5G: Looking Behind the Curtain: Signal Transmission & Reception Techniques

Part 1

Topic 01:Early Wireless Communications 0G to 3GTopic 02:Transitioning to 4G and 5GTopic 03:Signal Routing 3G to 4G/5G

Howard Hausman President/CEO RF Microwave Consulting Services Adjunct Professor, Hofstra University hhausman@rfmcs.com Howard Hausman, President/CEO, RF Microwave Consulting Services, Adjunct Professor, Hofstra University

Howard Hausman received his MSEE degree from Polytechnic University/Tandon School of Engineering, NYU where he was an Adjunct Professor. He is currently President/CEO of RF Microwave Consulting Services and an Adjunct Professor at Hofstra University. Formerly Mr. Hausman was CTO and VP of Engineering, before being appointed President/CEO of MITEQ Inc., a world renown *microwave engineering company with approximately 500 employees. He has* designed hardware, wrote papers and lectured on microwave systems and components for Satellite Communications, Space Systems, Radar and Reconnaissance systems. Howard Hausman is a recipient of an NYU Distinguished Alumni Award, the IEEE LI Alex Gruenwald Award "For outstanding contributions to enhance the knowledge of the IEEE LI Section members", and a NASA Award for work on the Mars Landing System. Mr. Hausman is currently the Chairman of the IEEE LI Communications Society and was selected to review papers for the IEEE MIT Undergraduate Research Conference. Mr. Hausman was awarded a patent "Measuring Satellite Linearity From Earth Using A Low Duty Cycle Pulsed Microwave Signal". He also authored a Microwave Engineering textbook "Microwave Power Amplifier Design with MMIC Modules" published by Artech House, Boston and London.

Microwave Power Amplifier Design With MMIC Modules by Howard Hausman Ships from and sold by Amazon.com

HOWARD HAUSMAN **Microwave Power Amplifier Design** with MMIC Modules

Published by Artech House Boston, MA & London, UK Copyright: 2018 / Pages: 384 ISBN: 9781630813468

12/27/2022

Part One: Useful Microwave Design Concepts --Lumped Components in RF and Microwave Circuitry. Transmission Lines, S-Parameters, Microstrip Transmission Lines. Circuit Matching and VSWR. Noise in Microwave Circuits. Non-Linear Signal Distortion. System Cascade and Dynamic Range Analysis. Part Two: Designing the Power Amplifier --Defining the Output Power Requirements for a Communication Link and Other Wireless Systems. Parallel Amplifier Topology Enhancing SSPA Performance. MMIC Amplifier Modules for Use in Parallel Combining Circuits. Measuring and Matching the Impedance of High Power MMIC Amplifier Modules. Power Dividers and Combiners Used in Parallel Amplifier SSPAs. Power Amplifier Chain Analysis. Part Three: Designing the Power Amplifier System -- RF Signal Monitoring Circuits. DC Power Interface with the RF Signal Path. SSPA DC Voltage and Current. Thermal Design and Reliability. Electromagnetic Interference (EMI).

hhausman@rfmcs.com 41/50/60/66/81/86/E89

	5G Looking Behind the Curtain Signal Transmission & Reception					
	Part 1					
Topic 01:	Early Wireless Communications 0G to 3G					
Topic 02:	Transitioning to 4G and 5G					
Topic 03:	Topic 03: Signal Routing 3G to 4G/5G					
	Part 2					
Topic 04:	4G/5G Spectral Technologies					
Topic 05:	Topic 05: Orthogonal Frequency Division Multiplexing (OFDM)					
Topic 06:	Topic 06: MIMO: Multiple-Input Multiple-Output					
Topic 07:	Vector Modulation					
Topic 08:	ppic 08: Error Vector Modulation					

5G Looking Behind the Curtain Signal Transmission & Reception

Topic 01: Early Wireless Communications 0G to 3G

Howard Hausman, President/CEO RF Microwave Consulting Services Adjunct Professor, Hofstra University hhausman@rfmcs.com

OG (Zero Generation Mobile System)

Late 1940's

- First radio telephone service was introduced
- Designed for cars to the land-lines

In the 1960's

- Improved Mobile Telephone Service (IMTS)
- Direct dialing from the mobile user --

1G Technology

Shoe Box

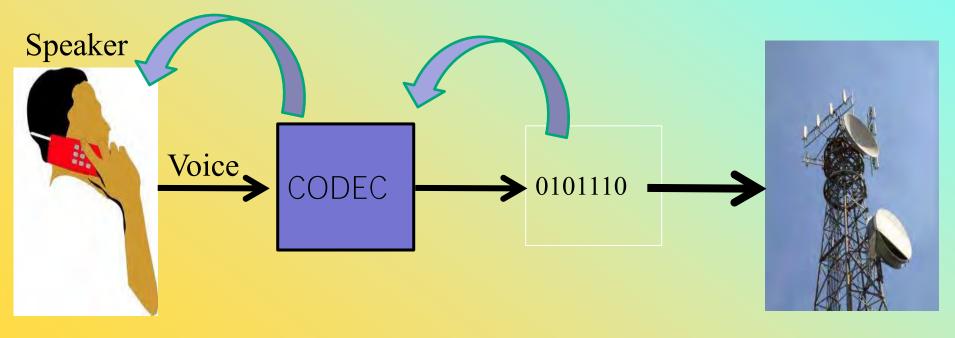
Size Phone

- Introduced early 1990s
- Analog system
- Digital control link
 - Phone to cell site
- Advance Mobile Phone System (AMPS) Allows user to make voice calls in 1 country
- FDMA (Frequency Division Multiple Access) --

Region	Frequency (MHz)	Channel Spacing (kHz)	No. of Channels	Modulation	Data Rate (kbps)
USA	824-849 869-894	30	832	FM	10
Europe	890-915 935-980	25	1000	FM	8
UK	872-915 917-950	25	1240	FM	8

2G Technology

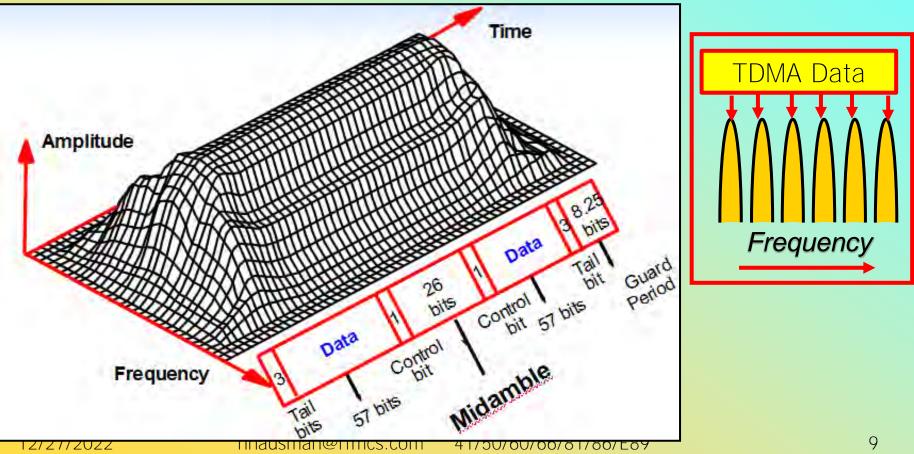
Introduction of


Message Service"

SMS -"Short

- Fielded in the late 1990s.
- Digital Voice transmission
- Speeds up to 64kbps.

Translated data from digital to analog and vice versa (CODEC)


- Codings and Decoding digital data
- Voice → Digital data can be compressed → Analog Voice

Common 2G Technology

- TDMA: Time Division Multiple Access
- GSM: Global System for Mobile communication
 - GSM was originated in Europe
 - Used in most of the world outside North America
 - GSM is a combination of FDMA and TDMA --

2.5G Technology: Implemented 1999

Higher capacity packet data
 MMS: Multimedia Message Service)

- > 2G: Introduction SMS –"Short Message Service"
- EDGE: Enhanced Data for GSM Evolution
 Global System for Mobile communication
 Data bandwidth: 384kbps
- TDMA and CDMA implemented
 - CDMA: Code Division Multiple Access
 - Spread Spectrum Communications
 - Signal overlap
 - Need a code to separate users --

3G Technology

3G wireless system

- UMTS: Universal Mobile Telecommunications Standard
- Transmission speeds up to 2Mbps
- Introduction in 2001
- CDMA –Code Division Multiple Access
- E-mail, PDA, Internet, on-line shopping, banking, games, etc.
- Global roaming
 - Phones worked on multiple system --

UMTS: Universal Mobile Telecommunications Standard (3G)

Europe	GSM 1800 DL DE	IMT-2000 TDD IMT-2000 CT UL	IMT-2000 TDD MSS UL	IMT-2000 MSS DL DL		
Japan		IMT-2000 PHS UL	UMTS: Universal Mobile	IMT-2000 DL		
Korea	IS-95 DL	IMT-2000 UL	Telecommunications Standard	IMT-2000 DL		
USA	PCS/UL	PCS/DL	Note: Free moved up	quency to 2.2GHz		
1	800 1850	<mark>1900 - 1950 -</mark>	2000 <mark>2050 2100</mark> 2100) 2150 2200		
12/27/202	Frequency (MHz) 12/27/2022 hhausman@rfmcs.com 41/50/60/66/81/86/E89 13					

Comparing 3G and 4G

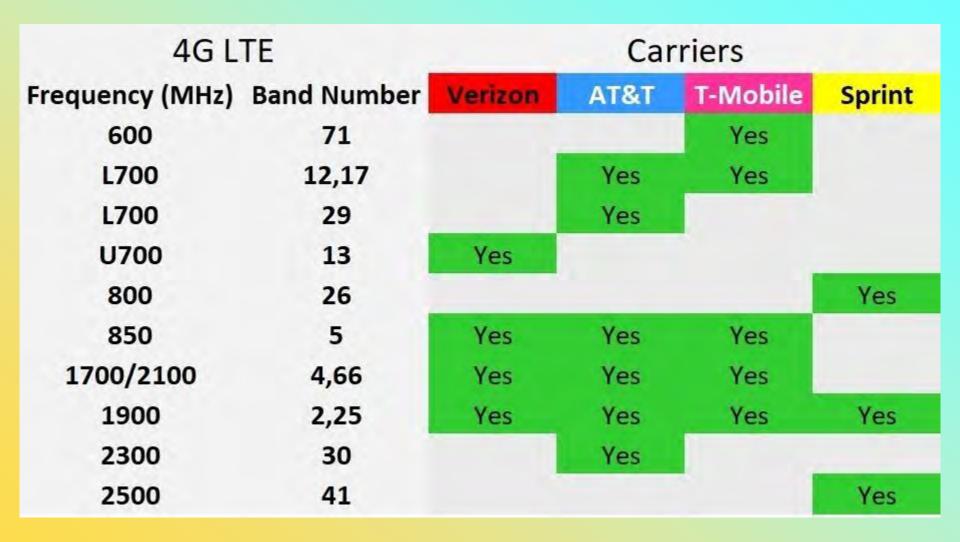
Attribute	3G	4G
Major Characteristic	Predominantly voice	Converged data and
	Data as add-on	Voice over IP (VoIP)
Network Architecture	Wide area Cell based	Integrated Wireless LAN
		(WiFi), Blue Tooth, Wide
		Area Networks (WAN)
Frequency Band	1.6 - 2.5 GHz	2 – 6 GHz
Component Design	Optimized antenna;	Smart Switched multi-
	multi-band adapters	band antennas
Bandwidth	5 – 20 MHz	100+ MHz
Data Rate	385 Kbps - 2 Mbps	20 – 100 Mbps
Access	CDMA2000	CDMA or OFDM

OFDM: Orthogonal Frequency-Division Multiplexing

Moving to 4G Technology

- Wireless technology to 3G was an evolution from wired communication
- 4G moved wireless from the standard telephone structure to the Internet Protocol (IP) structure
- Scaling up to hundreds of megabits and even gigabit-level speeds.
- 4G was on a multi-release evolutionary path
 - Referred to as Long Term Evolution (LTE) --

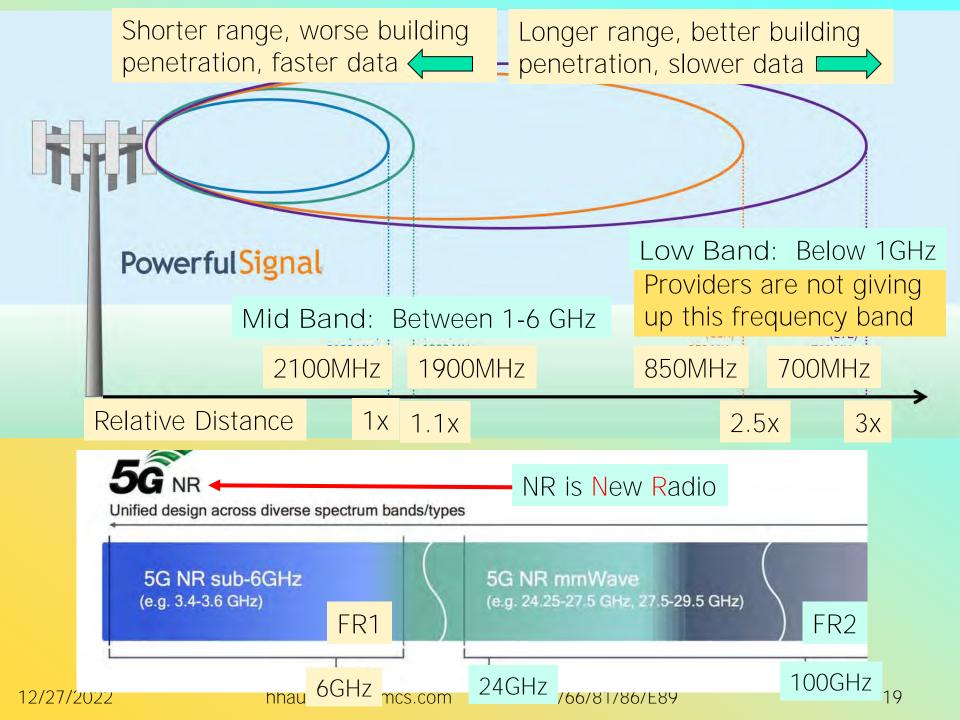
Long Term Evolution (LTE)


- LTE uses Orthogonal Frequency Division Multiplex (OFDM) modulation
- Adopted as the generalized cell-phone communications service
- Uses multiple frequency bands
 - Not the same from carrier to carrier.
- Standard bandwidths of 1.4, 3, 5, 10, 15, and 20 MHz
 - 5- and 10-MHz widths are the most common --

5G Looking Behind the Curtain Signal Transmission & Reception

Topic 02: Transitioning to 4G and 5G

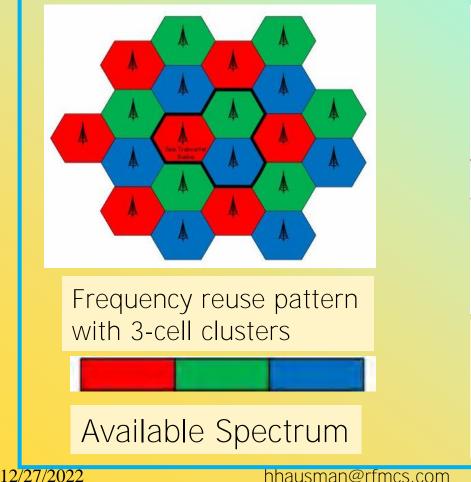
Howard Hausman, President/CEO RF Microwave Consulting Services Adjunct Professor, Hofstra University hhausman@rfmcs.com

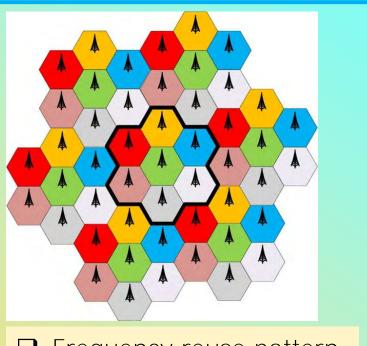

4G LTE Frequency Bands

Note: 5G devices also use 4G Frequencies

12/27/2022

hhausman@rfmcs.com 41/50/60/66/81/86/E89

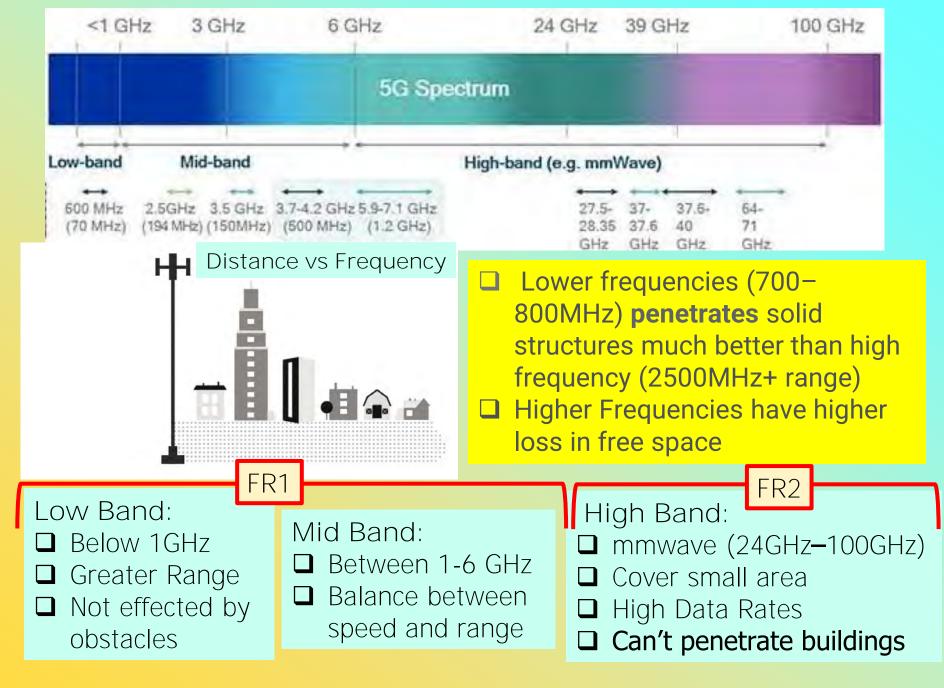



4G to 5G Technology

- 4G moved wireless from the standard telephone structure to the Internet Protocol (IP) structure
 - Direct Connection to Packet Switching
- 5G Below 6GHz (FR1) enhances 4G
 - Higher operating frequencies to over 4GHz
 - Higher Frequencies → More bandwidth
 - Improves speed, coverage, applications and reliability
 - Smaller Antenna footprints
 - Spatial reuse
 - Divides geographical coverage into smaller segments
 - More complex modulation techniques
 - Higher level Quadrature Amplitude Modulation (QAM) constellations
- 5G above 6GHz (FR2) is a new concept --

Cellular Technology: Spatial Reuse

Adjacent "cells" use different frequencies
 Cells of different colors use different frequencies



- Frequency reuse pattern with 7-cell clusters
- Distance between frequencies are greater

41/50/60/66/81/86/E89

5G Frequency Bands (FR1 & FR2)

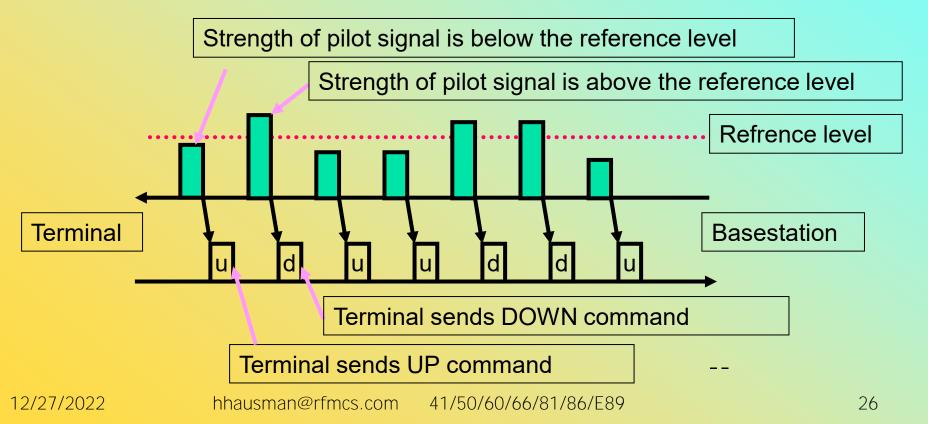
Frequency Range		FR1 < 6 GI	Z	FR2 24 to 52.6 GHz	
CBW		100 MHz	z 40	400 MHz	
CBW: Carrier Bandwidth SCS: Single Carrier Spacing CHBW: Chanel Bandwidt					
Frequency range	SCS (kHz)	Min CHBW (MHz)	Max RB	Max CHBW (MHz)	
	4G 15	Faster 5	270	50	
FR1	30	Data 5	273	100	
	5G 60	10	135	100	
FR2	60	50	264	200	
1112	120	50	264	400	
Flexibility		RB is Resource Blo is big on Acronyms n@rfmcs.com 41/50/60/	Higner	Note: FR2 increased BW	

5G	Band	Frequency	Band Type
Frequency	n40	2.3GHz	Mid-band sub-6 GHz
Bands	n260	39GHz	mmWave
•Verizon	n261	28GHz	mmWave
	n2, n5, n66	1900MHz <mark>850MHz,</mark> 1700-2100MHz	DSS with LTE
	Band	Frequency	Band Type
•AT&T	n260	39GHz	mmWave
	n5	850MHz	Low-band
	Band	Frequency	Band Type
	n41	2.5GHz	Mid-band sub-6GHz
•T-Mobile	n260	39GHz	mmWave
600MHz to 800MHz	n261	28GHz	mmWave
Bands are not	n71	600MHz	Low-band
going away	FR1 > GHz does n	ot have widespread ι	isage 24

Issues with 5G FR2 (>24GHz) mmWave Signals

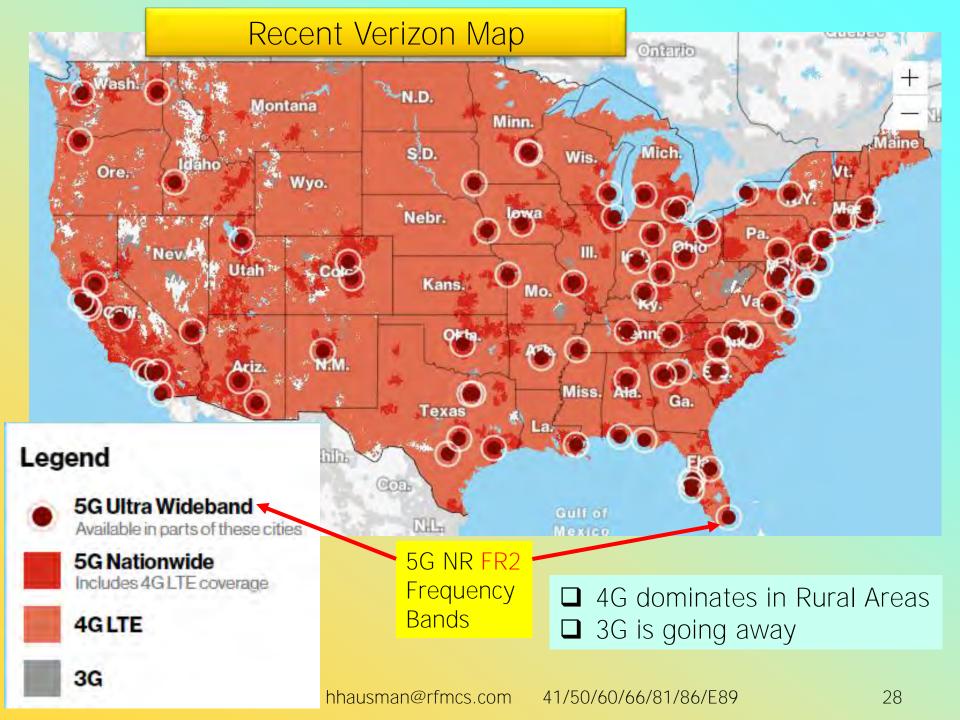
- Currently, there are only a few carriers who are offering mmWave 5G to the masses
- Smaller the wavelength → More difficult for those signals to pass through obstacles such as
 - Trees
 - Walls
 - Buildings
- Antenna Gain is greater as frequency increases
 - Coverage Footprint decreases
- Transmit and receive using smaller antennas.
- Inter Site Distances (ISDs) range is few hundred meters
 - Same channel can be used repeatedly (Spatial Reuse)
 - Need Cell sights every block

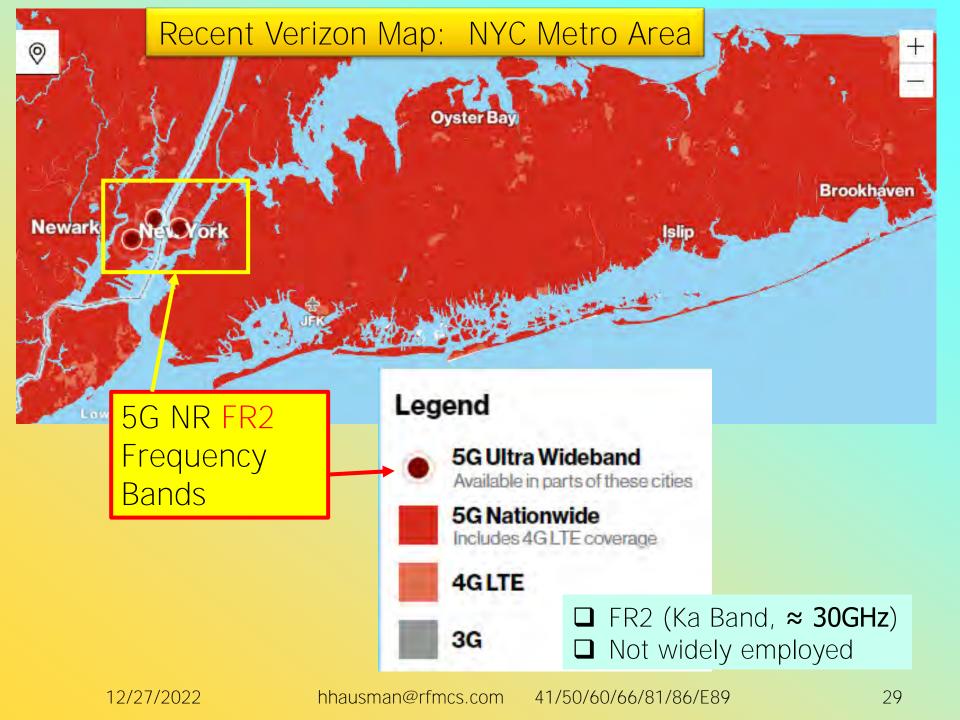
 Applications in places like Restaurants, Sports Arenas and Shopping Malls --


- Power at the Base Station MUST have the same Spectral Density
- Base Station adjusts your phone transmit power

Power Control

: Pilot Signal

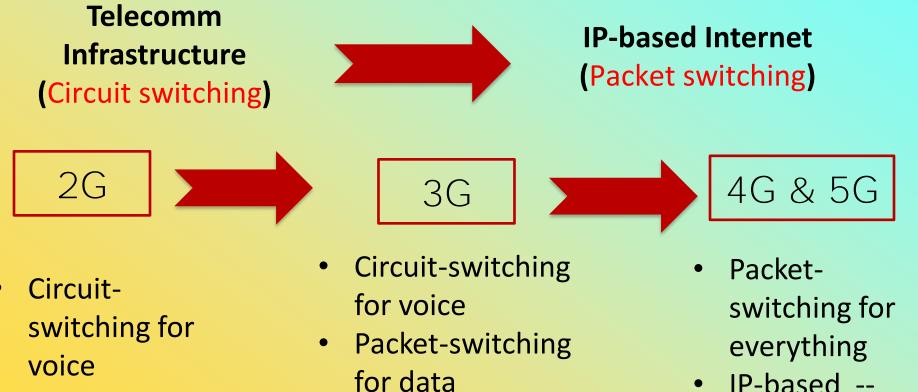

: Power Control Command


- Receiver controls the transmission power of transmitter in order to minimize the interference to other users.
- Required computation is negligible

	Cell types		Deployment environment	Max. number of users	Output power (mW)	Max. distance from base station
	Femtocell (10 ⁻¹⁵)		Homes, businesses	Home: 4 - 8 Businesses: 16-32	indoors: 10– 100 outdoors: 200–1000	tens of meters
	5G NR FR2 Frequency Bands	<u>Pico cell</u> (10 ⁻¹²)	Public areas like shopping malls, airports, train stations, skyscrapers	64 to 128	indoors: 100– 250 outdoors: 1000–5000	tens of meters
		Micro cell (10 ⁻⁶)	Urban areas to fill coverage gaps	128 to 256	outdoors: 5000–10000	few hundreds of meters
		Metro cell	Urban areas to provide additional capacity	more than 250	outdoors: 10000–2000C	hundreds of meters
٨/	<u>Wi-Fi</u> (for comparison) ViFi: 2.4 GHz and 5 GHz (so		Homes, businesses	fewer than 50	indoors: 20– 100 outdoors: 200–1000	few tens of meters

V

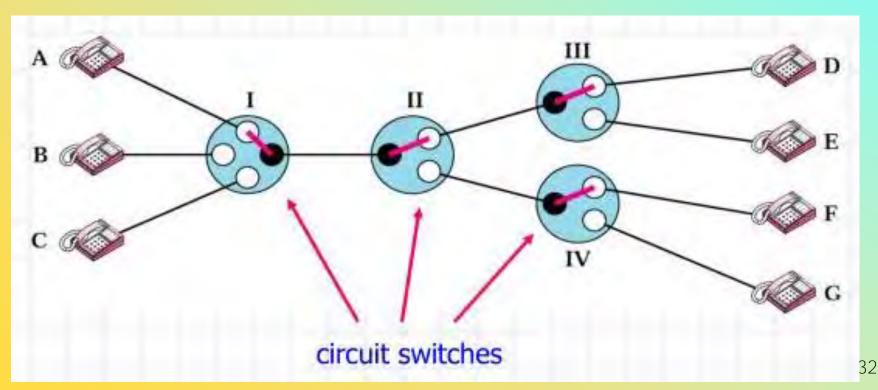
5G Looking Behind the Curtain Signal Transmission & Reception


Transitioning to 4G and 5G

Topic 03: Signal Routing 3G to 4G/5G

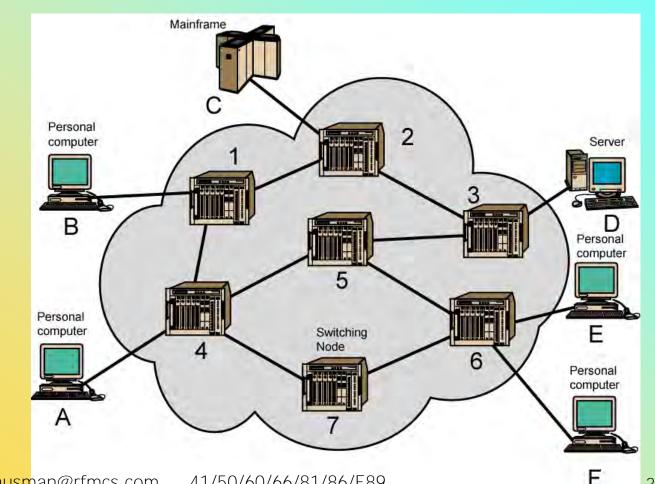
Howard Hausman, President/CEO RF Microwave Consulting Services Adjunct Professor, Hofstra University hhausman@rfmcs.com

Network Architecture Evolution


- Two different switching technologies
 - **Circuit** switching
 - Packet switching

IP-based --

Pre-4G Circuit Switching


- Circuit switching was designed in 1878
- Direct Physical Connection
- Send telephone calls down a dedicated channel
- Channel remains open throughout the call
- Connection cannot be shared --

Circuit Switching

- Telephone message is not broken up.
- Message arrives in the same order as sent
- Excellent for data that needs a constant link from end-to-end

 Data routed by being switched from node to node --

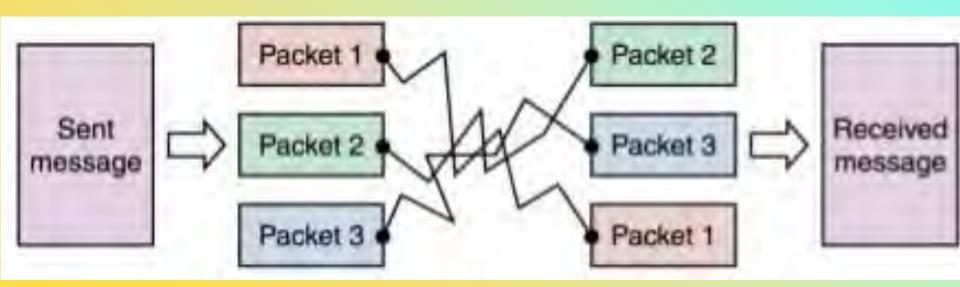
12/27/2022

hhausman@rfmcs.com 41/50/60/66/81/86/E89

Circuit Switching: Advantages/Disadvantages

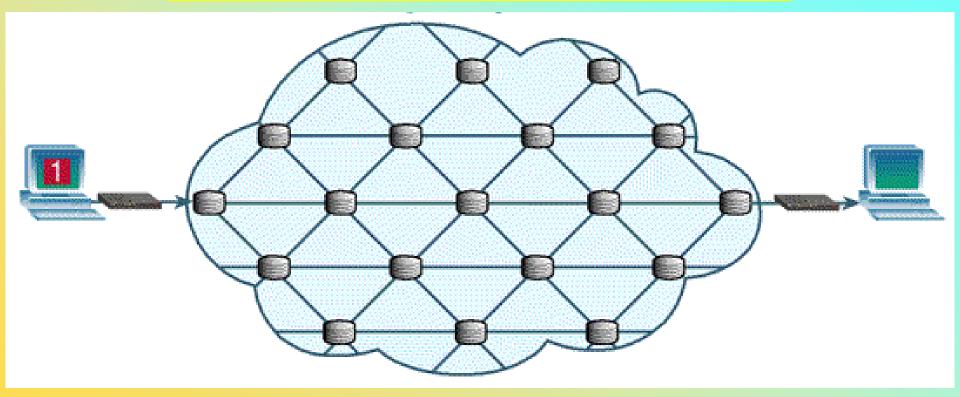
Advantages

Circuit is dedicated


- No interference, no sharing
- Guaranteed the full bandwidth
- Guaranteed quality of service

Disadvantages

- Inefficient
 - If no data is being sent, line remains open.
- Takes a relatively long time to set up the circuit.
- During a disaster
 - Network may become unstable or unavailable.
- Developed for voice traffic rather than data


Packet Switching: 4G/5G

- Message gets broken into small data packets
- Packets are sent out from the computer
- Travel around the network
 - Seeks the most efficient route
 - Based on circuit availability
 - Not necessarily shortest route --

Packet Routing

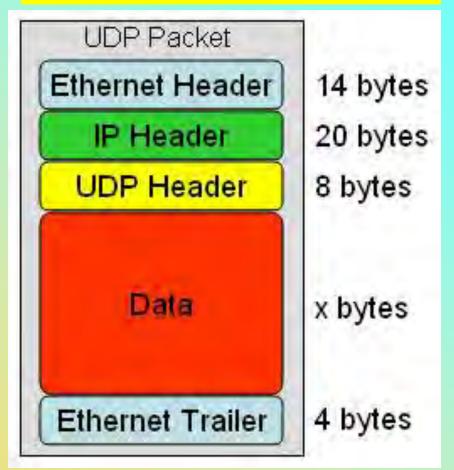
Each packet may take a different route through WAN (Wide Area Network)

Packets are received out of order
 Packets are combined and reordered at the Destination --

12/27/2022

hhausman@rfmcs.com 41/50/60/66/81/86/E89

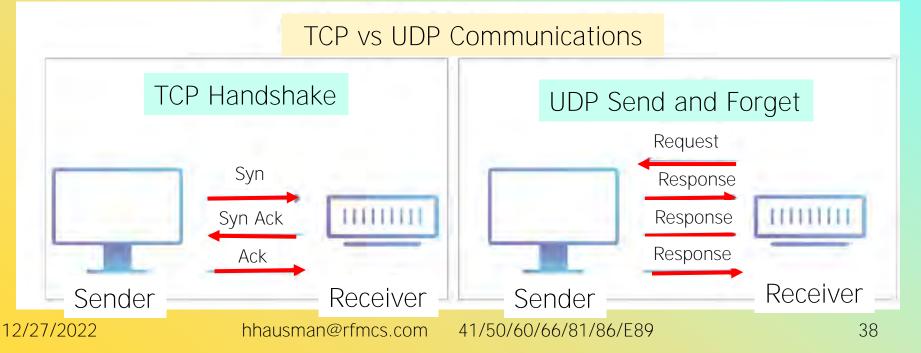
Packet Synchronizing


Packet is sent with a 'header address'

- Lists final destination
- Describes the sequence for reassembly at the destination
- Receiving computer puts packets in the correct order
- One packet also contains details
 - How many packets should be arriving

Packets are Stored and Forward

- Packets are received
- Stored briefly (buffered)
- Past on to the next node
 If a packet fails to arrive
- Computer asks for the missing packet to be resent --


UDP: User Datagram Protocol IP: Internet Protocol

Two principal Internet transport protocols

- TCP: Transmission Control Protocol
 - reliable, in-order delivery
 - congestion control
 - flow control
 - connection setup

- UDP: User Datagram Protocol
 - Unreliable
 - Unordered delivery
 - Faster Service
 - Satellite Communications
 - Always used UDP
 - Request through a Geosynchronous Satellite ≈ 250ms --

Packet Switching: Advantages/Disadvantages

Advantages

Security

- Bandwidth: Used to full potential
- Devices of different speeds can communicate
- Not affected by line failure (redirects signal)
- Availability no waiting for a direct connection to become available
- During a crisis or disaster, e-mails and texts can still be sent

Disadvantages

- Under heavy use there can be a delay
 - Data Rates are a function of the number of users
- Data packets can get lost or become corrupted
- Protocols are imbedded for a reliable transfer
- Can lose frames due to the way packets arrive out of sequence --

End of Lecture Part 1