5G: Looking Behind the Curtain Signal Transmission & Reception

Part 1

01-01: Early Wireless Communications 0G to 3G

01-02: Transitioning to 4G and 5G

01-03: Signal Routing 3G to 4G/5G

Part 2:

Modulation, Constellations and Orthogonal Multiplexing

- 02-01: Review: 4G & 5G
- 02-02: 4G/5G Packet Spectral Technologies
- 02-03: Orthogonal Frequency Division Multiplexing (OFDM)
- 02-04: 5G Modulation
- 02-05: MIMO: Multiple-Input Multiple-Output
- 02-06: Next Generation 6G: ≈ 2030

Looking Behind the 5G Curtain Signal Transmission & Reception Techniques

Part 2:

Modulation, Constellations and Orthogonal Multiplexing

02-01: Review: 4G & 5G

Howard Hausman, President/CEO RF Microwave Consulting Services Adjunct Professor, Hofstra University hhausman@rfmcs.com

Internet Transport Protocols

- TCP: Transmission Control Protocol
 - reliable, in-order delivery
 - congestion control
 - flow control
 - connection setup

- UDP: User Datagram Protocol
 - Unreliable
 - Unordered delivery
 - Faster Service
 - Satellite Communications
 - Always used UDP
 - Request through a Geosynchronous Satellite ≈ 250ms --

Packet Switching Technologies

Basic idea:

- Data is separated into a large number of parallel narrow-band subcarriers
 - Previously: TCP: Transmission Control Protocol
 - Single wide-band carrier to transport information
 - Channel was opened
 - Data receipt was confirmed
- Developed for 4G, Enhanced for 5G (UDP: User Datagram Protocol)
- Data is separated into a large number of parallel narrow-band subcarriers
- Subcarrier bandwidth: 15kHz to 60kHz
- Advantages of UDP: User Datagram Protocol
- Deals with multi-path interference
- Robust against narrow-band interference
- Efficient utilizes available bandwidth --

Packet Switching Review: 4G to 5G

- Message gets broken into small data packets
 - Typically 15kHz (4G) \rightarrow 15kHz to 60kHz (5G)
- Packets are sent out from the computer
- Travel around the network
 - Seeks the most efficient route
 - Based on circuit availability
 - Not necessarily shortest route --

Packet Routing

Each packet may take a different route through WAN (Wide Area Network)

Data Packets are received out of order
 Data Packets are combined and reordered at the Destination--

12/27/2022

Packet Synchronizing

Packet is sent with a 'header address'

- Lists final destination
- Describes the sequence for reassembly at the destination
- Receiving computer puts packets in the correct order
- How many packets should be arriving
 - Packets at interim Nodes
- Packets are received
- Stored briefly (buffered)
- Past on to the next node
 If a packet fails to arrive
- Computer asks for the missing packet to be resent --

UDP: User Datagram Protocol IP: Internet Protocol

Packet Switching: Advantages/Disadvantages

Advantages

Security

- Bandwidth: Used to full potential
- Devices of different speeds can communicate
- Not affected by line failure (redirects signal)
- Availability no waiting for a direct connection to become available
- During a crisis or disaster, e-mails and texts can still be sent

Disadvantages

- Under heavy use there can be a delay (slow Internet Connection)
 - Actual Data Rates are a function of the number of users
- Data packets can get lost
- Data can become corrupted
- Can lose frames due to the way packets arrive out of sequence
- Protocols are imbedded in the Header for a reliable transfer
- Lost Data is recognized and re-requested --

Looking Behind the 5G Curtain Signal Transmission & Reception Techniques

Part 2:

Modulation, Constellations and Orthogonal Multiplexing

02-02: 4G/5G Packet Spectral Technologies

Howard Hausman, President/CEO RF Microwave Consulting Services Adjunct Professor, Hofstra University hhausman@rfmcs.com

Transitioning to 4G

FDMA – Frequency Division Multiple Access

- User is allocated to a different carrier frequency
- Signals are available until channel is closed

12/27/2022

TDMA - Time Division Multiple Access

- User is allocated a time frame in the frequency band
- Infrastructure holds data until time frame is available
- Frequency bandwidths are wider than FDMA
- ➢ More flexible in allocating users
- Improved use for available Bandwidth
 - No Guard Band Required -

12/27/2022

4G/5G Uses a Combination of FDMA and TDMA

etc.) bandwidth can be guaranteed --

Multiplexing in 4G &5G Uses FDMA & TDMA

- Minimal schedulable unit, called a Resource Element (RE)
 - 4G: 15-kHz bandwidth around one subcarrier frequency
 - Number of bits / symbol is variable

Transmission Time Interval (TTI) = 1mSec

Scheduler (Software)

- Allocates a number of Resource Elements (RE) to each user
- Receives feedback from destination about the quality
- Selects the coding (bits/Symbol) per- Physical Resource Block (PRB) basis
- Scheduler uses feedback to allocate PRBs for the next TTI

Transmission Time Interval (TTI) = 1mSec

12/27/2022

Physical Resource Block (PRB)

- Physical Resource Block (PRB) of 12 Carriers each 15kHz → 180kHz BW
- 7 Time slots .066mS (1/15kHz) per slot → ≈ 0.5mS for 1 Resource Block (PRB)
- Scheduler makes its decision to allocate PRBs for the next TTI (1mS) --

5G: Improves Flexibility

Subframe : 1mS

12/27/2022

hhausman@rfmcs.com 41/50/60/66/81/86/E89

5G Looking Behind the Curtain Signal Transmission & Reception

Part 2: Modulation, Constellations and Orthogonal Multiplexing

02-03: Orthogonal Frequency Division Multiplexing (OFDM)

Howard Hausman, President/CEO RF Microwave Consulting Services Adjunct Professor, Hofstra University hhausman@rfmcs.com

Conventional Frequency Division Multiple Access (FDMA)

Separate carrier frequency for individual transmission --

hhausman@rfmcs.com 41/50/60/66/81/86/E89

Spectrum Comparison Multi Carrier, Single Carrier & OFDM

OFDM: Orthogonal Frequency-Division Multiplexing

12/27/2022

hhausman@rfmcs.com 41/50/60/66/81/86/E89

Implementation of OFDM

- OFDM is Based on use of
 - □ Fast Fourier Transforms (FFT): Receiver
 - Inverse Fast Fourier Transforms (IFFT): Transmitter
- Adjacent bands are Frequency orthogonal
 - 3D Movie Glasses use Orthogonal Polarization --

OFDM Power Spectrum

- OFDM carriers are densely packed
- Adjacent carriers are orthogonal
- Peak of one carrier occurs at null of the next carrier
- OFDM system is bandwidth efficient.

- High-speed data is divided into multiple slower streams
- Total Power spectrum is almost square shape
- No guard bands --

OFDM Architecture Example

5G Looking Behind the Curtain Signal Transmission & Reception

Part 2: Modulation, Constellations and Orthogonal Multiplexing

02-04: 5G Modulation

Howard Hausman, President/CEO RF Microwave Consulting Services Adjunct Professor, Hofstra University hhausman@rfmcs.com

Waveforms & Modulation:

- 4G and 5G based around
 - Dividing data into small packets
 - OFDM densely populates the subcarriers
 - Subcarrier Modulation: Vector Modulation
- Vector Modulation formats dependent upon the quality of the link
 - More complex modulation requires higher S/N
 - Users see higher data rates
- Currently used:
 - Quadrature Amplitude Modulation (QAM)
 - 4QAM: 2 bits/symbol
 - 16QAM: 4 bits/symbol
 - 64QAM: 6 bits/symbol
- **Experimental:**
 - 256QAM: 8 bits/symbol
 - □ 1024QAM: 10
 - bits/symbol --

Vector Modulation

- Digital Communications has almost universally replaced Analog Communications
 - Analog requires higher S/N than digital
- Digital Transmission via Vector Modulation
 - RF Carrier is a vector
 - Amplitude
 - Phase information
 - Vector location defines a symbol
- A Symbol is a collection of Bits (1's & 0's)

5G Modulation Techniques

					Rel		16-QAM modulation			
Svmbol	Q	1	Phase	Amp	Amp			\cap		
1110	1	3	18.4	3.16	0.75	1000	1001		1011	1010
1111	1	1	45.0	1.41	0.33	000	001	3	0	1010
1010	3	3	45.0	4.24	1.00			T		
1011	3	1	71.6	3.16	0.75	No.				
1001	3	-1	108.4	3.16	0.75	1100	1101	1	1111	1110
1101	1	-1	135.0	1.41	0.33					
1000	3	-3	135.0	4.24	1.00	_3			1	
1100	1	-3	161.6	3.16	0.75	0	1000		-	
0100	-1	-3	198.4	3.16	0.75	0100	0101	-1	0111	0110
0000	-3	-3	225.0	4.24	1.00					7
0101	-1	-1	225.0	1.41	0.33					
0001	-3	-1	251.6	3.16	0.75					
0011	-3	1	288.4	3.16	0.75	0000	0001	-3	0011	0010
0111	-1	1	315.0	1.41	0.33			0		
0010	-3	3	315.0	4.24	1.00					
0110	-1	3	341.6	3.16	0.75					
12/27/20	022			hhau	sman@rfm	cs.com 41/50/60/66/81/86/E89				30

30

Gray Code

- Encoding of numbers so that adjacent numbers have a single digit differing by 1
- Enhances the ability to correct data without retransmission
 - Forward Error Correction (FEC)

Transmitted 16-QAM Data, 4 bits/symbol

Error Vectors

- Vector Errors (EV) distort the original signal
- EVM, (Error Vector Measurements) common term for defining vector distortion
- Can cause the resultant vector to point to the wrong symbol --

System Diagram: Decision Regions

Rate adaptation

- Signal decreases
- S/N decreases
- BER Increases
- 1. Lower Constellation complexity

 $\widehat{}$

- Decreases BER at the same S/N ↓
- 1. Decreasing Bandwidth
- 2. Lowers Noise
- 3. Increases S/N
- 4. Decreases BER

Error Detection code

Simplest Form of Error detection codes uses Parity Checks

- Parity bit added to a block of data
- Parity Words added to the end of a block of words
- Even parity
 - Added a bit ensures an even number of 1's
- Odd parity
 - Added a bit ensures an odd number of 1's
- Example, 7-bits of data [1110001] & 8-bit code

 - Odd parity [11100011]

■ Even parity [11100010] ← Parity bit

Two-Dimensional Parity

- 1st dimensional parity
 - Add a Parity Bit
 - Add one bit to every byte (word)
 - Ensure an even/odd number of 1's
- 2nd dimensional parity
 - Add a Parity word
 - Add an extra byte (word) to every block
 - Bits in the Parity word
 - Ensure even/odd number of 1's in the respective column --

Forward Error Correction (FEC)

Simplest Form of two-dimensional parity checks

Horizontal & Vertical Parity Finds & Corrects a single error --

12/27/2022

Forward Error Correction

- Multiple errors in one word
 - Not found in the word parity
 - Found in the Block Parity Word
 - Error is detected but not corrected (Can't find the Error Word)
- Pr(1 error) = 10⁻⁶ (1 Errors in 1 Million Bits)
- Pr(2 errors) = 10⁻¹² (1 Errors in 1 Trillion Bits)
- Two errors in 1 block: Error is known but can't be corrected
 - Request data sent again --

12/27/2022

hhausman@rfmcs.com 41/50/60/66/81/86/E89

Block Code Design Considerations

- More check words → higher probability of finding multiple errors
 - Transmission inefficiency increases Codes are designated by how many parity words are attaches
- Example: ³/₄ code
- Number ³/₄ means 4 words are transmitted 3 words are data
- Lower the fraction → more parity words → more error correction
- Example: Block code design
 - 1/2 rate code half the data rate
 - 1/2 code: 2 words sent for every (1) data word sent
- Parity bits added to each word
 - Decreases the efficiency of each word
 - Smaller words catch more errors
 - Less efficient

5G Looking Behind the Curtain Signal Transmission & Reception

Part 2: Modulation, Constellations and Orthogonal Multiplexing

02-05: MIMO: Multiple-Input Multiple-Output

Howard Hausman, President/CEO RF Microwave Consulting Services Adjunct Professor, Hofstra University hhausman@rfmcs.com

MIMO: Multiple-Input Multiple-Output

- MIMO is an antenna technology utilizing multipath signal propagation
 - Multipaths can be used for
 - Redundancy
 - Resolve multipath reflection issues
 - Spatial Frequency Reuse

- Transmitter and receiver have more than one antenna
 - Utilizing the different paths
 - Selects path based for improvements in
 - Data rate
 - Signal to noise (BER)
- Scheduler determines which antenna will most effectively reach each receiver

Note: Scheduler is a software program

12/27/2022

Massive MIMO: Beam Forming in the FR2 Band

- Massive MIMO scales to many antennas
- Vertical and Horizontal beam forming
 - Used for FR2 Frequencies: Small antenna size
- Uses Phase Array technology in the phone to focus beam

Geographic region divided into Cells

- Phase Array Antenna Focuses Energy
- Large Numbers of users served simultaneously
- Shrinking cell size increases capacity

Large Antenna Array at the base station

- Enhances the throughput
- Support a large number of users
- Spatial reuse
- Massive number of antennas: Typically > 100

12/27/2022

Note:

5G Looking Behind the Curtain Signal Transmission & Reception

02-06: Next Generation 6G: ≈ 2030

Howard Hausman, President/CEO RF Microwave Consulting Services Adjunct Professor, Hofstra University hhausman@rfmcs.com 6G In Development

<u>5G</u> is still being rolled out
 6G networks are expected to be
 Faster
 Increased bandwidth
 Planned for 2030

12/27/2022

41/50/60/66/81/86/E89

Frequencies from 100 GHz to 3 THz

- Extreme focus on Short-range Communication
- Extremely High Radio Density
- □ Flexible decentralized operation
 - Peer-to-Peer

End of Lecture Part 2