Beyond S-parameters: Modern Network Analyzer Architectures and Algorithms

Presented by:

Ernie Jackson Agilent Technologies

Agilent Technologies

Objectives

- Examine architectures of modern vector network analyzers (VNAs)
- Provide insight into **nonlinear characterization** of amplifiers, mixers, and converters using a vector network analyzer
- Understand associated calibrations for non-S-parameter tests

Page 2

Agenda

- Overview of Component Testing Using a VNA
- Modern VNA Architectures
- Nonlinear Amplifier Tests
 - Intermodulation distortion
 - Phase versus drive
 - Hot S22
 - True-mode stimulus
 - Single connection, multiple measurements
- Mixer and Converter Tests
- Applications
- Amplifier Measurements
- Summary

Agilent Technologies

Page 3

Single Connection Multiple Measurement System

Agilo

Agilent Technologies

Page 4

SCMM System to PNA-X

© Agilent Technologies, Inc. 2007

The Need for Component Test

• Components are underlying **building blocks** of RF systems

- Magnitude and phase information crucial for simulation during design stage
- Ensure devices meet **specifications** during manufacturing

Monolithic Amplifiers • Surface Mount • DC to 8000 MHz										
Model Namber	Frequency Range (Reiz)		Gam (db) Type	Max. Power Output 0 1 dB comp.	M.F. (db) Typ.	103 (dBm)	VSWR.(:1) Typ.		Device DC Operating Power	
chek for data	Low	MgN		Турь		142.	ъ	Out	Voltage (V)	Correct (mA)
(+) Symbol indicates this Hodel is available as <u>Roi35 Compliant/Ph Free</u> -										
<< 90RT>>	<>	4>	<>	<>	<>	<.>	<.>	<.>	4.5	6.5
5RA-1+	DC	9000	10.9	12.0	4.3	26.0	1.5	1.5	2.4	40
5RA-2+	DC	6000	\$4.4	13.0	4.0	26.0	4.3	1.2	2.4	40
ERA-2+	DC	2000	16.9	12.5	2.5	25.0	4.5	1.4	2.2	25
ERA-41	DC	4000	12.4	17.2	4.2	34.0	4.2	1.2	4.5	65
ERA-5+	DC	4000	19.5	19.4	4.3	32.5	4.3	1.3	4.9	65
EBA-6+	DC	4000	12.2	17.0	4.5	36.0	4.3	1.6	5.0	70

Agilent Technologies

Beyond S-Parameters © Agilent Technologies, Inc. 2007 Page 6

S-parameters: Core of Linear Characterization

- S-parameters: complex (magnitude and phase) reflection and transmission in forward and reverse directions
- Fully describe linear behavior of RF components

- Distortion caused by non-flat amplitude and deviation from linear phase/constant group delay
- Necessary, but not sufficient for full system simulation

Non-Linear Distortion of Active Devices

- System impairments also result from nonlinear device behavior
- Important to include nonlinear characteristics in simulation
- Nonlinearities usually dependent on power presented to device
- Common measurements include gain compression, AM-to-PM conversion, and harmonic and intermodulation distortion

Vector Network Analyzers Key to Component Test

Vector network analyzers (VNAs)...

- Are stimulus-response test systems
- Can sweep frequency or power
- Characterize linear (S-parameters) and nonlinear (compression, IMD, etc.) performance
- Are very fast for swept measurements
- Provide the highest level of measurement accuracy

Agilent Technologies

Beyond S-Parameters © Agilent Technologies, Inc. 2007

Page 9

and the second of the

Agenda

Overview of Component Testing Using a VNA

• Modern VNA Architectures

Nonlinear Amplifier Test

- Intermodulation distortion
- Phase versus drive
- Hot S22
- True-mode stimulus
- Single connection, multiple measurements
- Mixer and Converter Tests
- Summary

Agilent Technologies

Page 10

Traditional VNA Architectures

- Traditional VNAs have one RF source, two test ports
- Four-port analyzers are common now

Beyond S-Parameters © Agilent Technologies, Inc. 2007

Agilent Technologies

Page 11

Nonlinear Testing With One Source – Power Sweeps

- Sweep power at a fixed frequency (CW)
- Measure gain compression and phase compression (AM-to-PM conversion)

Agilent Technologies

Page 12

Input Power (dBm)

Nonlinear Testing With One Source – Harmonics

- Sweep fundamental frequency
- Measure harmonics generated by DUT
- VNA must be able to tune receivers independent of stimulus (frequency-offset mode)
 Image: Calibration Irace Scale Marker System Window Help

Beyond S-Parameters © Agilent Technologies, Inc. 2007

Agilent Technologies

Page 13

Modern Two-Port VNA Architecture

- Second internal source
- Internal signal combiner
- Flexible signal routing
- Internal modulators and pulse generators

Modern Four-Port VNA Architecture

- Second internal source
- Internal signal combiner
- Flexible signal routing
- Internal modulators and pulse generators

Page 15

Easily Switch Between One- and Two-Source Tests

Agilent Technologies

Beyond S-Parameters © Agilent Technologies, Inc. 2007 Page 16

Desirable Source Attributes

- High port power to drive amplifiers into compression and to ensure measurable distortion products
- High port power for driving mixer LO ports
- Low source harmonics for more accurate harmonic and IMD measurements
- Wide power-sweep range to cover linear-to-nonlinear transition
- Built-in **pulse modulators** for simple pulsed S-parameter setups

Benefit of Low Source Harmonics for IMD Tests

Desirable Receiver Characteristics

- Excellent linearity with a high compression point
- Narrowband IF path for improved IMD and pulsed measurements
- Internal IF gates for narrowband pulsed measurement
- External IF inputs for antenna-system remote-mixing situations

PNA-X Provides Industry-Leading Performance

N5242A PNA-X Performance

- Frequency Range
- IF Bandwidths
- Dynamic Range
- Trace Noise (1 kHz IF BW)
- Output Power
- Source Harmonics
- 0.1 dB Receiver Compression
- Power Sweep Range (ALC)

10 MHz to 26.5 GHz 1 Hz to 600 kHz 130 dB at 24 GHz 0.0006 dB at 22.5 GHz +16 dBm at 24 GHz -60 dBc at 24 GHz +12 dBm at 20 GHz 40 dB at 24 GHz

Additional Access Loops Expand Range of Measurements

Example 1: switch between normal path and high-power path

Example 2: switch between network analyzer and external source and SA/VSA

Two-Port PNA-X High-Power Amplifier Measurements

Single Connection, Multiple Measurements

Pulsed S-parameters

- Ease of Setup
 - Internal pulse modulators (one or two)
 - Internal pulse generators (four)
 - Very fast pulse-profile measurements (20-30x improvement over PNA)
- Wide- or narrow-band detection
 - Wideband down to 2 us (< 1 us soon)
 - Narrowband down to 33 ns
- Dynamic range improvements for narrowband detection
 - Crystal-filter path with increased gain
 - Patented software-gating technique (especially helpful for small duty cycles)

Agilent Technologies

Page 24

Narrowband Example with Low Duty Cycle (.001%)

Agenda

- Overview of Component Testing Using a VNA
- Modern VNA Architectures

• Nonlinear Amplifier Test

- Intermodulation distortion
- Phase versus drive
- Hot S22
- True-mode stimulus
- Single connection, multiple measurements
- Mixer and Converter Tests
- Summary

Two-Port PNA-X Two-Tone IMD Measurements

Swept-frequency IMD

Swept-power IMD

Beyond S-Parameters © Agilent Technologies, Inc. 2007 **Agilent Technologies**

Page 28

Optimizing IMD Measurements

- Use narrowband (crystal-filtered) IF path
- Set IF bandwidth as narrow as possible (limited by measurement speed)
- Set attenuation in receiver path to optimize noise floor and receiver IMD
- Avoid source spurs
 - single tone spurs generated by synthesis process
 - avoid multiples of 10 MHz by 3 to 10 times the IF bandwidth
- Avoid source cross modulation (due to ALC loop interaction)
 - use combiner with good isolation between sources
 - use open-loop leveling

white the second second

Phase Versus Drive

- Measure phase change on fixed signal F_2 (low power) induced by amplitude change on signal F_1 (high power)
- Combine signals with same hardware setup as for measuring IMD
- Perform a power sweep with F₁
- Tune receivers to F₂ and measure S21 phase
- Calculate delta phase divided by delta amplitude (e.g., deg/dB)

Two-Port PNA-X Phase Versus Drive

Two-Port PNA-X Hot S-Parameters Jumpers changed to reverse the combiner X LO Source 2 To receivers Source 1 OUT 1 🛓 OUT 2 OUT 1 OUT 2 $\mathbb{R}1$ R2 B A Em X -2ª 🕅 -200 Source 2 Source 2 Test port 1 Output 2 Test port 2 Output 1 듣 10.5 GHz, -5 dBm * K 10 GHz Hot S22 example * Example values DUT +15 dBm *

True-Mode Stimulus

- Accurately characterize balanced amplifiers in nonlinear region of operation
- Apply true-differential or true-common-mode stimulus (forward and reverse direction)
- Apply arbitrary phase offset (CW only)
- Measure differential-mode, common-mode, and cross-mode S-parameters
- Correct amplitude/phase imbalance due to mismatch with single-ended 4-port calibration

Page 34

Agilent Technologies

Agenda

Overview of Component Testing Using a VNA

LO

Source 2

OUT

Source 2

Output 1

DUIT

OUT 2

Source 2 Output 2

Source 1

OUT 1

OUT 2

To receivers

Test port

- Modern VNA Architectures
- Nonlinear Amplifier Test
 - Intermodulation distortion
 - Phase versus drive
 - Hot S22
 - True-mode stimulus
 - Single connection, multiple measurements
- Mixer and Converter Tests
- Summary

Four-Port PNA-X Scalar Mixer/Converter Measurements

Four-Port PNA-X Vector Mixer/Converter Measurements

Beyond S-Parameters © Agilent Technologies, Inc. 2007 Page 37

Vector Mixer/Converter Measurements – High LO Power

Beyond S-Parameters © Agilent Technologies, Inc. 2007 Page 38

Example of Fixed and Swept LO Measurements

Beyond S-Parameters © Agilent Technologies, Inc. 2007

Page 39

Speed Improvements with Internal Second Source

Advanced Calibration Techniques for Mixers/Converters

Scalar Mixer Calibration (SMC)

- Highest accuracy conversion-loss
 measurements with simple setup and cal
- Removes mismatch errors during calibration and measurements by combining one-port and power-meter calibrations

Vector Mixer Calibration (VMC)

- Most accurate measurements of phase and absolute group delay
- Removes magnitude and phase errors for transmission and reflection measurements by calibrating with characterized through mixer

Example Conversion Loss Measurements

GHz

Agilent's Patented Vector Mixer Calibration Technique Calibration mixer/filter pair

Three step calibration:

- Step 1: measure one-port error terms at input and output frequencies
- Step 2: completely characterize a calibration mixer/filter pair using reflection measurements (acquire S11, S22, and "C21")
- Step 3: calibrate transmission tracking term of test system using characterized mixer/filter as a through standard

Example Group Delay Measurements

Agenda

- Overview of Component Testing Using a VNA
- Modern VNA Architectures
- Nonlinear Amplifier Test
 - Intermodulation distortion
 - Phase versus drive
 - Hot S22
 - True-mode stimulus
 - Single connection, multiple measurements
- Mixer and Converter Tests
- Applications

Agilent Technologies

Page 45

Frequency Converters w/Embedded LO S.W Option = 084

Embedded LO Option 084:

- 1. Allows measurement of relative phase and absolute group delay without accessing to embedded LO source.
- 2. Is an extension of the Vector Mixer Calibration (VMC, opt. 083).
 - PNA requires option 014, 080, 081, UNL and 083.
 - PNA-X requires option 080, 083.

Embedded LO Option 084 is NOT:

- 1. Fixed output frequency.
- 2. DUT LO frequency > 10MHz of reference mixer LO frequency.

Introducing the N5242A Option 029

Agilent's unique noise-figure-calibration technique uses an ECal module as an impedance tuner to remove the effects of imperfect system source match Source-corrected noise figure option extends single-connection multiple-measurement capability of the PNA-X

- Measure key amplifier parameters up to 26.5 GHz with a single connection (e.g. S-parameters, noise figure, compression, IMD, harmonics)
- Achieve the highest measurement accuracy of any solution on the market

PNA-X's Unique Source-Corrected Technique

- PNA-X varies source match around 50 ohms using an ECal module (source-pull technique)
- With resulting impedance/noise-figure pairs and vector error terms, very accurate 50-ohm noise figure (NF₅₀) can be calculated
- Each impedance state is measured versus frequency

Noise Figure Uncertainty Example (ATE Setup)

Uncertainty Breakdown (ATE Setup)

Comparing Accuracy of Two Methods

- Noise parameter effect present for both methods
- Y-factor
 - Noise source directly to DUT: good source match
 - Noise source in ATE or probe situation: poor source match
- Cold source
 - Without source correction: poor source match
 - With source correction: excellent effective source match

Agilent Technologies

Page 52

N5242A Option 086 (GCA) Gain Compression Application

GCA builds upon PNA-X's strength in single-connection active-device measurements, providing gain compression data fast and accurately,

at multiple frequencies, with a simple setup.

Measure a key amplifier spec multiple times faster compared to current methods, with GCA's SMART swe

✓Achieve the highest measurement accuracy of any solution in the market with mismatch correction.

✓ Frequency converters not supported at intro. Future enhancement.

Page 53

Agilent Technologies

A firmware upgrade for existing PNA-Xs. Free 14-day trial license for PNA-X owners to try out Option 086.

Nonlinear Testing GCA – Power Sweeps

Agilent Technologies

Page 54

Easily Switch Between One- and Two-Source Tests File Trace/Chan Response Marker/Analysis Stimulus Utility Help

Beyond S-Parameters © Agilent Technologies, Inc. 2007

Page 55

Beyond S-Parameters © Agilent Technologies, Inc. 2007

Page 56

Beyond S-Parameters © Agilent Technologies, Inc. 2007

Page 57

Summary Modern VNA architectures provide:

- Two internal signal sources with high output power and low harmonics
 - Simplifies measurements of IMD, phase vs. drive, hot S22 and more
 - Provides convenient and fast LO signal for mixer and converters
- Flexible signal routing
 - Combine sources with internal signal combiner for variety of measurements
 - Add signal-conditioning hardware and external test equipment via front and rear-panel RF access loops
- Complete set of pulsed S-parameter hardware
 - Modulators, pulse generators, IF gates, wide and narrowband IF filters

Page 58

Agilent Technologies

- Detection choices offer tradeoff between speed, dynamic range, and resolution

Characterize linear and nonlinear behavior of amplifiers, mixers and converters with simple test setups and fast test times