GAS	Zones 0,1 & 2	Spark ignition	
Acetylene Hydrogen Ethylene Propane	Group IIC Group IIC Group IIB Group IIA	Ease of ignition from spark energy	



Hazardous Locations - Zones Classification – Temperature Class

T1 -	450°C	842°F
T2 -	300°C	572°F
Т3 -	200°C	392°F
T4 -	135°C	275°F
T5 -	100°C	212ºF
T6 -	85°C	185ºF

Containment wall

Division/Zone Classification Example

Hazardous Locations - Zones Classification – Grade of Release

Zones (quantified compared to Divisions)

Grade of release	Nature of release	Presence in hourslyear	Hazardous ZONESIDIVISIONS Gas or Vapors
Continuous	Continuously or for long periods	>1000h	ZONE 0
Primary	Periodically or occasionally during normal operation	10h to 1000h	ZONE 1
Secondary	Not in normal operation, infrequently and for short periods	0.1h to 10h	ZONE 2

Hazardous Locations - Zones

Overview – Zones

- Zone 0 hazardous continuous or more than 100hrs
- Zone 1 Likely to be hazardous under normal operation (10 to 100hrs)
- Zone 2 Not likely to be hazardous under normal operation (0.1 to 10hrs)

Hazardous Locations Classification – Comparison

Divisions Vs. Zones

AREA CLASSIFICATION			
HAZARD COUNTRY	CONTINUOUS	PRIMARY (Likely)	SECONDARY (Not Likely)
European / International	ZONE 0 ZONE 20	ZONE 1 ZONE 21	ZONE 2 ZONE 22
North American Zones	ZONE 0	ZONE 1	ZONE 2
North American Divisions			DIVISION 2 (Abnormal Op)

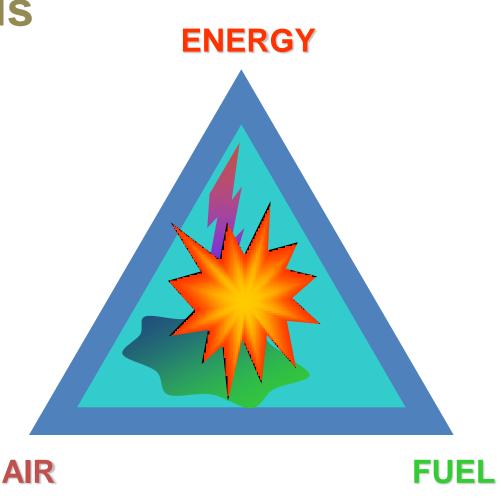
Hazardous Locations Classification – Comparison

Divisions Vs. Zones

GAS/APPARATUS CLASSIFICATION				
HAZARD	IEC CENELEC	NEC 505	NEC 500	Ignition Energy
METHANE	GROUP I (Mining)	Under M.S.H.A jurisdiction		>320µJ
ACETYLENE HYDROGEN ETHYLENE PROPANE	Group IIC Group IIC Group IIB Group IIA	Group IIC Group IIC Group IIB Group IIA	Class I Group A Class I Group B Class I Group C Class I Group D	> 20µJ > 20µJ > 60µJ >180µJ
Metallic Dusts Carbon Dusts Non-Cond. Dusts	In Preparation	None	Class II Group E Class II Group F Class II Group G	More Easily ignited
Fibers & Flyings	None	None	Class III	

MTL Instruments

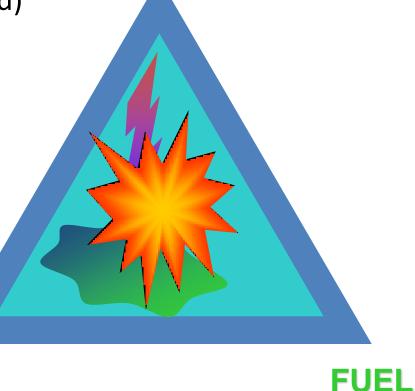
Hazardous Locations **A "simple" label example**


NTRINSICALLY SAFE/SECURITE INTRINSFOLIE IS CLI, II, III DV 1, GPSA, B, C, D, E, F, G NICLI, DV 2, GPS A, B, C, D, S CL II, III, DV 2, GPS F & G TA @ 85° C MAX AMB; T4A @ 40° C MAX AMB CL, I, ZN 0, AEx ia IIC T4 (-40° C \leq Ta \leq 85° C) ISCLI, DIV 1, GPS A, B, C, D; CL II DV 2, GPS E, F&G, CLIII;T3C @ 85° C MAX AMB; T4A @ 40° C MAX AMB Exia/ExnA IIC T3 (-40° C \leq Ta \leq 85° C), T4 (-40° C \leq Ta \leq 40° C); DIPA 20/21/22 IP66; CL II, DIV 1, GPS E, F & G CSA 1042437X INSTALL PER CONTROL DRAWING MI 020-427

Methods of Protection

3 Basic Principals

- Containment
- Segregation
- Prevention



Methods of Protection

NEC Classified Methods ENERGY

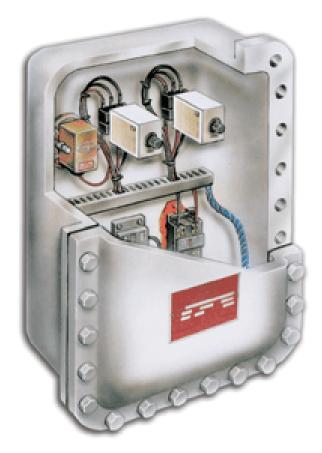
- Explosion or Flame Proof (Exd)
- Purging / Pressurizing (Exp)
- Non-Incendive (ExnA & nl)
- Intrinsic Safety (Exi *)

AIR

Methods of Protection

ENERGY

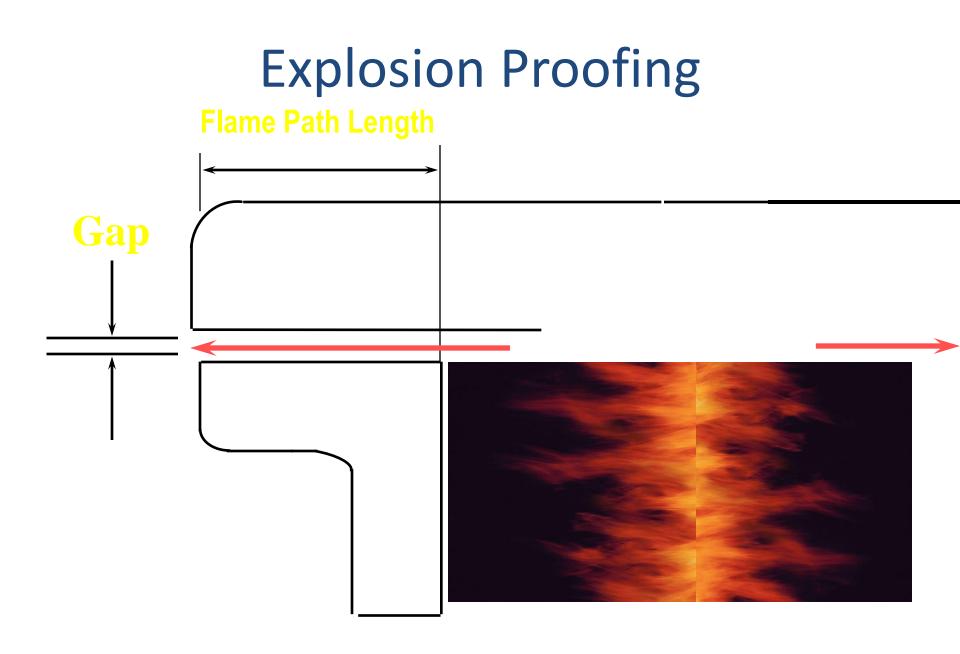
Lesser Used Methods


- Hermetically Sealed
- Dust-Tight
- Increased Safety
- Encapsulated
- Oil-Filled (or other media)

AIR

Methods of Protection Flame proof / Explosion proof (Exd)

Containment



Methods of Protection Flame proof / Explosion proof (Exd)

- NEC Rule #1: Must be able to contain an internal explosion enough, or prevent an internal spark enough, to prevent a much larger explosion external to the box
- NEC Rule #2: Must be able to operate at a temperature (both internally and on the box surface itself) that is below the lower temperature threshold of the surrounding potential gas so as to avoid a temperature ignition from occurring

Strengths of XP

> Higher Power **Applications** > Fairly Simple to **Understand** Widely Accepted in USA > Applicable to a lot of applications and hazardous areas

Weaknesses of XP

Compromised Flanges
Forgotten Bolts
Forgotten Conduit Seals
Heavy / Expensive Metal
Ignored Temperature Specs During Design


Typical XP Applications

 Some Higher Powered Motors
 Process Transmitters
 Panels with higher power or unclassified products inside
 Lights / Horns / Safety Equipment
 Some Pumps

Methods of Protection Purging / Pressurizing

Segregation

Methods of Protection Purge and Pressurization (Exp)

NEC Rule: Equipment defined in National Fire **Protection (NFPA) 496** that will reduce, limit, or eliminate hazardous gases / dusts by using positive pressure ventilation with clean air or noble gas (nitrogen).

Methods of Protection Purge and Pressurization (Exp)

X Purge: Panel or Room or Motor that is in a Division 1 hazardous area and must be reduced to a general purpose area on the inside due to unclassified equipment internally **Y Purge:** EITHER (a) A Div 1 area with Div 2 equipment on the inside of the purged system, or (b) a Div 2 area with general purpose equipment on the inside of the purged system **Z Purge:** Div 2 area with general purpose equipment on the inside of the purged system

Methods of Protection Purge and Pressurization

How it works...

- Pressurized air fed into "sealed" enclosure
- The pressure of the cabinet is maintained to at least 0.1 inches of water column (Class 1)
- Four (4) total volume exchanges of protective gas before power permitted for panels

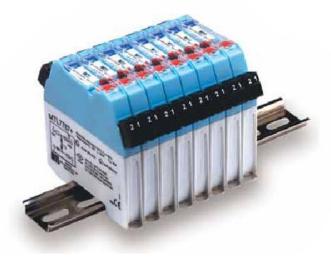
Methods of Protection **Purge and Pressurization**

Strengths of Purge

Great for panels and high power motors > Fairly Simple to Understand Widely Accepted Applicable to a lot of applications and hazardous areas, including dust

Weaknesses of Purge

> Can be difficult to seal panel well enough > More engineering know-how than XP Continual source of protective gas needed Live work inside panel requires gas sniffer to guarantee no potential issues with gas or dust


Methods of Protection

Intrinsic Safety

Prevention

DIN rail mounting safety barriers

MTL7700 SERIES

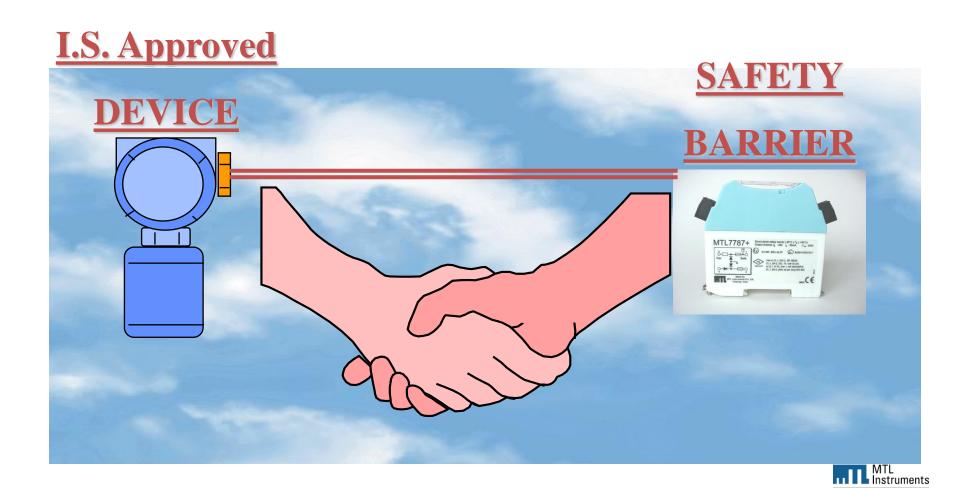
Methods of Protection Intrinsic Safety (Exi_)

Prevention

Temperature Ignition

- Accidental Panel-sourced ignition
- Build-up of electrical energy in device
- All Classes
- All Divisions and Zones
- Only approved solution for Zone 0
- Any wiring practice (easy)

DEFINING "I.S."

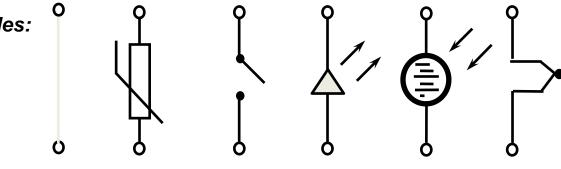

Per NEC504 code and ISA RP12.6:

INTRINSIC SAFETY IS: A <u>system</u>, intended for use in hazardous areas which is incapable of causing ignition.

Prompted by 1913 Coal Mine Disaster in England – The Senghenydd Colliery Disaster, which killed 440 miners

Intrinsic Safety – A SYSTEM

Intrinsic Safety


Hazardous Location apparatus can be either:

Certified, energy -storing (e.g instruments) or Uncertified, "non-voltage producing, non-energy storing Simple Apparatus"

Simple Apparatus Definition:

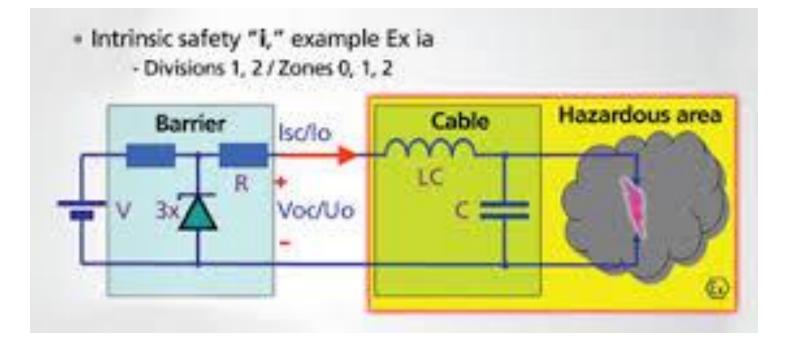
"Devices in which, according to the manufacturer's specifications, none of the values 1.2 V, 0.1A, 20µJ or 25mW is exceeded, *need not be certified or marked* "

Examples:

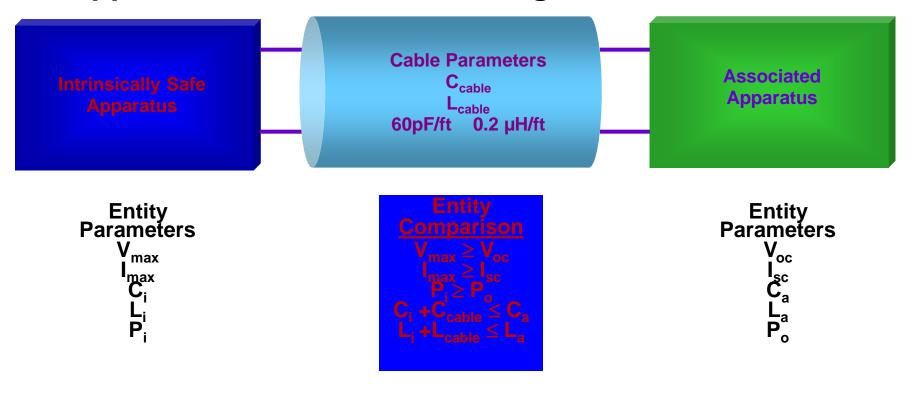
Simple Apparatus

I.S. – Complex Apparatus

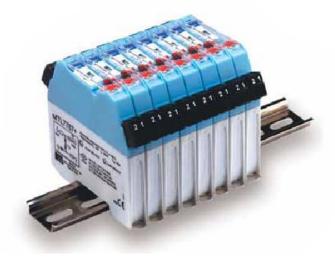
- Designed to operate in accordance to the entity parameters indicated by the manufacturers control drawing
 - V_{max} Maximum allowable open circuit voltage
 I_{max} Maximum allowable short circuit current
 C_i Internal capacitance
 L_i Internal inductance
 - P_i Maximum allowable power



I.S. – Evaluation


System Concept (Loop)

I.S. – Evaluation Entity Concept (Parametric)


Safety is determined by the comparison of Entity parameters of the Apparatus, Associated Apparatus, and interconnecting wires

I.S. – Associated Apparatus I.S SHUNT DIODE I.S. ISOLATORS, ZENER BARRIERS GALVANIC

DIN rail mounting safety barriers

MTL7700 SERIES

MTL5500 Series

I.S. – Associated Apparatus Zener Vs Galvanic

- I.S SHUNT DIODE ZENER BARRIERS
 - Simple and reliable parts
 - High integrity ground required
 - Generic applications
 - inexpensive
 - Requires understanding of the application

- I.S. ISOLATORS, GALVANIC
 - Fairly complex, parts lower
 INITBE
 - Floating, Isolated
 - Application specific
 - Perceived more expensive
 - 'Plug and Play'

Strengths of Intrinsic Safety

Good for all **Divisions and Zones** Safest of the *methods* Allows hot-area work on equipment Easiest wiring

Weaknesses of Intrinsic Safety

Somewhat complex electrical calculations Barrier failure can be confusing Limited to low voltage and DC applications (typically 50 VDC or less) Must have low resistance path to ground

Methods of Protection

Non-Incendive

Prevention and Segregation

MTL Instruments

Methods of Protection Non Incendive (Exn)

Prevention

Class I, D2 / Z2

> ANSI/ISA S12.12, two categories: EXna and Exnl

Methods of Protection

NON INCENDIVE (DIVISION 2 ONLY)

ANSI/ISA S12.12 is the Standard Falls Into two categories:

NON ARCING/NON SPARKING, EXnA

Requires mechanical protection, hermetically sealed contacts. 24VDC or 120VAC may be used

NON INCENDIVE(Energy Limited), EXnL

Similar to intrinsic safety including entity parameters, relaxed ignition curves, approved Div. 2 field devices, but less well defined. Designed to eliminate hot surfaces or incendive sparks under **normal** operating conditions

Methods of Protection

Non Incendive (ExnL)

- Energy limited, D2/Z2 only!
- Utilizes entity system
 - Capacitance Max
 - Inductance Max
 - Resistance Max
 - Voltage Max
 - Temperature Max
- Relies heavily on *probability* of no disruption to normal operation

Strengths of Non-Incendive

Applicable for Division 2 areas, which companies prefer to have over Division 1 areas

Less rigorous

Helps to avoid intrinsic safety, purging, and explosion proof solutions

Weaknesses of Non-Incendive

- Can be complicated and confusing with what code really says, and use of entity parameters
- Still not as safe as intrinsic safety
- Equipment should not be worked on live in Non-Incendive applications
- Mistakes can be made with conduit/cable seals

Conclusion

Remember to ask the question correctly: "Prove to me that it is safe", NOT "Prove to me that it is unsafe". > Take into account safety, risk factors, costs, and effects on insurance Know the rules of each method Make sure you triple check both design AND implementation afterward

