

Analyzing HF & LF RadHaz Scenarios with 3D EM Simulation

Dr. Tilmann Wittig - CST

- Start time: 5pm CET, 11am ET, 8am PT
- Audio will be broadcast through your computer speakers or headphones (no need to teleconference)
- In case of audio broadcast failure please use dial-in numbers from your registration email
- There will be no audio until the scheduled start time.
- A recording will be made available, you will be notified by email
- More information: <u>www.cst.com/webinars</u>

Introduction

Humans are exposed to electro-magnetic fields of different frequencies almost everywhere!

EM Fields typically fade quickly with distance from source

Fields may be hazardous in close vicinity to source

- Medical Imaging & Treatment
- Persons near machines of high power
- Persons near antennas

Source: Wikipedia

Outline

- Radiation Hazard Introduction
- Human Models for EM Simulation
- Applications:

Summary

Outline

- Radiation Hazard Introduction
- Human Models for EM Simulation
- Applications:

Summary

Types of Radiation

Classification and assesment according to icnirp.org

Radiation Hazard Regulation

Various organizations are involved in standardization and regulation providing guidelines for measurement and simulation setup as well as defining limits

- International Commission on Non-Ionizing Radiation Protection (ICNIRP)
- IEC, IEEE, local standardization authorities
- Local legislation, e.g. European Directive 2013-35 EU for "the minimum health and safety requirements regarding the exposure of workers to the risks arising from physical agents (electromagnetic fields)"

Radiation Hazard Standards

Most standards distinguish between

- Occupational and general public scenarios (occupational limits typically 2-4 times higher)
- Dosimetry values inside body (induced E-fields, SAR)
 - Represents the value of interest
 - Very hard to measure, but can be simulated!
- Unperturbed E- and H-field values in position of human
 - Much easier to measure or simulate
 - May be unreliable (human presence changes field distribution)
 - Are chosen very conservatively

Outline

- Radiation Hazard Introduction
- Human Models for EM Simulation
- Applications:

Summary

Human Simulation Models

The right choice of biological model is essential for the reliability of a medical simulation.

Anatomical details:

CST - COMPUTER SIMULATION TECHNOLOGY | www.cst.com

Material properties:

- Frequency dependent EM properties (Cole-Cole)
- Temperature dependent EM properties
- Temperature dependent thermal properties

CST Biological Model Library

CST Biological Model Library

Voxel Model Posing

CST Simulation Technologies

Static Fields	Low Frequency Fields 1 Hz - 100 kHz	High Frequency Fields 100 kHz - 300 GHz
Es Ms Js		
System Simulation Antenna Matching Field Source Coupling		Bioheat Simulation
		THS THT

Outline

- Radiation Hazard Introduction
- Human Models for EM Simulation
- Applications:

Summary

Human Body Exposure to a 50 Hz Welding Gun

Welding Gun Model

Welding gun operating at 50 Hz when 3.1 kA current used

Low Frequency Radhaz

- Welding gun test case for new guide of good practice for European Directive 2013-35 EU-Electromagnetic Fields
- Worker is at specific distance from gun
- Of interest: field exposure e.g. at 50 Hz when 3.1 kA current used
- Solver used: Magnetoquasistatic solver with curved tetrahedral mesh
- Statistics: 575.000 TETs, required RAM is
 10 Gb and simulation time 25 minutes

Low Frequency Radhaz

- Result: predicted E-field in body is below limit of 0.08 V/m at 50 Hz.
- Cumulative histograms show 99th percentile distribution of induced electric field averaged over 2x2x2 mm³ in various organs

Human exposure basic restriction at 50 Hz (ICNIRP)

- Occupational exposure: 0.08 V/m
- General public exposure: 0.02 V/m

Welding gun is compliant for occupational usage (but not for general public usage)

E-Mobility: Driver Safety in Presence of High Traction Currents

Model of Electric Car

Car chassis modelled as transparent impedance sheet Heterogeneous CAD based human Model Nelly

Wire carrying traction current of 480 A at 2 kHz

Simulation Properties

1.93 Million TETs after 7 automatic adaption passes

3h 15 min total simulation time

Results at 2 kHz

Magnetic Field at 2 kHz (vector plot)

Results at 2 kHz

Magnetic Field at 2 kHz (absolute value)

Results at 2 kHz

Electric Field at 2 kHz (absolute value)

Histogram Field Distribution

Compliance of Traction Current

Human exposure basic restriction at 2 kHz (ICNIRP)

- Occupational exposure: 0.8 V/m
- General public exposure: 0.4 V/m

99th percentile is 0.59 V/m (rms), above general public expose limit. But: peak current applies only few seconds, average needs to be considered!

RadHaz of Worker on Telecommunication Tower

Courtesy of Vanni Lopresto,

vanni.lopresto@enea.it

Two Telecommunication Towers

Tower A

- FM-VHF stations
 - 99.6 MHz, 103.9 MHz
 - 635.5 W (rms) each
- UMTS-BTS
 - band I (2150 MHz) 10.6 W (rms)
 - band VIII (950 MHz) 31.9 W (rms)

Tower B

- DVB-T station (690 MHz)
- FM-VHF station (91 MHz)

Worker Exposure Scenarios

Evaluation of Directive 2013-35-EU for technical personnel operating on Tower A

- 1. Exposure to FM-VHF antennas on upper platform (height 35 m)
- 3. Exposure to UMTS-BTS antennas on lower platform (height 28 m)
- 2. Exposure to the far fields radiated by antennas on Tower B

1) FM Near-Field Exposure

FM near-field simulations 2 x Workstations, Xeon multiprocessor (256 GB RAM, 4 GPU)

Simulation Requirements: 96 Million mesh cells, 38 GB (4.5 hrs)

Simplified tower model, detailled antenna, heterogeneous human model (voxel), full height of 42 m considered in simulation!

2) FM & DVB-T Far-Field Exposure

Plane-wave simulations

2 x Workstations, Xeon multiprocessor (256 GB RAM, 4 GPU)

Total memory needed for simulation:

@ 91 MHz: 96 Million mesh cells, 35 GB (1.5 hrs)

@ 690 MHz: 180 Million mesh cells, 64 GB (2 hrs)

Radiated fields from tower B

Full tower height of 42 m considered in simulation!

3) UMTS Near-Field Exposure

Three base station antennas 17 m on a cell tower Exposure of worker when antennas active at 950 MHz and 2.15 GHz? sub-mm details OPTENNI **CST - COMPUTER SIMULATION TECHNOLOGY** www.cst.com

3) UMTS Simulation Setup

Simulation in two stages using field source coupling...

Specific Absorbtion Rate (SAR)

$$SAR = \frac{P}{\rho} = \frac{\sigma E^2}{\rho} = \frac{J^2}{\rho \sigma}$$

- Point SAR: Local SAR without mass or volume averaging
- Total SAR: Total power loss in a lossy structure divided by its total mass
- Mass Averaged SAR (typically 1g or 10g), often different limits for head, trunk and limbs.

Results of all Exposures

Station	Frequency (MHz)	SAR _{wB} (W/kg)	SAR _{10g} (W/kg)	Maximum / secondary peaks
FM-VHF (Tower B)	91	8.00×10^{-4}	6.80×10^{-3}	ankles / neck
FM-VHF (Tower A)	99.6	1.37×10^{-2}	2.39 × 10 ⁻¹	ankles / neck
FM-VHF (Tower A)	103.9	1.56×10^{-2}	3.21 × 10 ⁻¹	ankles / neck
DVB-T (Tower B)	690	9.30×10^{-6}	5.00×10^{-4}	wrists / ankles
UMTS Band VIII (Tower A)	950	9.00 × 10 ⁻⁴	1.87×10^{-2}	right forearm / neck
UMTS Band I (Tower A)	2150	5.00×10^{-4}	9.70 × 10 ⁻³	feet / left hand / genitals

Combined normalized SAR:

$$\sum_{i=1}^{N} \frac{SAR_i}{SAR_{ELV}} \le 1$$

Indexes of Compliance (IOC) according to Directive 2013-35-EU:

ELV	SAR (W/kg)	IOC
Whole-body	0.4	7.88×10^{-2}
Head & Trunk	10	5.85 × 10 ⁻²
Limbs	20	2.98×10^{-2}

Phasor Innovation

RadHaz Evaluation of Military Vehicles

Courtesy of Andy Sayers and Adam Silvester, andy.sayers@phasorinnovation.com

"Near-Field RADHAZ Assessment in Complex Environments" EMC Soc. Workshop 2015

Radhaz Evaluation of Vehicle Phasor Innovation

- Vehicle with multiple communication systems
- Interested in exposure of personnel in close proximity to antennas

Radhaz Evaluation of Vehicle Phasor Innovation

- CAD model imported with "sufficient detail for $f \leq UHF$ "
- No meshing problems with time domain solver

Measurement and Simulation Phasor Innovation

Measured and simulated all antennas (2 - 500 MHz) at > 100 locations

Simulations performed according to IEEE Standard 1597.1

Excellent agreement \Rightarrow confidence in simulation

Example:Logistics Vehicle

Phasor Innovation

Antenna simulation shows resonance around gun shield

E-Fields exceed occupational limits for the driver

Radhaz Exposure in Vehicles

Phasor Innovation

Additional SAR simulation (not part of standard RADHAZ assessment)

Local SAR peak is below the occupational SAR limit, so the driver is safe.

Outline

- Radiation Hazard Introduction
- Human Models for EM Simulation
- Applications:

Summary

Summary

- Legal requirements make RadHaz compliance increasingly important
- Measurement campaigns are costly, and do not always give the full picture of field behaviour in a complex environment
- Thus simulation is a critically important tool to complement measurement
- Simulation can be challenging due to large frequency range and required complex body models and environments
 CST STUDIO SUITE® Complete Technology provides the solutions needed for this multiscale, multiphysics problem

EU Directive

Table A1 Health effects ELVs for exposure to electromagnetic fields from 100 kHz to 6 GHz			
Health effects ELVs	SAR values averaged over any six-minute period		
ELVs related to whole body heat stress expressed as averaged SAR in the body	0,4 Wkg ⁻¹		
ELVs related to localised heat stress in head and trunk expressed as localised SAR in the body	10 Wkg ⁻¹		
ELVs related to localised heat stress in the limbs expressed as localised SAR in the limbs	20 Wkg ⁻¹		

Table B1					
ALs for exposure to electric and magnetic fields from 100 kHz to 300 GHz					
Frequency range	Electric field strength ALs(E) [Vm ⁻¹] (RMS)	Magnetic flux density ALs(B) [µT] (RMS)	Power density ALs(S) [Wm ⁻²]		
100 kHz \leq f \leq 1 MHz	6,1 × 10 ²	2,0 × 10 ⁶ /f			
1≤ f < 10 MHz	$6,1 \times 10^8/f$	2,0 × 10 ⁶ /f	-		
$10 \le f \le 400 \text{ MHz}$	61	0,2	-		
400 MHz \leq f \leq 2 GHz	$3 \times 10^{-3} f^{1/2}$	$1,0 \times 10^{-5} f^{4/2}$	_		
$2 \le f \le 6 \text{ GHz}$	$1,4 \times 10^2$	$4,5 \times 10^{-1}$	-		
$6 \le f \le 300 \text{ GHz}$	$1,4 \times 10^{2}$	4,5 × 10 ⁻¹	50		
<u>.</u>	2012	L.	1		

CST - COMPUTER SIMULATION TECHNOLOGY | www.cst.com

Directive 2013-35-EU

Non-binding practical guides early in 2016

Transposition into laws by July 1, 2016