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Preface 

It has been 36 years since the appearance of the first edition of this book, and 23 

years since the second. Such intervals may be appropriate for a subject whose 
fundamental basis was compictcly established theoretically 134 years ago by 
Maxwell and experimentally 110 years ago by Hertz. Still. there are changes in 
emphasis and applications. This third cdition attempts to address both without 

any significant increase in size. Incvitably, some topics present in the second 

edition had to be eliminated to make room for new material. One major omission 
is the chapter on plasma physics, although some pieces appear elsewhere. Read- 

ers who miss particular topics may, I hope, be able to avail themselves of the 
second edition. 

The most visible change is the use of SI units in the first 10 chapters. Gaussian 

units are retained in the later chapters, since such units sccm more suited to 
relativity and relativistic electrodynamics than SI. As a reminder of the sys- 
tem of units being employed, the running head on each left-hand page carrics 
“SI” or ““—G” depending on the chapter. 

My tardy adoption of the universally accepted SI system is a recognition that 
almost all undergraduate physics texts, as well as enginccring books at all levels, 
employ SI units throughout. For many years Ed Purcetl and I had a pact to 
support each other in the use of Gaussian units. Now I have betrayed him! Al- 
though this book is formally dedicated to the memory of my father, I dedicate 
this third edition informally to the memory of Edward Mills Purcell (1912-1997), 
a marvelous physicist with deep understanding, a great teacher, and a wonderful 
man. 

Because of the increasing use of personal computers to supplement analytical 
work or to attack problems not amenabie to analytic solution, T have included 
some new sections on the principles of some numerical techniques for electro- 
statics and magnetostatics, as weil as some elementary problems. Instructors may 
use their ingenuity to create more challenging ones. The aim is to provide an 
understanding of such methods before blindly using canned software or even 
Mathematica or Maple. 

There has been some rearrangement of topics—Faraday’s law and quasi- 

static fields are now in Chapter 5 with magnetostatics, permitting a more logical 

discussion of energy and inductances. Another major change is the consolidation 
of the discussion of radiation by charge-current sources, in both clementary and 
exact multipole forms, in Chapter 9. All the applications to scattcring and dif- 

fraction are in Chapter 10. 
The principles of optical fibers and dielectric waveguides arc discussed in two 

new sections in Chapter 8. In Chapter 13 the treatment of energy loss has been 
shortened and strengthened. Because of the increasing importance of synchro- 

tron radiation as a research tool, the discussion in Chapter 14 has been aug- 
mented by a detailed section on the physics of wigglers and undulators for syn- 
chroton light sources. There is new material in Chapter 16 on radiation reaction 
and models of classical charged particles, as well as changed emphasis. 

‘There is much tweaking by small amounts throughout. I hope the reader will 
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viii Preface 

not notice, or will notice only greater clarity. To mention but a few minor addi- 
tions: estimating self-inductances, Poynting’s theorem in lossy materials, polar- 
ization potentials (Hertz vectors), Goos—Hanchen effect, attenuation in optical 
fibers, London penetration depth in superconductors. And more problems, of 
course! Over 110 new problems, a 40% increase, all aimed at educating, not 
discouraging. 

In preparing this new edition and making corrections, I have bencfited from 
questions, suggestions, criticism, and advice from many students, collcagues, and 
newfound friends. ] am in debt to all. Particular thanks for help in various ways 
go to Myron Bander, David F. Bartlett, Robert N. Cahn, John Cooper, John L. 
Gammel, David J. Griffiths, Leroy T. Kerth, Kwang J. Kim, Norman M. Kroll, 
Michael A. Lee, Harry J. Lipkin, William Mendoza, Gerald A. Miller, William 
A. Newcomb, Ivan Otero, Alan M. Portis, Fritz Rohriich, Wayne M. Saslow, 
Chris Schmid, Kevin E. Schmidt, and George H. Trilling. 

J. David Jackson 
Berkeley, California, 1998, 2001 



Preface to the Second Edition 

In the thirteen ycars since the appearance of the first edition, my interest in 
classical electromagnetism has waxed and waned, but never fallen to zero. ‘The 

subject is ever fresh. There are always important new applications and examples. 
The present edition reflects two efforts on my part: the refinement and improve- 
ment of material already in the first edition; the addition of new topics (and the 

omission of a few). 
The major purposes and emphasis are stil! the same, but there are extensive 

changes and additions. A major augmentation is the “Introduction and Survey” 
at the beginning. Topics such as the present experimental limits on the mass of 
the photon and the status of linear superposition are treated there. The aim is to 
provide a survey of those basics that are often assumed to be well known when 
one writes down the Maxwell cquations and begins to solve specific examples. 

Other major changes in the first half of the book include a new treatment of the 
derivation of the equations of macroscopic electromagnetism from the micro- 
scopic description; a discussion of symmetry properties of mechanical and elec- 
tromagnetic quantities; scctions on magnetic monopoles and the quantization 
condition of Dirac; Stokes’s polarization parameters; a unificd discussion of the 
frequency dispersion characteristics of dielectrics, conductors, and plasmas; a dis- 
cussion of causality and the Kramers-Kronig dispersion relations; a simplified, 
but still extensive, version of the classic Sommerfeld-Brillouin problem of the 
arrival of a signal in a dispersive medium (recently verified experimentally); an 
unusual example of a resonant cavity, the normal-mode expansion of an arbitrary 
field in a wave guide; and related discussions of sources in a guide or cavily and 
the transmission and reflection coefficients of flat obstacles in wave guides. 

Chapter 9, on simple radiating systems and diffraction, has been enlarged to 
include scattering at long wavelengths (the blue sky, for example) and the optical 
theorem. The sections on scalar and vectorial diffraction have been improved. 

Chapters 11 and 12, on special relativity, have been rewritten almost com- 
pletely. The old pseudo-Euclidean metric with x; = ict has been replaced by 

gh (with g® = +1," = —1,/ = 1, 2, 3). The change of metric necessitated a 
complete revision and thus permitted substitution of modern experiments and 
concerns about the experimental basis of the specia! thcory for the time-honored 
aberration of starlight and the Michelson—Morley experiment. Other aspects 
have been modernized, too. The extensive treatment of relativistic kinematics of 

the first edition has been relegated to the problems. In its stead is a discussion 
of the Lagrangian for the electromagnetic fictds, the canonical and symmetric 
stress-cnergy tensor, and the Proca Lagrangian for massive photons. 

Significant alterations in the remaining chapters inctude a new section on 
transition radiation, a completely revised (and much more satisfactory) semi- 
classical treatment of radiation emitted in collisions that stresses momentum 

transfer instead of impact parameter. and a bettcr derivation of the coupling of 
muitipole fields to their sources. The collection of formulas and page references 
to special functions on the front and back flyleaves is a much requested addition. 
Of the 278 probiems, 117 (more than 40 per cent) are new. 
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The one arca that remains almost completely unchanged is the chapter on 
magnetohydrodynamics and plasma physics. I regret this. But the book obviously 
has grown tremendously, and there are available many books devoted exclusively 
to the subject of plasmas or magnetohydrodynamics. 

Of minor note is the change from Maxwell’s equations and a Green’s func- 
tion to the Maxwell equations and a Green function. The latter boggles some 

minds, but is in conformity with other usage (Besscl function, for example). It is 
still Green’s theorem, however, because that’s whose thcorem it is. 

Work on this edition began in earnest during the first half of 1970 on the 
occasion of a sabbatical leave spent at Clare Hal! and the Cavendish Laboratory 
in Cambridge. I am grateful to the University of California for the leave and 
indebted to N. F. Mott for welcoming me as a visitor to the Cavendish Laboratory 
and to R. J. Eden and A. B. Pippard for my appointment as a Visiting Fellow of 

Clare Hall. Tangible and intangible evidence at the Cavendish of Maxwell, Ray- 
leigh and Thomson provided inspiration for my task; the stimulation of everyday 
activities there provided necessary diversion. 

This new edition has benefited from questions, suggestions, comments and 

criticism from many students, colleagues, and strangers. Among those to whom 
J owe some specific debt of gratitude are A. M, Bincer, L. S. Brown, R. W, Brown, 

E. U. Condon, H. H. Denman, S. Deser, A. J. Dragt, V. L. Fitch, M. B. Halpern, 
A. Hobson, J. P. Hurley, D. L. Judd, L. T. Kerth, E. Marx, M. Nauenberg, A. B. 
Pippard, A. M. Portis, R. K. Sachs, W. M. Saslow, R. Schleif, V. L. Telegdi, T. 
Tredon, E. P. Tryon, V. F. Weisskopf, and Dudley Williams. Especially helpful 
were D. G. Boulware, R. N. Cahn, Leverett Davis, Jr., K. Gottfried, C. K. Gra- 
ham, E. M. Purcell, and E. H. Wichmann. I send my thanks and fraternal grect- 
ings to all of these people, to the other readers who have written to me, and the 
countless students who have struggled with the problems (and sometimes written 
asking for solutions to be dispatched before some deadline!), To my mind, the 
book is better than ever, May each reader benefit and enjoy! 

J.D. Jackson 
Berkeley, California, 1974 



Preface to the First Edition 

Classical electromagnctic theory, together with classical and quantum mechanics, 
forms the core of prescnt-day theoretical training for undergraduate and grad- 
uate physicists. A thorough grounding in these subjects is a requirement for more 
advanced or specialized training. 

Typically the undergraduate program in electricity and magnetism involves 
two or perhaps three semesters beyond elementary physics, with the emphasis 
on the fundamental! laws, laboratory verification and elaboration of their con- 
sequences, circuit analysis, simple wave phenomena, and radiation. The mathe- 
matical tools utilized include vector calculus, ordinary differential equations with 
constant coefficients, Fourier series, and perhaps Fourier or Laplace transforms, 
partial differential equations, Legendre polynomials, and Bessel functions. 

As a general rule, a two-semester course in electromagnetic theory is given 
to beginning graduate students. It is for such a course that my book is designed. 
My aim in teaching a graduate course in electromagnetism is at least threefold. 

The first aim is to present the basic subject matter as a coherent whole, with 
emphasis on the unity of electric and magnetic phenomena, both in their physical 
basis and in the mode of mathematical description. The second, concurrent aim 
is to develop and utilize a number of topics in mathematical physics which are 
useful in both electromagnetic theory and wave mechanics. These include 
Green's theorems and Green’s functions, orthonormal expansions, spherical har- 
monics, cylindrical and spherical Bessel functions. A third and perhaps most 
important purpose is the presentation of new material, especially on the inter- 
action of relativistic charged particles with electromagnetic fields. In this last area 
personal preferences and prejudices enter strongly. My choice of topics is gov- 
erned by what I feel is important and useful for students interested in theoretical 
physics, experimentaf nuctear and high-energy physics, and that as yet ill-defined 
ficld of plasma physics. 

The book begins in the traditional manner with electrostatics. The first six 
chapters are devoted to the development of Maxwell's theory of electromagne- 
tism. Much of the necessary mathematical apparatus is constructed along the way, 

especially in Chapter 2 and 3, where boundary-value problems are discussed 
thoroughly. The treatment is initially in terms of the electric field E and the 

magnetic induction B, with the derived macroscopic quantities, D and //, intro- 

duced by suitable averaging over ensembles of atoms or molecules. In the dis- 
cussion of dielectrics, simple classicaf models for atomic polarizability are de- 

scribed, but for magnetic materials no such altempt to made. Partly this omission 
was a question of space, bul truly classical models of magnetic susceptibility are 
not possible. Furthermore, elucidation of the interesting phenomenon of ferro- 
magnetism needs almost a book in itself. 

The next three chapters (7-9) illustrate various clectromagnetic phenomena, 
mostly of a macroscopic sort. Plane waves in different media, including plasmas 
as well as dispersion and the propagation of pulses, are treated in Chapter 7. The 
discussion of wave guides and cavities in Chapter 8 is developed for systems of 
arbitrary cross section, and the problems of attenuation in guides and the Q of 

xi 



xii Preface to the First Edition 

a cavity are handled in a very general way which emphasizes the physical pro- 
cesses involved. The elementary theory of multipole radiation from a localized 
source and diffraction occupy Chapter 9. Since the simple scalar theory of dif- 
fraction is covered in many optics textbooks, as well as undergraduate books on 
electricity and magnetism, I have presented an improved, although still approx- 
imate, theory of diffraction based on vector rather than scalar Green's theorems. 

The subject of magnetohydrodynamics and plasmas receives increasingly 
more attention from physicists and astrophysicists. Chapter 10 represents a sur- 
vey of this complex field with an introduction to the main physical ideas involved. 

The first nine or ten chapters constitute the basic material of classical elec- 
tricity and magnetism. A graduate student in physics may be expected to have 
been exposed to much of this material, perhaps at a somewhat lower level, as an 
undergraduate. But he obtains a more mature view of it, understands it more 
deeply, and gains a considerable technical ability in analytic methods of solution 
when he studies the subject at the level of this book. He js then prepared to go 
on to more advanced topics. The advanced topics presented here are predomi- 
nantly those involving the interaction of charged particles with each other and 
with electromagnetic fields, especially when moving relativistically. 

The special theory of relativity had its origins in classical electrodynamics, 
And even after almost 60 years, classical electrodynamics still impresses and de- 
lights as a beautiful example of the covariance of physical laws under Lorentz 
transformations. The special theory of relativity is discussed in Chapter 11, where 
all the necessary formal apparatus is developed, various kinematic consequences 
are explored, and the covariance of electrodynamics is established. The next 
chapter is devoted to relativistic particle kinematics and dynamics. Although the 
dynamics of charged particles in electromagnetic fields can properly be consid- 
ered electrodynamics, the reader may wonder whether such things as kinematic 
transformations of collision problems can. My reply is that these examples occur 
naturally once one has established the four-vector character of a particle’s mo- 
mentum and energy, that they serve as useful practice in manipulating Lorentz 
transformations, and that the end results are valuable and often hard to find 
elsewhere. 

Chapter 13 on collisions between charged particles emphasizes energy loss 
and scattering and develops concepts of use in later chapters. Here for the first 
time in the book | use semiclassical arguments based on the uncertainty principle 
to obtain approximate quantum-mechanical expressions for energy loss, etc., 
from the classical results. This approach, so fruitful in the hands of Niels Bohr 
and E. J. Williams, allows one to see clearly how and when quantum-mechanical 
effects enter to modify classical considerations. 

The important subject of emission of radiation by accelerated point charges 
is discussed in detail in Chapters 14 and LS. Relativistic effects are stressed, and 
expressions for the frequency and angular dependence of the emitted radiation 
are developed in sufficient generality for all applications. The examples treated 
range from synchrotron radiation to bremsstrahlung and radiative beta processes. 
Cherenkov radiation and the Weizsacker—Williams method of virtual quanta are 
also discussed. In the atomic and nuclear collision processes semiclassical argu- 
ments are again employed to obtain approximate quantum-mechanical results. 
lay considerable stress on this point because I feel that it is important for the 
student to see that radiative effects such as bremsstrahlung are almost entirely 
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classical in nature, even though involving small-scale collisions. A student who 
mects bremsstrahlung for the first time as an example of a calculation in quantum 

ficld theory will not understand its physical basis. 
Multipole fields form the subject matter of Chapter 16. The expansion of 

scalar and vector ficlds in spherical waves is developed from first principles with 
no restrictions as to the relative dimensions of source and wavelength. Then the 
properties of electric and magnetic multipole radiation fields are considered. 
Once the connection to the multiple moments of the source has been made. 

examples of atomic and nuclear multipote radiation are discussed, as well as a 
macroscopic source whose dimensions are comparable to a wavelength. The scat- 
tering of a plane electromagnetic wave by a spherical object is treated in some 
detail in order to illustrate a boundary-value problem with vector spherical 
waves. 

In the last chapter the difficult problem of radiative reaction is discussed. 
The treatment is physical, rather than mathematical, with the emphasis on delim- 
iting the areas where approximate radiative corrections are adequate and on 

finding where and why existing theories fail. The original Abraham—Lorentz the- 
ory of the self-force is presented, as well as more recent classical considerations. 

The book ends with an appendix on units and dimensions and a bibliography. 
In the appendix I have attempted to show the logical steps involved in setting up 
a system of units, without haranguing the reader as to the obvious virtues of my 
choice of units. I have provided two tables which I hope will be useful, one for 

converting equations and symbols and the other for converting a given quantity 
of something from so many Gaussian units to so many mks units, and vice versa. 
The bibliography lists books which I think the reader may find pertinent and 
useful for reference or additional study. These books are referred to by author’s 
name in the reading lists at the end of each chapter. 

This book is the outgrowth of a graduate course in classical electrodynamics 
which I have taught off and on over the past cleven years, at both the University 

of Illinois and McGill University. I wish to thank my colleagues and students at 
both institutions for countless helpful remarks and discussions. Special mention 
must be made of Professor P. R. Wallace of McGill, who gave me the opportunity 
and encouragement to teach what was then a rather unorthodox course in elec- 
tromagnetism, and Professors H. W. Wyld and G. Ascoli of Illinois, who have 
been particularly free with many helpful suggestions on the treatment of various 
topics. My thanks are also extended to Dr. A. N. Kaufman for reading and com- 
menting on a preliminary version of the manuscript, and to Mr. G. L. Kane for 
his zealous help in preparing the index. 

J. D. Jackson 
Urbana, Illinois, January, 1962 
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Introduction and Survey 

Although amber and lodestone were known to the ancient Greeks, electro- 
dynamics developed as a quantitative subject in less than a hundred years, 

Cavendish’s remarkable experiments in electrostatics were done from 177] to 
1773. Coulomb’s monumental researches began to be published in 1785, This 

marked the beginning of quantitative rescarch in electricity and magnetism on a 
worldwide scale. Fifty years later Faraday was studying the effects of time-varying 

currents and magnetic ficlds. By 1864 Maxwell had published his famous paper 
on a dynamical theory of the electromagnetic field. Twenty-four years later 
(1888) Hertz published his discovery of transverse electromagnetic waves, which 
propagated at the same speed as light, and placed Maxwell's theory on a firm 
experimental footing. 

The story of the development of our understanding of electricity and mag- 
netism and of light is, of course, much longer and richer than the mention of a 
few names from one century would indicate. For a detailed account of the fas- 
cinating history, the reader should consult the authoritative volumes by 
Whittaker.* A briefer account, with emphasis on optical phenomena, appears at 
the beginning of Born and Wolf. 

Since the 1960s there has been a true revolution in our understanding of the 
basic forces and constituents of matter. Now (1990s) classical electrodynamics 
rests in a sector of the unified description of particles and interactions known as 
the standard model. The standard model gives a coherent quantum-mechanical 
description of electromagnetic, weak, and strong interactions based on funda- 
mental constituents—quarks and leptons—interacting via force carriers—pho- 
tons, W and Z bosons, and gluons. The unified theoretical framework is gener- 
ated through principles of continuous gauge (really phase) invariance of the 
forces and discrete symmettrics of particle properties. 

From the point of view of the standard model, classical electrodynamics is a 

limit of quantum electrodynamics (for small momentum and energy transfers, 

and large average numbers of virtual or rcal photons). Quantum electrodynamics, 
in turn, is a conscquence of a spontaneously broken symmetry in a theory in 
which initially the weak and clectromagnetic interactions are unified and the 

force carriers of both are massless. The symmetry breaking leaves the electro- 
magnetic force carrier (photon) massicss with a Coulomb’s law of infinite range, 
while the weak force carricrs acquire masses of the order of 80-90 GeV/e with 
a weak interaction at low cnergies of extremely short range (2 x 10 '* meter). 
Because of the origins in a unified theory, the range and strength of the weak 

interaction are related to the electromagnetic coupling (the fine structure con- 
stant a ~ 1/137). 

*{talicized surnames denote books that are cited fully in the Bibliography. 
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Despite the presence of a rather large number of quantities that must be 
taken from experiment, the standard model (together with general relativity at 
large scales) provides a highly accurate description of nature in all its aspects, 
from far inside the nucleus, to microelectronics, to tables and chairs, to the most 
remote galaxy. Many of the phenomena are classical or explicable with nonrel- 
ativistic quantum mechanics, of course, but the precision of the agreement of the 
standard model with experiment in atomic and particle physics where relativistic 
quantum mechanics rules is truly astounding. Classical mechanics and classical 
electrodynamics served as progenitors of our current understanding, and still play 
important roles in practical life and at the research frontier. 

This book is self-contained in that, though some mathematical background 
(vector calculus. differential equations) is assumed, the subject of electrodynam- 
ics is developed from its beginnings in electrostatics. Most readers are not coming 
to the subject for the first time, however. The purpose of this introduction is 
therefore not to set the stage for a discussion of Coulomb's law and other basics. 
but rather to present a review and a survey of classical electromagnetism. Ques- 
tions such as the current accuracy of the inverse square law of force (mass of the 
photon), the limits of validity of the principie of linear superposition, and the 
effects of discreteness of charge and of energy differences are discussed. “Bread 
and butter’ topics such as the boundary conditions for macroscopic fields at 
surfaces between different media and at conductors are also treated, The aim is 
to set classical electromagnetism in context. to indicate its domain of validity, 
and to elucidate some of the idealizations that it contains. Some results from later 
in the book and some nonclassical ideas are used in the course of the discussion. 
Certainly a reader beginning electromagnetism for the first time will not follow 
all the arguments or see their significance, For others, however, this introduction 
will serve as a springboard into the later parts of the book, beyond Chapter 5, 
and will remind them of how the subject stands as an experimental science. 

Ll) Maxwell Equations in Vacuum, Fields, and Sources 

The equations governing electromagnetic phenomena are the Maxwell 
equations, 

V-D= 

VxH ae 
ar (I.la) 

VxE+ oe =0 
ot 

vV-B=0 

where for external sources in vacuum, D = eE and B = oH. The first two 
equations then become 

V-E = pley 
95 (1b) 

Vv aS 
MOB = gj = Had 
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Implicit in the Maxwell equations is the continuity equation for charge density 
and current density, 

a eev-s=0 (12) 
a 

This follows from combining the time derivative of the first equation in (I.1a} 
with the divergence of the second equation. Also essential for consideration of 
charged particic motion is the Lorentz force equation, 

F = q(E +v xB) (13) 
which gives the foree acting on a point charge q in the presence of electromag- 
netic ficids. 

These cquations have been written in SI units, the system of electromagnetic 
units used in the first 10 chapters of this book. (Units and dimensions are dis- 
cussed in the Appendix.) The Maxwell equations are displayed in the commoner 
systems of units in Table 2 of the Appendix. Essential to electrodynamics is the 
speed of light in vacuum, given in SI units by c = (jto€)"”. As discussed in the 
Appendix, the meter is now defined in terms of the second (based on a hyperfine 
transition in cesium-133) and the speed of light {c = 299 792 458 m/s, exactly), 
‘These definitions assume that the speed of light is a universal constant, consistent 
with evidence (see Section 11.2.C) indicating that to a high accuracy the speed 
of light in vacuum is independent of frequency from very low frequencies to at 
least vy = 10" Hz (4 GeV photons). For most practical purposes we can approx- 
imate c = 3 X 10* m/s or to be considerably more accurate, ¢ = 2.998 x 10° mis, 

The electric and magnetic fields E and B in (1.1) were originally introduced 
by means of the force equation (1.3). In Coulomb's experiments forces acting 
between localized distributions of charge were observed. There it is found useful 
(see Section 1.2) to introduce the electric field E as the force per unit charge. 
Similarly, in Ampére's experiments the mutual forces of current-carrying loops 
were studied (see Section 5.2). With the identification of NAgqv as a current ina 
conductor of cross-sectional area A with N charge carricrs per unit volume mov- 
ing at velocity v, we see that B in (1.3) is defined in magnitude as a force per unit 

current. Although E and B thus first appear just as convenient replacements for 
forces produced by distributions of charge and current, they have other important 
aspects. First, their introduction decouples conceptually the sources from the test 
bodies experiencing electromagnetic forces. If the fields E and B from two source 
distributions are the same at a given point in space, the force acting on a test 
charge or current at that point will be the same, regardless of how different the 
source distributions are. This gives E and B in (1.3) meaning in their own right, 

independent of the sources. Second, clectromagnetic fields can exist in regions 
of space where there are no sources. They can carry energy, momentum, and 
angular momentum and so have an existence totally independent of charges and 
currents. In fact, though there are recurring attempts to climinate explicit ref- 
erence to the fields in favor of action-at-a-distance descriptions of the interaction 
of charged particles, the concept of the electromagnetic field is one of the most 
fruitful ideas of phys both classically and quantum mechanically. 

The concept of E and B as ordinary fields is a classical notion. It can be 
thought of as the classical limit (limit of large quantum numbers) of a quantum- 
mechanical description in terms of real or virtual photons. In the domain of 
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macroscopic phenomena and even some atomic phenomena, the discrete photon 
aspect of the electromagnetic field can usually be ignored or at least glossed over. 
For example. 1 meter from a 100-watt light bulb, the root mean square electric 
field is of the order of 50 V/m and there are of the order of 10° visible photons/ 
cm?*-s, Similarly, an isotropic FM antenna with a power of 100 watts at 10° Hz 
produces an rms electric field of only 0.5 mV/m at a distance of 100 kilometers, 
but this still corresponds to a flux of 10'* photons/em?:s, or about 10” photons in 
a volume of 1 wavelength cubed (27 m®*) at that distance. Ordinarily an apparatus 
will not be sensible to the individual photons; the cumulative effect of many 
photons emitted or absorbed will appear as a continuous, macroscopically ob- 
servable response. Then a completely classical description in terms of the 
Maxwell equations is permitted and is appropriate. 

How is one to decide a priori when a classical description of the electromag- 
netic fields is adequate? Some sophistication is occasionally needed, but the fol- 
lowing is usually a sufficient criterion: When the number of photons involved can 
be taken as large but the momentum carried by an individual photon is small 
compared to the momentum of the material system, then the response of the 
material system can be determined adequately from a classical description of the 
electromagnetic fields, For example, each 10* Hz photon emitted by our FM 
antenna gives it an impulse of only 2,2 x 10°“ Nes. A classical treatment is surely 
adequate. Again, the scattering of light by a free ciectron is governed by the 
classical Thomson formula (Section 14,8) at low frequencies, but by the laws of 
the Compton effect as the momentum fiw/e of the incident photon becomes sig- 
nificant compared to mc, The photoelectric effect is nonclassical for the matter 
system, since the quasi-free electrons in the metal change their individual cner- 
gies by amounts equal to those of the absorbed photons, but the photoelectric 
current can be calculated quantum mechanically for the clectrons using a classical 
description of the electromagnetic fields. 

The quantum nature of the electromagnetic fields must, on the other hand, 
be taken into account in spontancous emission of radiation by atoms, or by any 
other system that initially lacks photons and has only a small number of photons 
present finally. The average behavior may still be describable in essentially clas- 
sical terms, basically becatise of conservation of energy and momentum. An ex- 
ample is the classical treatment (Scction 16.2) of the cascading of a charged 
particle down through the orbits of an attractive potential. At high particle quan- 
tum numbers, a classical description of particle motion is adequate, and the sec- 
ular changes in energy and angular momentum can be calculated classically from 
the radiation reaction because the energies of the successive photons emitted are 
small compared to the kinetic or potential energy of the orbiting particle. 

The sources in (1.1) are p(x. 2). the etectric charge density, and J(x, dO, the 
electric current density. In classical electromagnetism they are assumed to be 
continuous distributions in x, although we consider from time to time localized 
distributions that can be approximated by points. The magnitudes of these point 
charges are assumed to be completely arbitrary, but are known to be restricted 
in reality to discrete values, The basic unit of charge is the magnitude of the 
charge on the electron, 

Igel = 4.803 206 8(15) x 10°” esu 
= 1.602 177 33(49) x 10°" C 
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where the errors in the last two decimal places are shown in parentheses, The 
charges on the proton and on ail presently known particles or systems of particles 
are integral multiples of this basic unit.* The experimental accuracy with which 
it is known that the multiples are exactly integers is phenomenal (better than 1 
part in 10°’). The experiments are discussed in Section 11.9, where the question 
of the Lorentz invariance of charge is also treated. 

The discreteness of electric charge does not need to be considered in most 

macroscopic applications. A 1-microfarad capacitor at a potential of 150 volts, 

for example, has a total of 10’° elementary charges on cach clectrode. A few 
thousand electrons more or less would not be noticed. A current of 1 microam- 

pere corresponds to 6,2 x 10'° elementary charges per second. There are, of 
course, some delicate macroscopic or almost macroscopic experiments in which 
the discreteness of charge enters. Millikan’s famous oil drop experiment is one. 
His droplets were typically 10~* cm in radius and had a few or few tens of ele- 

mentary charges on them. 
There is a lack of symmetry in the appearance of the source terms in the 

Maxwell equations (Ila). The first two equations have sources; the second two 

do not. This reflects the experimental absence of magnetic charges and currents. 
Actually, as is skown in Section 6.11, particles could have magnetic as well as 
electric charge. If all particles in nature had the same ratio of magnetic to electric 
charge. the fields and sources could be redefined in such a way that the usual 
Maxwell equations (I.1a) emerge. In this sense it is somewhat a matter of con- 
vention to say that no magnetic charges or currents exist. Throughout most of 
this book it is assumed that only electric charges and currents act in the Maxwell 
equations, but some consequences of the existence of a particle with a different 
magnetic to electric charge ratio. for example, a magnelic monopole, are de- 
scribed in Chapter 6. 

4.2 Inverse Square Law or the Mass of the Photon 

The distance dependence of the electrostatic law of force was shown quantita- 
tively by Cavendish and Coulomb to be an inverse square law, Through Gauss’s 
flaw and the divergence theorem (see Sections 1.3 and 1.4) this leads to the first 

of the Maxwell equations (I.1b). The original experiments had an accuracy of 
only a few percent and, furthermore, were at a laboratory length scale. Experi- 
ments at higher precision and involving different regimes of size have been per- 
formed over the years. It is now customary to quote the tests of the inverse square 
law in one of two ways: 

(a) Assume that the force varies as 1/r?** 

{b) Assume that the electrostatic potential has the “Yukawa” form (see Section 
12.8), r ‘e “ and quote a valuc or limit for » or w7'. Since x = myclh, 

where m, is the assumed mass of the photon, the test of the inverse square 
law is sometimes phrased in terms of an upper limit on m,. Laboratory 
experiments usually give € and perhaps jz or m,; geomagnetic experiments 
give worm, 

and quote a value or limit for e. 

*Quarks have charges % and —% in these units, but are never (so far) seen individually. 
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Figure L1 Cavendish’s apparatus for establishing the inverse square law of 
electrostatics. Top, facsimile of Cavendish’s own sketch; bottom, line drawing by a 
draughtsman. The inner globe is 12.1 inches in diameter, the hollow pasteboard 
hemispheres slightly larger. Both globe and hemispheres were covered with tinfoil “to 
make them the more perfect conductors of electricity.” (Figures reproduced by 
permission of the Cambridge University Press.) 
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The original experiment with concentric spheres by Cavendish* in 1772 gave 
an upper limit on ¢ of |e] = 0.02. His apparatus is shown in Fig. I.1.. About 100 
years later Maxwell performed a very similar experiment at Cambridge’ and sct 
an upper limit of |e| < 5 x 107°. Two other noteworthy laboratory experiments 
based on Gawss’s law are those of Plimpton and Lawton,’ which gave |e} < 2 x 
107°, and the recent one of Williams, Faller, and Hill." A schematic drawing of 
the apparatus of the latter experiment is shown in Fig. 1.2. Though not a static 
experiment (v = 4 X 10° Hz), the basic idea is almost the same as Cavendish’s. 

He looked for a charge on the inner sphere after it had been brought into clec- 
trical contact with the charged outer sphere and then disconnected; he found 
none. Williams, Faller, and Hill looked for a voltage difference between two 

concentric shells when the outer one was subjected to an alternating voltage of 
+10 kV with respect to ground, Their sensitivity was such that a voltage differ- 
ence of less than 10-'? V could have been detected. Their null result, when 
interpreted by means of the Proca equations (Section 12.8). gives a limit of 
e = (2.7 + 34) x 107", 

Measurements of the earth’s magnctic field. both on the surface and out from 

the surface by satellite observation, permit the best direct limits to be set on € or 
equivalently the photon mass m,. The geophysical and also the laboratory ob- 
servations are discussed in the revicws by Kobzarey and Okun’ and by Goldhaber 
and Nieto, listed at the end of this introduction. The surface measurements of 
the carth’s magnetic field give slightly the best value (see Problem 12.15), namely, 

my <4 10°" kg 

or 

wl > 10%m 

For comparison, the electron mass is m, = 9.1 X 10 >! kg. The laboratory 

experiment of Williams, Faller, and Hill can be interpreted as setting a limit 
m, < 1.6 x 107" kp, only a factor of 4 poorer than the geomagnetic limit. 

A rough limit on the photon mass can be set quite easily by noting the ex- 
istence of very low frequency modes in the earth-ionosphere resonant cavity 
(Schumann resonances, discussed in Section 8.9). The double Einstein relation, 

hv = myc’. suggests that the photon mass must satisfy an incquality, m, < 
Ayjic*, where vp is any electromagnetic resonant frequency. The lowest Schumann 
resonance has 4, ~ 8 Hz. From this we caiculate m, <6 x 107% kg, a very small 
value only one order of magnitude above the best limit. While this argument has 
crude validity, more careful consideration (see Section 12.8 and the references 
given there) shows that the limit is roughly (R//#)'? = 10 times larger, R = 6400 
km being the radius of the earth, and H =~ 60 km being the height of the iono- 

*H. Cavendish, Electrical Researches, ed. J. C. Maxwell, Cambridge University Press, 
(1879), pp. 104-113. 
‘bid., sec note 19. 
4S, J. Plimpton and W. E. Lawton, Phys. Rev. 50, 1066 (1936). 
*E, R. Williams, J. E. Faller, and H. A. Hill. Phys. Rev. Lett. 26, 721 (1971). 

cambridge 
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Figure 1.2 Schematic diagram of the “Cavendish” experiment of Williams, Faller, and 
Hill. The concentric icosahedrons are conducting shells. A 4 MHz voltage of 10 kV 

peak is applied between shells 5 and 4. Shell 4 and its contiguous shells 2 and 3 are 
roughly 1.5 meters in diameter and contain shel! 1 inside. The voltage difference 
between shells | and 2 (if any) appears across the inductor indicated at about 8 o’clock 
in shell 1. The amplifier and optics system are necessary to extract the voltage 
information to the outside world. They ate equivalent to Cavendish’s system of strings 
that automatically opened the hinged hemispheres and brought up the pith balls to test 
for charge on the inner sphere. (Figure reproduced with permission of the authors.) 
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sphere.* In spite of this dilution factor, the limit of 10°“ kg set by the merc 
existence of Schumann resonances is quite respectable. 

‘The laboratory and geophysical tests show that on length scaics of order 107? 
to 10’ m, the inverse square law holds with extreme precision. At smaller dis- 
tances we must turn to less direct evidence often involving additional assump- 

tions. For example, Rutherford’s historical analysis of the scattering of alpha 
particles by thin foils substantiates the Coulomb law of force down to distances 
of the order of 10°? m, provided the alpha particle and the nucicus can be treated 
as classical point charges interacting statically and the charge cloud of the clec- 
trons can be ignored, All these assumptions can be, and kave been, tested, of 

course, but only within the framework of the validity of quantum mechanics, 
linear superposition {see below), and other (very reasonable) assumptions. At 
still smaller distances, relativistic quantum mechanics is necessary, and strong 

interaction effects enter to obscure the questions as well as the answers. Never- 
theless, elastic scattering experiments with positive and negative electrons at cen- 
ter of mass cnergies of up to 100 GeV have shown that quantum electrodynamics 
(the relativistic theory of point clectrons interacting with massless photons) holds 

to distances of the order of 107'* m. We conclude that the photon mass can be 
taken to be zero (tke inverse square force law holds) over the whole classical 
range of distances and deep into the quantum domain as well. The inverse square 
jaw is known to hold over at least 25 orders of magnitude in the length scale! 

13 Linear Superposition 

The Maxwell equations in vacuum are finear in the fields E and B. This linearity 
is exploited so often, for example, with hundreds of different telephone conver- 
sations on a single microwave link, that it is taken for granted. There are, of 
course, circumstances where nonlinear effects occur—in magnetic materials, in 

crystals responding to intense laser beams, even in the devices used to put those 
telephone conversations on and off the microwave beam. But here we are con- 
cerned with fields in vacuum or the microscopic fields inside atoms and nuclei, 

What evidence do we have to support the idea of lincar superposition? At 
the macroscopic level, all sorts of experiments test lincar superposition at the 
level of 0.1% accuracy—groups of charges and currents produce clectric and 

magnetic forces calculable by linear superposition, transformers perform as ex- 

pected, standing waves are observed on transmission lines—the reader can make 
a list. In optics, slit systems show diffraction patterns; x-ray diffraction tells us 
about crystal structure; white light is refracted by a prism into the colors of the 

tainbow and recombined into white light again. At the macroscopic and even at 
the atomic level, linear superposition is remarkably valid. 

It is in the subatomic domain that departures from linear superposition can 

be legitimately sought. As charged particles approach cach other very closely, 

electric field strengths become enormous. If we think of a charged particle as a 

*The basic point is that, to the extent that H/X is negligible, the extremely low frequency (ELE) 
propagation is the same as in a parallel plate transmission line in the fundamental TEM mode. This 
propagation is unaffected by a finite photon mass, except Uhrough changes in the static capacitance 
and inductance per unit length. Explicit photon mass effects occur in order (H/R) 4? 
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localized distribution of charge, we see that its electromagnetic energy grows 
larger and farger as the charge is localized more and more. In attempting to avoid 
infinite self-energics of point particles, it is natural to speculate that some sort of 
saturation occurs, that field strengths have some upper bound. Suck classical 
nonlinear theorics have been studied in the past. One well-known cxample is 
the theory of Born and Infeld.* The vacuum is given electric and magnetic 
permeabilities, 

=u 
€ _ Ho 1 ope 2 =Moily4 2 14 ak [: B (CB E | (1.4) 

where b is a maximum field strength. Equation (1.4) is actually a simplification 
proposed earlier by Born alone. It suffices to illustrate the general idea. Fields 
are obviously modified at short distances: all electromagnetic energics are finite. 
But such theories suffer from arbitrariness in the manner of how the nonlinearity 
occurs and also from grave probicms with a transition to a quantum theory. 
Furthermore, there is no evidence of this kind of classical nonlinearity. The quan- 
tum mechanics of many-electron atoms is described to high precision by normal 
quantum theory with the interactions between nucieus and electrons and between 
electrons and electrons given by a finear superposition of pairwise potentials (or 
retarded relativistic interactions for fine effects). Field strengths of the order of 
10''-10"’ V/m exist at the orbits of electrons in atoms, while the electric field at 
the edge of a heavy nucleus is of the order of 10°! V/m. Energy level differences 
in light atoms like helium, calculated on the basis of linear superposition of elec- 
tromagnetic interactions, are in agreement with experiment to accuracies that 
approach 1 part in 10°. And Coulomb energies of heavy nuclei are consistent 
with linear superposition of electromagnetic effects. It is possible, of course, that 
for field strengths greater than 10°! V/m nonlinear effects could occur. One place 
to look for such effects is in superheavy nuctei (Z > 110), both in the atomic 
energy levels and in the nuclear Coulomb energy.’ At the present time there 
is no evidence for any classical nonlinear behavior of vacuum fields at short 
distances. 

There is a quantum-mechanical nonlinearity of electromagnetic fields that 
arises because the uncertainty principle permits the momentary creation of an 
electron-positron pair by two photons and the subsequent disappearance of the 
pair with the emission of two different photons, as indicated schematically in Fig. 
13. This process is called the scattering of light by light.*S The two incident plane 
waves e**—'" and ¢**~ do not merely add coherently. as expected with 
linear superposition, but interact and (with small probability) transform into two 
different plane waves with wave vectors k; and k,. This nonlinear feature of 

*M. Born and L, Infeld, Proc. R. Soc. London A144, 425 (1934). See M. Born, Atomic Physics, 
Blackie, London (1949), Appendix VI, for an clementary discussion. 
*An investigation of the effect of a Borninfeld type of nonlinearity on the atomic energy levels in 
superheavy elements has been made by J. Rafelski, W. Greiner, and L. P. Fulcher. Nuovo Cimento 
1BB. 135 (1973) 
‘When two of the photons in Fig. 1.3 are virtual photons representing interaction to second order 
with a static nuclear Coulomb field, the process is known as Delbriick scattering. Sce Section 15.8 of 
J. M, Jauch and F. Rohrlich, The Theory of Photons and Electrons. Addison-Wesley, Reading, MA 
(1985). 
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Figure 1.3 The scattering of light by light. 
Schematic diagram of the process by which 

ky photon-photon scattering occurs. 

quantum electrodynamics can be expressed, at least for siowly varying fields, in 
terms of electric and magnetic permeability tensors of the vacuum: 

Di = & 2 €xEn By = uo 2 Hilly 

where 

x = 8 + OL, [2(8? — 2B?)S, + 7 2BB,] + ik ik 45amic? ‘ik 7%: a 3) 

eh . . = Mn = Bu + Gea ACB? — E*)bx + 7 EE] + + 

Here e,; and m are the charge (in Gaussian units) and mass of the electron, These 
results were first obtained by Euler and Kockel in 1935.* We observe that in the 
classical limit (A — 0), these nonlinear effects go to zero. Comparison with the 
classical Born-Infeld expression (1.4) skows that for small nonlinearities, the 
quantum-mechanical field strength 

_ V4Sa Jez; eg €g 

4 2 Vier ~ rR 

plays # role analogous to the Born-Infeld parameter b. Here ry = e&/mc? = 
2.8 x 107'S m is the classical electron radius and eg/r3 = 1.8 X 10° Vim is the 
electric field at the surface of such a classical electron. Two comments in passing: 
(a) the €,, and yx in (1.5) are approximations that fail for field strengths ap- 
proaching b, or when the fields vary too rapidly in space or time (A/me setting 
the critical scale of length and f/mc* of time): (b) the chance numerical coinci- 
dence of b, and ¢,/2r§ is suggestive but probably not significant, since b, involves 

Planck’s constant A. 

In analogy with the polarization P = D — eE, we speak of the field- 
dependent terms in (1.5) as vacuum polarization effects. In addition to the scat- 
tering of light by light or Delbriick scattering, vacuum polarization causes very 
small shifts in atomic energy levels. The dominant contribution involves a virtual 

electron-positron pair, just as in Fig. 1.3, but with only two photon lines instead 

*H. Euler and B. Kockel, Naturwissenschaften 23, 246 (1935). 
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of four. If the photons are real, the process contributes to the mass of the photon 
and is decreed to vanish. If the photons are virtual, however, as in the electro- 

magnetic interaction between a nucleus and an orbiting electron, or indeed for 
any externally applied field, the creation and annihilation of a virtual electron- 
positron pair from time to time causes observable cffects. 

Vacuum polarization is manifest by a modification of the electrostatic inter- 
action between two charges at short distances, described as a screening of the 
“bare” charges with distance. or in more modern terms as a “running” coupling 
constant. Since the charge of a particle is defined as the strength of its electro- 
magnetic coupling observed at large distances (equivalent to negligible momen- 
tum transfers), the presence of a screening action by electron-positron pairs 

closer to the charge implies that the “bare” charge observed at short distances 
is larger than the charge defined at large distances. Quantitatively, the lowest 
order quantum-electrodynamic result for the Coulomb potential cnergy between 
two charges Z,e and Ze, corrected for vacuum polarization, is 

2 2a fo , Ve? — 4m? / 2 2 +] aye ( +o el (16) 
« “Ot 3a Jam 

where a is the fine structure constant (~ 1/137), mis the inverse Compton wave- 
length (electron mass, multiplied by c/f). The integral, a superposition of Yukawa 
potentials (e~"’/r) is the one-loop contribution of all the virtual pairs, It increases 
the magnitude of the potential energy at distances of separation inside the elec- 
tron Compton wavelength (f/mc = aay ~ 3.86 X 10°) m). 

Because of its short range. the added vacuum polarization energy is unim- 
portant in light atoms, except for very precise measurements. It is, however, 
important in high Z atoms and in muonic atoms, where the heavier mass of the 
muon (7, ~ 207 m,.) means that, even in the lightest muonic atoms, the Bohr 

radius is well inside the range of the modified potential. X-ray measurements in 
medium-mass muonic atoms provide a highly accurate verification of the vacuum 
polarization effect in (1.6). 

The idea of a “running” coupling constant, that is, an effective strength of 
interaction that changes with momentum transfer, is illustrated in clectromag- 
netism by exhibiting the spatial Fourier transform of the interaction energy (1.6): 

42Z,Z, a(Q’) 
o 

The i/Q? dependence is characteristic of the Coulomb potential (familiar in 
Rutherford scattering), bul now the strength is governed by the so-called running 
coupling constant a(Q), the reciprocal of which is 

1(Q?) = (0) 

et df le ~ T5 - a n( $5.) (18) 
Here a(0) = 1/137. 036 .. . is the fine structure constant, e is the base of natural 
logarithms, and Q° is the square of the wavenumber (momentum) transfer. The 
expression (1.8) is an approximation for large Q*/nr. The running coupling a{Q?) 
increases stowly with increasing Q? (shorter distances); the particles are pene- 
trating inside the cloud of screening electron-positron pairs and experiencing a 
larger effective product of charges. 
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Since the lowest order vacuum polarization energy is proportional to a times 
the external charges, we describe it as a linear effect, even though it involves (in 

a) the square of the internal charge of the electron and positron. Small higher 
order effects, such as in Fig. 1.3 with three of the photons corresponding to the 
third power of the external field or charge, are truly nonlinear interactions. 

The finai conclusion about linear superposition of fields in vacuum is that in 
the classical domain of sizes and attainable field strengths there is abundant ev- 

idence for the validity of linear superposition and no evidence against it, In the 
atomic and subatomic domain there are small quantum-mechanical nonlinear 

effects whose origins are in the coupling between charged particles and the elec- 
tromagnetic field. They modify the interactions between charged particles and 
cause interactions between electromagnetic fields even if physical particles arc 
absent. 

1.4 Maxwell Equations in Macroscopic Media 

So far we have considered electromagnetic fields and sources in vacuum. The 
Maxwell equations (I.1b) for the electric and magnetic fields E and B can be 
thought of as equations giving the fields everywhere in space, provided all the 
sources p and J are specified. For a small number of definite sources, determi- 
nation of the fields is a tractable problem; but for macroscopic aggregates of 
matter, the solution of the equations is almost impossible. There are two aspects 
here, One is that the number of individual sources, the charged particles in every 
atom and nucleus, is prohibitively large. The other aspect is that for macroscopic 
observations the detailed behavior of the fields, with their drastic variations in 
space over atomic distances. is not relevant. What is relevant is the average of a 
field or a source over a volume large compared to the volume occupied by a 
single atom or molecule. We call such averaged quantities the macroscopic fields 
and macroscopic sources. It is shown in detail in Section 6.6 that the macroscopic 
Maxwell equations are of the form (I.1a) with E and B the averaged E and B of 
the microscopic or vacuum Maxwell equations, while D and H are no longer 
simply multiples of E and B, respectively. The macroscopic field quantities D 

and H, called the clectric displacement and magnetic field (with B called the 
magnetic induction), have components given by 

Da = & Eg + (2, - 5 ie +. ) 
Fate (19) 

Hh, = 2 Be (My +) 
Bo 

The quantities P, M, Q(g. and similar higher order objects represent the mac- 
roscopically averaged clectric dipole, magnetic dipole, and electric quadrupole, 
and higher moment densities of the material medium in the presence of applied 
fields. Similarly, the charge and current densities @ and J are macroscopic aver- 
ages of the “free” charge and current densities in the medium. The bound charges 
and currents appear in the equations via P, M, and Qi. 

The macroscopic Maxwell equations {I.Ja) are a set of eight equations in- 
volving the components of the four fields E. B, D, and H. The four homogeneous 
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equations can be solved formally by expressing E and B in terms of the scalar 
potential and the vector potential A, but the inhomogeneous equations cannot 
be solved until the derived fields D and H are known in terms of E and B. These 
connections, which are implicit in (1.9), are known as constitutive relations, 

D = DIE, B) 
H = HIE, B] 

In addition, for conducting media there is the generalized Ohm’s law, 

J = JE. B] 

The square brackets signify that the connections are not necessarily simple and 
may depend on past history (hysteresis), may be nonlinear, etc. 

In most materials the electric quadrupole and higher terms in (1.9) are com- 
pletely negligible. Only the electric and magnetic polarizations P and M are sig- 
nificant. This does not mean, however, that the constitutive relations are then 
simple. There is tremendous diversity in the electric and magnetic properties of 
matter, especially in crystalline solids, with ferroelectric and ferromagnetic ma- 
terials having nonzero P or M in the absence of applied fields, as well as more 
ordinary dielectric, diamagnetic, and paramagnetic substances. The study of these 
properties is one of the provinces of solid-state physics. In this book we touch 
only very briefly and superficially on some more elementary aspects. Solid-state 
books such as Kittel should be consulted for a more systematic and extensive 
treatment of the electromagnetic properties of bulk matter. 

In substances other than ferroelectrics or ferromagnets, for weak enough 
fields the presence of an applied electric or magnetic field induces an electric or 
magnetic polarization proportional to the magnitude of the applied field. We 
then say that the response of the medium is linear and write the Cartesian com- 
ponents of D and H in the form,* 

D, = > €upEp 
3 

A, = = HapBs 

The tensors €,4 and j,5 are called the electric permittivity or dielectric tensor 
and the inverse magnetic permeability tensor. They summarize the linear re- 
sponse of the medium and are dependent on the molecular and perhaps crystal- 
line structure of the material, as well as bulk properties like density and temper- 
ature. For simple materials the linear response is often isotropic in space. Then 
€4g and fgg are diagonal with all three elements equal, and D = eE, H = y'B 
= Biu. 

(1.10) 

To be generally correct Eqs. (1.10) should be understood as holding for the Fourier 
transforms in space and time of the field quantities. This is because the basic linear con- 
nection between D and E (or H and B) can be nonlocal. Thus 

DAx, ) = >» J dx’ | dt éqglX’ HEX — x’, 8 — 1) 

“Precedent would require writing 8, = 2p jtapH, but this reverses the natural rolcs of B as the basic 
magnetic field and H as the derived quantity. In Chapter 5 we revert to the traditional usage. 
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where g(x", 1’) may be localized around x’ = 0, ¢’ = 0, but is nonvanishing for some 
range away from the origin. If we introduce the Fourier transforms D,(k. w), Eg(k, «), 
and €,(k, «) through 

lk, 0) = fats f de fe pee 

Eq. (1.10) can be written in terms of the Fourier transforms as 

Dkk, 0) = >. €ap(k. w)E p(k, @) (U1) 
8 

A similar equation can be written H,,(k, @) in terms of Bg(k, w). The permeability tensors 
are therefore functions of frequency and wave vector in general. For visible light or elec- 
tromagnetic radiation of longer wavelength it is often permissible to neglect the non- 
locality in space. Then €,g and j2is are functions only of frequency. This is the situation 
discussed in Chapter 7, which gives a simplified treatment of the high frequency properties 
of matter and explores the consequences of causality. For conductors and superconductors 
long-range effects can be important. For example, when the electronic collisional mean 

free path in a conductor becomes large compared to the skin depth, a spatially local form 
of Ohm’s law is no longer adequate. Then the dependence on wave vector also enters. In 
the understanding of a number of properties of solids the concept of a dielectric constant 
as a function of wave vector and frequency is fruitful. Some exemplary references are 
given in the suggested reading at the end of this introduction, 

For orientation we mention that at low frequencies (v = 10° Hz) where all 
charges, regardless of their inertia, respond to applied ficlds, solids have diclectric 
constants typically in the range of €,4/€) ~ 2-20 with larger values not uncom- 
mon. Systems with permanent molecular dipole moments can have much larger 
and temperature-sensitive dielectric constants. Distilled water, for example, has 

a static dielectric constant of €/ey = 88 at (°C and €/ey = 56 at 100°C. At optical 

frequencies only the electrons can respond significantly. The dielectric constants 
are in the range, €,9/€) ~ 1.7-10, with €,../€) ~ 2-3 for most solids. Water has 

é/é) = 1.77-1.80 over the visible range, essentially independent of temperature 
from 0 to 100°C. 

The type of response of materials to an applied magnetic field depends on 
the properties of the individual atoms or molecules and also on their interactions. 
Diamagnetic substances consist of atoms or molecules with no net angular mo- 
mentum. The response to an applied magnetic field is the creation of circulating 
atomic currents that produce a very small bulk magnetization opposing the ap- 
plied field. With the definition of ji, in (1.10) and the form of (1.9), this means 

Lofaa > 1. Bismuth, the most diamagnetic substance known, has (jtojlau — 1) = 

1.8 X 10~*. Thus diamagnetism is a very small effect. If the basic atomic unit of 
the material has a net angular momentum from unpaired electrons, the substance 
is paramagnetic. The magnetic moment of the odd electron is aligned parallel to 
the applied field. Hence jou,, < 1. Typical values are in the range (1 — poten) 
= 10-7-10-* at room temperature, but decreasing at higher temperatures be- 
cause of the randomizing effect of thermal excitations. 

Ferromagnetic materials are paramagnetic but, because of interactions be- 
tween atoms, show drastically different behavior. Below the Curie temperature 
(1040 K for Fe, 630 K for Ni), ferromagnetic substances show spontaneous mag- 
netization; that is, all the magnetic moments in a microscopically large region 
called a domain are aligned. The application of an external field tends to cause 
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the domains to change and the moments in different domains to line up together, 
leading to the saturation of the bulk magnetization. Removal! of the field leaves 
a considerable fraction of the moments still aligned, giving a permanent mag- 
netization that can be as large as B, = pM, = | tesla. 

For data on the dielectric and magnetic properties of materials, the reader 
can consult some of the basic physics handbooks* from which he or she will be 
led to more specific and detailed compilations. 

Materials that show a linear response to weak fields eventually show nonlin- 
ear behavior at high enough field strengths as the electronic or ionic oscillators 
are driven to large amplitudes. The linear relations (1.10) are modified to, for 
example, 

D.= > EE, + >» eCLE,E, + -- (1.12) 

For static fields the consequences are not particularly dramatic, but for time- 
varying fields it is another matter. A large amplitude wave of two frequencies «, 
and w) gencrates waves in the medium with frequencies 0, 2w,, 2@., w, + @», 
@; — wp, as well as the original @, and w. From cubic and higher nonlinear terms 
an even richer spectrum of frequencies can be generated. With the development 
of lascrs, nonlinear behavior of this sort has become a research area of its own, 
called nontinear optics, and also a laboratory tool. At present, lasers are capable 
of generating light pulses with peak electric fields approaching 10" or even 10° 
Vim. The static electric field experienced by the electron in its orbit ina hydrogen 
atom is e/a} = 5 X 10'' V/m. Such laser fields are thus scen to be capable of 
driving atomic oscillators well into their nonlinear regime, capable indeed of 
destroying the sample under study! References to some of the literature of this 
specialized field are given in the suggested reading at the end of this introduction. 
The reader of this book will have to be content with basically linear phenomena. 

1.5 Boundary Conditions at Interfaces Between Different Media 

The Maxwell equations (I.1) are differential equations applying locally at each 
point in space-time (x, t). By means of the divergence theorem and Stokes’s 
theorem, they can be cast in integral form. Let V be a finite volume in space, § 
the closed surface (or surfaces) bounding it, da an element of area on the surface, 
and na unit normal to the surface at da pointing outward from the enclosed 
volume. Then the divergence theorem applied to the first and last equations of 
(1a) yields the integral statements 

pd-ad=| pdx (1.13) s v 

$ Benda =0 (1.14) 

*CRC Handbook of Chemistry and Physics, ed. D. R. Lide, 78th ed., CRC Press, Boca Raton, FL 
(1997-98). 

American Institute of Physics Handbook, ed. D. E. Gray, McGraw Hill, New York, 3rd edition 
(1972), Sections 5.d and 5.f. 
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The first relation is just Gauss’s law that the total flux of D out through the surface. 
is equal to the charge contained inside. The second is the magnetic analog, with 
no net flux of B through a closed surface because of the nonexistence of magnetic 
charges. 

Similarty, let C be a closed contour in space, S’ an open surface spanning 

the contour, dl a line element on the contour, da an element of area on S’, and 

n’ a unit normal at da pointing in the direction given by the right-hand rule from 

the sense of integration around the contour. Then applying Stokes’s theorem to 

the middie two equations in (I.1a) gives the integral statements 

¢ ned [a+ 2] we aw (115) 
. s a 

B 
$ B-at= -[. ap da (1.16) 

Equation (1.15) is the Ampére-Maxwell law of magnetic fields and (1.16) is 
Faraday’s law of electromagnetic induction. 

These familiar integra! equivalents of the Maxwell equations can be used 
directly to deduce the relationship of various normal and tangential components 
of the fields on either side of a surface between different media, perhaps with a 
surface charge or current density at the interface. An appropriate geometrical 
arrangement is shown in Fig. 1.4. An infinitesimal Gaussian pillbox straddles the 
boundary surface between two media with different electromagnetic properties. 
Similarly, the infinitesimai contour C has its long arms on either side of the 
boundary and is oriented so that the normal to its spanning surface is tangent to 
the interface. We first apply the integral statements (1.13) and (1.14) to the vol- 
ume of the pillbox. In the limit of a very shallow pillbox, the side surface does 

WY 

oGG 
Figure L4 Schematic diagram of boundary surface (heavy line) between different 
media. The boundary region is assumed to carry idealized surface charge and current 
densities o and K. The volume V is a small pillbox, half in one medium and half in the 

other, with the normal n to its top pointing from medium | into medium 2. The 
rectangular contour C is partly in one medium and partly in the other and is oriented 
with its plane perpendicular to the surface so that its normal t is tangent to the surface. 

E, By 
Dy. A, 
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not contribute to the integrals on the left in (1.13) and (1.14). Only the top and 
bottom contribute. If the top and the bottom are parallel, tangent to the surface, 
and of area Aq, then the left-hand integral in (1.13) is 

$ D-ada=(,~D)-+n da 

and similarly for (1.14). If the charge density p is singular at the interface so as 
to produce an idealized surface charge density v, then the integral on the right 
in (1.13) is 

f pd@x=oada 
v 

Thus the normal components of D and B on either side of the boundary surface 
are related according to 

(D, - Dj): n =o (1.17) 

(B, — B,)+n =0 (1.18) 

In words, we say that the normal component of B is continuous and the discon- 
tinuity of the normal component of D at any point is equal to the surface charge 
density at that point. 

In an analogous manner the infinitesimal Stokesian loop can be used to de- 
termine the discontinuities of the tangential components of E and H. If the short 
arms of the contour C in Fig. 1.4 are of negligible length and each long arm is 
parallel to the surface and has length A/, then the left-hand integral of (1.16) is 

p Bs dl= x0) -(E,~ BAF 

and similarly for the left-hand side of (1.15). The right-hand side of (1.16) vanishes 
because B/0r is finite at the surface and the area of the loop is zero as the length 
of the short sides goes to zero. The right-hand side of (I.15) does not vanish, 
however, if there is an idealized surface current density K flowing exactly on the 
boundary surface. In such circumstances the integral on the right of (1.15) is 

I [a+] rae = ea 
s Ot 

The second term in the integral vanishes by the same argument that was just 
given. The tangential components of E and H on either side of the boundary are 
therefore related by 

nx (E, - E,) =0 (1.19) 
nx (H, — H,) =K (1.20) 

In (1.20) it is understood that the surface current K has only components parallel 
to the surface at every point. The tangential component of E across an interface 
is continuous, while the tangential component of H is discontinuous by an amount 
whose magnitude is equal to the magnitude of the surface current density and 
whose direction is parallel to K x n. 

The discontinuity equations (1.17)-(1.20) are useful in solving the Maxwell 
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equations in different regions and then connecting the solutions to obtain the 

fields throughout all space. 

1.6 Some Remarks on Idealizations in Electromagnetism 

In the preceding section we made use of the idea of surface distributions of charge 
and current. These are obviously mathematica! idealizations that do not exist in 
the physica! world. There are other abstractions that occur throughout electro- 

magnetism. In electrostatics, for example, we speak of holding objects at a fixed 
potential with respect to some zero of potential usually called “ground.” The 
relations of such idealizations to the real world is perhaps worthy of a little dis- 
cussion, even though to the experienced hand most will seem obvious. 

First we consider the question of maintaining some conducting object at a 
fixed electrostatic potential with respect to some reference value. Implicit is the 
idea that the means does not significantly disturb the desired configuration of 

charges and fields. To maintain an object at fixed potential it is necessary, at least 
from time to time, to have a conducting path or its equivalent from the object to 
a source of charge far away (‘‘at infinity”) so that as other charged or uncharged 
objects are brought in the vicinity, charge can flow to or from the object, always 
maintaining its potential at the desired value. Although more sophisticated 
means are possible, metallic wires are commonly used to make the conducting 
path. Intuitively we expect small wires to be less perturbing than large ones. The 
reason is as follows: 

Since the quantity of electricity on any given portion of a wire at a given 
potential diminishes indefinitely when the diameter of the wire is indefi- 
nitely diminished, the distribution of electricity on bodies of considerable 
dimensions will not be sensibly affected by the introduction of very 
fine metallic wires into the field, such as are used to form clectrical con- 
nexions between these bodies and the earth, an electrical machine, or an 
electrometer.* 

The electric field in the immediate neighborhood of the thin wire is very large, 
of course. However, at distances away of the order of the size of the “bodies of 

considerable dimensions” the effects can be made smail. An important historical 
illustration of Maxwell's words is given by the work of Henry Cavendish 200 
years ago. By experiments done in a converted stable of his father’s house, using 
Leyden jars as his sources of charge, thin wires as conductors, and suspending 
the objects in the room, Cavendish measured the amounts of charge on cylinders, 
discs, etc., held at fixed potential and compared them to the charge on a sphere 
(the same sphere shown in Fig. I.1) at the same potential. His values of capaci- 
tance, so measured, are accurate to a few per cent. For example, he found the 
ratio of the capacitance of a sphere to that of a thin circular disc of the same 
radius was 1.57. The theoretical value is 7/2. 

There is a practical limit to the use of finer and finer wires. The charge per 
unit length decreases only logarithmically [as the reciprocal of In(d/a), where a 

+1. C. Maxwell, A Treatise on Electricity and Magnetism, Dover, New York, 1954 reprint of the 3rd 
edition (1891), Vol. 1, p. 96. 
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is the mean radius of the wire and d is a typical distance of the wire from some 
conducting surface]. To minimize the perturbation of the system below some 
level, it is necessary to resort to other means to maintain potentials, comparison 
methods using beams of charged particles intcrmittently, for example. 

When a conducting object is said to be grounded, it is assumed to be con- 

nected by a very fine conducting filament to a remote reservoir of charge that 
serves as the common zcro of potential. Objects held at fixed potentials are sim- 
jlarly connected to one side of a voltage source, such as a battery, the other side 
of which is connected to the common “ground.” Then, when initially clectrified 
objects arc moved relative to one another in such a way that their distributions 
of electricity are altered, but their potentials remain fixed, the appropriate 
amounts of charge flow from or to the remote reservoir, assumed to have an 
inexhaustible supply. The idea of grounding something is a well-defined concept 
in electrostatics, where time is not a factor, but for osciflating fields the finite 
speed of propagation blurs the concept. In othcr words, stray inductive and ca- 
pacitive effects can enter significantly. Great care is then necessary to ensure a 
“good ground.”” 

Another idealization in macroscopic electromagnetism is the idea of a surface 
charge density or a surface current density. The physical reality is that the charge 
or current is confined to the immediate neighborhood of the surface. If this region 
has thickness small compared to the length scale of interest, we may approximate 
the reality by the idealization of a region of infinitesimal! thickness and speak of 
a surface distribution. Two different limits need to be distinguished. One is the 
limit in which the “surface” distribution is confined to a region near the surface 
that is macroscopically small, but microscopically large. An example is the pen- 
etration of time-varying fields into a very good, but not perfect, conductor, de- 
scribed in Section 8.1, It is found that the fields are confined to a thickness 6, 
called the skin depth, and that for high cnough frequencies and good enough 
conductivitics 6 can be macroscopically very small. It is then appropriate to in- 
tegrate the current density J over the direction perpendicular to the surface to 
obtain an effective surface current density K.;;. 

The other limit is «rly microscopic and is set by quantum-mechanical effects 
in the atomic structure of materials. Consider, for instance, the distribution of 
excess charge of a conducting body in electrostatics. It is well known that this 
charge lies entirely on the surface of a conductor. We then speak of a surface 
charge density o. There is no clectric field inside the conductor, but there is, in 
accord with (1.17), a normal component of clectric field just outside the surface. 
At the microscopic level the charge is not exactly at the surface and the field 
does not change discontinuously. The most clementary considerations would in- 
dicate that the transition region is a few atomic diameters in extent. The ions in 
a metal can be thought of as relatively immobile and localized to 1 angstrom 
or better; the lighter electrons are less constrained. The results of model cal- 
culations* are shown in Fig. 1.5. They come from a solution of the quantum- 
mechanical many-electron problem in which the ions of the conductor are 
approximated by a continuous constant charge density for x < 0. The electron 
density (r, = 5) is roughly appropriate to copper and the heavier alkali metais. 

4N. D. Lang and W. Kobn, Phys. Rev. BI, 4555 (1970): B3, 1215 (1971); V. E. Kenner. R. E. Allen, 
and W. M. Saslow, Phys. Lert. 38A, 255 (1972). 
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Figure LS Distribution of excess charge at the surface of a conductor and of the 
normal component of the electric field. The ions of the solid are confined to x < 0 and 
are approximated by a constant continuous charge distribution through which the 
electrons move. ‘The bulk of the excess charge is confined to within +2 A of the 

“surface,” 

The excess electronic charge is seen to be confined to a region within +2 A of 
the “surface” of the ionic distribution. The electric field rises smoothly over this 
region to its valuc of @ “outside” the conductor. For macroscopic situations 
where 107° m is a negligible distance, we can idealize the charge density and 
electric field behavior as p(x) = (x) and E,,(x) = o6(x)/€, corresponding to a 
truly surface density and a step-function jump of the field. 

We see that the theoretical treatment of classical electromagnetism involves 
several idealizations, some of them technical and some physical. The subject of 
clectrostatics, discussed in the first chapters of the book, developed as an exper- 

imental science of macroscopic electrical phenomena, as did virtually all other 
aspects of electromagnetism. The extension of these macroscopic laws, even for 
charges and currents in vacuum, to the microscopic domain was lor the most part 

an unjustified extrapolation. Earlier in this introduction we discussed some of 

the limits to this extrapolation. The point to be made here is the following. With 
hindsight we know that many aspects of the laws of classical electromagnetism 
apply well into the atomic domain provided the sources are treated quantum 
mechanically, that the averaging of electromagnetic quantities over volumes con- 
taining large numbers of molecules so smooths the rapid fluctuations that static 

applied ficlds induce static average responses in matter, and that excess charge 
is on the surface of a conductor in a macroscopic sense. Thus Coulomb’s and 
Ampére’s macroscopic observations and our mathematical abstractions from 
them have a wider applicability than might be supposed by a supercautious phys- 
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icist. The absence for air of significant electric or magnetic susceptibility certainly 
simplifies matters! 
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CHAPTER 1 

Introduction to Electrostatics 

We begin our discussion of electrodynamics with the subject of electrostatics— 
phenomena involving time-independent distributions of charge and fields. For 
most readers this material is in the nature of a review. In this chapter especially 
we do not elaborate significantly, We introduce concepts and definitions that are 
important for later discussion and present some essential mathematical appara- 
tus. In subsequent chapters the mathematical techniques are developed and 
applied. 

One point of physics should be mentioned. Historically, electrostatics devel- 

oped as a science of macroscopic phenomena. As indicated at the end of the 
Introduction, such idealizations as point charges or electric fields at a point must 

be viewed as mathematical constructs that permit a description of the phenomena 
at the macroscopic level, but that may fail to have meaning microscopically. 

1.1) Coulomb’s Law 

All of electrostatics stems from the quantitative statement of Coulomb's law 
concerning the force acting between charged bodies at rest with respect to each 
other. Coulomb, in an impressive series of experiments, showed experimentally 
that the force between two small charged bodies separated in air a distance large 
compared to their dimensions 

varies directly as the magnitude of each charge, 

varies inversely as the square of the distance between them, 

is directed along the line joining the charges, and 

is attractive if the bodies are oppositely charged and repulsive if the bodies have 
the same type of charge. 

Furthermore it was shown experimentally that the total force produced on one 
small charged body by a number of the other small charged bodies placed around 
it is the vector sum of the individual two-body forces of Coulomb. Strictly speak- 
ing, Coulomb’s conclusions apply to charges in vacuum or in media of negligible 
susceptibility. We defer consideration of charges in dielectrics to Chapter 4. 

1.2 Electric Field 

Although the thing that eventually gets measured is a force, it is useful to intro- 
duce a concept one step removed from the forces, the concept of an electric field 
due to some array of charged bodies. At the moment, the electric field can be 

24 
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defined as the force per unit charge acting at a given point. It is a vector function 
of position, denoted by E. One must be carefui in its definition, however. It is 

not necessarily the force that one would observe by placing one unit of charge 

on a pith bali and placing it in position. The reason is that onc unit of charge 
may be so large that its presence alters appreciably the field configuration of the 
array. Consequently one must use a limiting process whereby the ratio of the 
force on the smali test body to the charge on it is measured for smaller and smaller 
amounts of charge.* Experimentaily, this ratio and the direction of the force will 
become constant as the amount of test charge is made smaller and smailer. These 

limiting values of magnitude and direction define the magnitude and direction of 
the electric field E at the point in question. In symbols we may write 

F=qE (cmp) 

where F is the force, E the electric field, and g the charge. In this equation it is 
assumed that the charge g is located at a point, and the force and the electric 
field are evaluated at that point. 

Coulomb's law can be written down similarly. [f F is the force on a point 
charge q), located at x,, due to another point charge q2, located at x,, then 
Coulomb's law is 

X — X> F= kag a (1.2) 
Note that q, and q) are algebraic quantities, which can be positive or negative. 
The constant of proportionality k depends on the system of units used. 

The electric field at the point x due to a point charge q, at the point x, can 
be obtained directly: 

x7~™M BO) = kg (13) 
as indicated in Fig, 1.1. The constant k differs in different systems of units." In 
electrostatic units (esu), k = | and unit charge is chosen as that charge that exerts 
a force of one dyne on an equal point charge located one centimeter away. The 
esu unit of charge is called the starcoulomb, and the electric field is measured in 
statvolts per centimeter. In the SI system, which we employ here, k = (47) |= 

10° 7c?, where € ~ 8.854 X 10°"? farad per meter (F/m) is called the permittivity 
of free space, The SI unit of charge is the coulomb (C), and the electric field is 
measured in volis per meter (V/m). One coulomb (1 C) produces an electric field 

Figure Lt 

“The discreteness of clectric charge (see Section I.i) means that this mathematical limit is impossible 
to realize physically. This is an cxample of a mathematical idealization in macroscopic electrostatics. 
‘The question of units is discussed in detail in the Appendix. 
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of approximately 8.9874 x 10° V/m (8.9874 GV/m) at a distance of 1 meter. One 
electron (q ~ 1.602 10°’ C) produces a ficld of approximately 1.44 x 107° 
Vim (1.44 nV/m) at | meter. 

The experimentally observed linear superposition of forces due to many 
charges means that we may write the electric ficld at x due to a system of point 

charges q;, located at x;, i = 1,2...., #, as the vector sum: 

Ew) = > 5 (14) Xx, i 6 
ae Vie xP 

If the charges are so small and so numerous that they can be described by a 
charge density p(x’) {if Aq is the charge in a small volume Ax Ay Az at the point 
x’, then Ag = p(x’) Ax Ay Az], the sum is replaced by an integral: 

Be) = ef oe) $s’ (1.5) 
where d°x’ = dx’ dy’ dz’ is a three-dimensional volume element at x’. 

At this point it is worthwhile to introduce the Dirac delta function. In one dimension, 
the delta function, written 5(x —a), is a mathematically improper function having the 
properties: 

1. &(x — a) = 0 for x # a, and 

2. f A(x — a) dx = 1 if the region of integration includes x = a, and is zero otherwise. 

The delta function can be given an intuitive, but nonrigorous, meaning as the limit of a 
peaked curve such as a Gaussian that becomes narrower and narrower, but higher and 
higher, in such a way that the area under the curve is always constant. L. Schwartz's theory 
of distributions is a comprehensive rigorous mathematical approach to delta functions and 
their manipulations.* 

From the definitions above it is evident that, for an arbitrary function f(x), 

3. f f(x) 80 — a) de = f(a). 

The integral of f(x) times the derivative of a delta function is simply understood if the 
delta function is thought of as a well-behaved, but sharply peaked, function. Thus the 
definition is 

4. f f(x) {x — a) dx = —f'(a) 

where a prime denotes differentiation with respect to the argument. 

Hf the delta function has as argument a function f(x) of the independent variable x, 
it can be transformed according to the rule, 

5. 8(f()) = > (x — x) 
af 
Fe () 

where f(x) is assumed (o have only simple zeros, located at x 
In more than one dimension, we merely (ake products of delta functions in cach 

dimension. In three dimensions, for example, with Cartesian coordinates, 

6. B(x — X} = 80 — X1) Ox, — Xp) 8x - X3) 

*A useful, rigorous account of the Dirac delta function is given by Lighthill. See also Dennery and 
Krzywicki (Section IIL.13). (Full references for items cited in the text or footnotes by italicized author 
only will be found in the Bibliography.) 
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is a function that vanishes everywhere except at x = X, and is such that 

yy a. fl if AV contains x = X 
if ie SANE {i if AV does not contain x = X 
Note that a delta function has the dimensions of an inverse volume in whatever number 
of dimensions the space has. 

A discrete set of point charges can be described with a charge density by means of 

delta functions. For example, 

p(x) = Sq 8x — x) (1.6) a 

represents a distribution of n point charges q,. located at the points x,. Substitution of this 
charge density (1.6) into (1.5) and integration, using the properties of the delta function, 
yields the discrete sum (1.4). 

Gauss’s Law 

The integral (1.5) is not always the most suitable form for the evaluation of 

electric fields. There is another integral result, called Gauss’s law, which is some- 

times more useful and furthermore leads to a differential equation for E(x). To 

obtain Gauss’s law we first consider a point charge g and a closed surface S, as 
shown in Fig. 1.2. Let r be the distance from the charge to a point on the surface, 
n be the outwardly directed unit normal to the surface at that point, da be an 

g outside S$ 

q inside S 

Figure 1.2 Gauss’s law. The normal component of electric field is integrated over the 
closed surface S. If the charge is inside (outside) 5, the total solid angle subtended at 
the charge by the inner side of the surface is 47 (zero). 
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element of surface area. If the electric field E at the point on the surface due to 
the charge q makes an angle @ with the unit normal, then the normal component 
of E times the area element is: 

@ 
4 SOS da (1.7) E-nda= 

yo ame, or 

Since E is directed along the line from the surface element to the charge q, 
cos 6 da = r? dQ, where dQ is the element of solid angle subtended by da at 
the position of the charge. Therefore 

q E-nda= i 1.8 ey 0 (1.8) 

If we now integrate the normal component of E over the whole surface, it is easy 
to see that 

$ Eiddgie gle if q lies pide Ss : a9) 

s 0 if q lies outside $ 

This result is Gauss’s law for a single point charge. For a discrete set of charges, 
it is immediately apparent that 

| 
fe-ndo-2¥q (1.10) 

where the sum is over only those charges inside the surface S. For a continuous 
charge density p(x), Gauss's law becomes: 

I 
fe-nda=1] pods (1.11) 

where V is the volume enclosed by S. 
Equation (1.11) is one of the basic equations of electrostatics. Note that it 

depends upon 

the inverse square law for the force between charges, 

the central nature of the force, and 

the linear superposition of the effects of different charges. 

Clearly, then, Gauss’s law holds for Newtonian gravitational force fields, with 
matter density replacing charge density. 

It is interesting to note that, even before the experiments of Cavendish and 

Coulomb, Priestley, taking up an observation of Franklin that charge seemed to 
reside on the outside, but not the inside, of a metal cup, reasoned by analogy 

with Newton's law of universal gravitation that the electrostatic force must obey 
an inverse square law with distance. The present status of the inverse square law 
is discussed in Section I.2. 

1.4 Differential Form of Gauss’s Law 

Gauss’s law can be thought of as being an integral formulation of the law of 
electrostatics. We can obtain a differential form (i.¢., a differential equation) by 
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using the divergence theorem. The divergence theorem states that for any well- 
behaved vector field A(x) defined within a volume V surrounded by the closed 
surface § the relation 

$ A-nde=[ VeAdx 
s v 

holds between the volume integral of the divergence of A and the surface integral 
of the outwardly directed norma! component of A. The equation in fact can be 
used as the definition of the divergence (see Stratton, p. 4). 

To apply the divergence theorem we consider the integral relation expressed 
in Gauss’s theorem: 

1 
$E-nda=+{ p(x) dx 
‘s & Jv 

Now the divergence theorem allows us to write this as 

I (VE — ple) dx = 0 (1.12) 

for an arbitrary volume V, We can, in the usual way, put the integrand equal to 
zero to obtain 

V-E = ple, (1.13) 

which is the differential form of Gauss’s law of electrostatics. This equation can 
itself be used to solve problems in electrostatics. However, it is often simpler to 
deal with scalar rather then vector functions of position, and then to derive the 
vector quantities at the end if necessary (see below). 

1.5 Another Equation of Electrostatics and the Scalar Potential 

The single equation (1.13) is not enough to specify completely the three com- 
ponents of the electric field E(x). Perhaps some readers know that a vector field 
can be specified almost* completely if its divergence and curl are given every- 
where in space. Thus we look for an equation specifying curl E as a function of 

position. Such an equation, namely, 

VxE=0 (1.14) 

follows directly from our generalized Coulomb’s law (1.5): 

1 J x-x E(x) = , By! @) = Ge} Oe 
The vector factor in the integrand, viewed as a function of x, is the negative 
gradient of the scalar I/|x — x’|: 

x—x’ —+*_.-y 
Ix— xP = 

*Up to the gradient of a scalar function that satisfies the Laplace equation. See Section 1.9 on 
uniqueness 
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Since the gradient operation involves x, but not the integration variable x’, it can 
be taken outside the integral sign. Then the ficld can be written 

E(x) = rl x (1.45) 

Since the curl of the gradient of any well-behaved scalar function of position 
vanishes (V x Vq = 0, for all &), (1.14) follows immediately from (1.15). 

Note that V x E = 0 depends on the central nature of the force between 
charges, and on the fact that the force is a function of relative distances only, but 

does not depend on the inverse square nature. 
In (1.15) the electric ficld (a vector) is derived from a scalar by the gradient 

operation. Since one function of position is easier to deal with than three, it is 
worthwhile concentrating on the scalar function and giving it a name. Conse- 
quently we define the scalar potential P(x) by the equation: 

E = -Vo (1.16) 

Then (1.15) shows that the scalar potential is given in terms of the charge density 

by 

PX) ay 
D(x) = om era dx (1.17) 

where the integration is over all charges in the universe, and © is arbitrary only 
to the extent that a constant can be added to the right-hand side of (1.17). 

The scalar potential has a physical interpretation when we consider the work 
done on a test charge g in transporting it from one point (A) to another point 
(B) in the presence of an electric field E(x), as shown in Fig. 1.3. The force acting 
on the charge at any point is 

F = qE 

so that the work done in moving the charge from A to B is 

B B 

w--| F-dl=-q|] E-di (1.18) A A 

The minus sign appears because we are calculating the work done on the charge 
against the action of the field. With definition (1.16) the work can be written 

7 

W=q]| vo- ao db = Y(@y — &,) (1.19) 

Figure 1.3 
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which shows that g® can be interpreted as the potential energy of the test charge 
in the electrostatic field. 

From (1.18) and (1.19) it can be scen that the line integral of the electric field 

between two points is independent of the path and is the negative of the potential 
difference between the points: 

B 
I E+ dl = —(%, - ®,) (1.20) 
A 

This follows directly, of course, from definition (1.16). If the path is closed, the 
line integral is zero, 

pe-a =0 (1.21) 

a result that can also be obtained directly from Coulomb's law. Then application 
of Stokes’s theorem [if A(x) is a well-behaved vector field, $ is an arbitrary open 
surface, and C is the closed curve bounding S, 

f adi=[ (vx A)-mda 

where db is a linc clement of C, n is the normal to S, and the path C is traversed 
in a right-hand screw sense relative to n| leads immediately back to V x E = 0. 

1.6 Surface Distributions of Charges and Dipoles and 
Discontinuities in the Electric Field and Potential 

One of the common problems in electrostatics is the determination of electric 
field or potential due to a given surface distribution of charges. Gauss’s law (1.11) 
allows us to write down a partial result directly. If a surface S. with a unit normal 
n directed from side | to side 2 of the surface. has a surface-charge density of 
a(x) (measured in coulombs per square meter) and electric fields E, and E, on 
either side of the surface, as shown in Fig. 1.4, then Gauss’s law tells us imme- 
diately that 

(E — E,)-n = of€y (1.22) 

This does not determine E, and E; unless there are no other sources of field and 

the geometry and form of o are especially simple. All that (1.22) says is that there 

Side 2 

Side 1 

Figure 1.4 Discontinuity in the normal 
component of electric field across a surface 
layer of charge. 
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is a discontinuity of o/e, in the normal component of electric field in crossing a 
surface with a surface-charge density o, the crossing being made in the direction 
of n. 

The tangential component of electric field can be shown to be continuous 

across a boundary surface by using (1.21) for the line integral of E around a 
closed path. It is only necessary to take a rectangular path with negligible ends 
and one side on either side of the boundary. 

An expression for the potential (hence the field, by differentiation) at any 
point in space (not just at the surface) can be obtained from (1.17) by replacing 
pdx by oda: 

t a(x’) 7 
00 = Te i 7 da (1.23) 

For volume or surface distributions of charge, the potential is everywhere con- 
tinuous, even within the charge distribution. This can be shown from (1.23) or 

from the fact that E is bounded, even though discontinuous across a surface 
distribution of charge. With point or line charges, or dipole layers, the potential 
is no longer continuous, as will be seen immediately. 

Another problem of interest is the potential due to a dipole-layer distribution 
on a surface S. A dipole layer can be imagined as being formed by letting the 
surface S have a surface-charge density 7(x) on it, and another surface $’, lying 
close to S, have an equal and opposite surface-charge density on it at neighboring 
points, as shown in Fig. 1.5, The dipole-layer distribution of strength P(x) is 
formed by letting S’ approach infinitesimally close to S while the surface-charge 
density o(x) becomes infinite in such a manner that the product of 7(x) and the 
local separation d(x) of S and S' approaches the limit D(x): 

lim o(x) d(x) = D(x) 
dQxjo 

The direction of the dipole moment of the layer is normal to the surface $ and 
in the direction going from negative to positive charge. 

To find the potential due to a dipole layer we can consider a single dipole 
and then superpose a surface density of them, or we can obtain the same result 
by performing mathematically the limiting process described in words above on 
the surface-density expression (1.23). The first way is perhaps simpler, but the 
second gives useful practice in vector calculus. Consequently we proceed with 

a(x) 

‘s_ Figure 1.5 Limiting process involved in 
s creating a dipole layer. 
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Figure 1.6 Dipole-layer geometry. 

the limiting process. With n, the unit normal to the surface S, directed away from 

5’, as shown in Fig. 1.6, the potential due to the two close surfaces is 

1 a(x’) ‘ 1 f a(x’) da’ 

4me, Js|x—x'] “" ~ 4ae, Js [x — x’ + nd] (x) = 

For small d we can expand |x — x’ + nd| '. Consider the general expression 

|x + al~', where [a| << |x|. We write a Taylor serics expansion in three 
dimensions: 

1 1 1 

magriter(t)e 

In this way we find that as d — () the potential becomes 

( 
In passing we note that the integrand in (1.24) is the potential of a point dipole 
with dipole moment p = n D da’. The potential at x caused by a dipole p at x’ is 

1 1 
P(x) = al D')n- V eral da’ (1.24) 

= PGs) 8) = oe (4.25) 

Equation (1.24) has a simpic gcomctrical interpretation. We note that 

( 1 7) da’ = £2894" _ ag 
—x “ix-x PF 

where dQ) is the element of solid angle subtended at the observation point by the 
area element da’, as indicated in Fig. 1.7. Note that dQ has a positive sign if 0 is 

n-V 

Figure 1.7 The potential at P due to the 
dipole layer D on the area element da’ is just 
the negative product of D and the solid angie 
element 49 subtended by da’ at P. 
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an acute angic (i.c., when the observation point views the “inner” side of the 

dipole fayer). The potential can be written: 

1 
(x) = — ae [ D(x’) dQ (1.26) 

For a constant surface-dipole-moment density D. the potential is just the product 

of the moment divided by 47, and the solid angle subtended at the observation 

point by the surface, regardless of its shape. 
There is a discontinuity in potential in crossing a double layer. This can be 

scen by letting the observation point come infinitesimally close to the double 
layer, The double layer is now imagined to consist of two parts, one being a small 
disc directly under the observation point. The disc is sufficiently small that it is 
sensibly flat and has constant surface-dipole-moment density D. Evidently the 
total potential can be obtained by linear superposition of the potential of the disc 
and that of the remainder. From (1.26) it is clear that the potential of the disc 

alone has a discontinuity of D/ey in crossing from the inner to the outer side, 
being — D/2ey on the inner side and + D/2e, on the outer. The potential of the 
remainder alonc, with its hole where the disc fits in, is continuous across 
the plane of the hole. Consequently the total potential jump in crossing the sur- 
face is: 

&, — &, = Die (1.27) 
This result is analogous to (1.22) for the discontinuity of electric field in crossing 
a surface-charge density. Equation (1.27) can be interpreted ‘‘physically” as a 
potential drop occurring “inside” the dipole layer; it can be calculated as the 
product of the field between the two layers of surface charge times the separation 
before the limit is taken. 

1.7 Poisson and Laplace Equations 

In Sections 1.4 and 1.5 it was shown that the behavior of an electrostatic field 
can be described by the two differential equations: 

V-E = ple (1.13) 

and 

VxE=0 (1.14) 

the latter equation being equivalent to the statement that E is the gradient of a 
scalar function, the scalar potential @: 

E=-Vo (1.16) 

Equations (1.13) and (1.16) can be combined into one partial differential 
equation for the single function P(x): 

Vb = —pley (1.28) 

This equation is called the Poisson equation. In regions of space that lack a charge 
density, the scalar potential satisfies the Laplace equation: 

Vo =0 (1.29) 
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We already have a solution for the scalar potential in expression (1.17): 

ee’) 
ax Ll ron i'l (1.17) (x) = 

To verify directly that this does indeed satisfy the Poisson equation (1.28), we 
operate with the Laplacian on both sides. Because it turns out that the resulting 
integrand is singular, we invoke a limiting procedure. Define the “a-potentiai” 

®,(x) by 

Ax ) a’ 
a Vix x’y ta 

The actual potential (1.17) is then the limit of the “‘a-potential” as a > 0. Taking 
the Laplacian of the “‘a-potential” gives 

2, wi ny? 1 Rye 
Pee) = Fay | aee¥ (a) a (130) 

wales , 3a® ay 
= Game, | “lz = =| ax 

where r = |x — x’|. The square-bracketcd expression is the negative Laplacian 

of 1/Vr* + a’. It is well-behaved everywhere for nonvanishing a, but as a tends 
to zero it becomes infinite at r = 0 and vanishes for r # 0. It has a volume integral 
equal to 47 for arbitrary a. For the purposes of integration, divide space into two 
regions by a sphere of fixed radius R centered on x. Choose F such that p(x’) 
changes little over the interior of the sphere, and imagine a@ much smaller than 
R and tending toward zcro. If p(x‘) is such that (1.17) exists, the contribution to 
the integral (1.30) from the exterior of the sphere will vanish like a as a > 0. 
We thus need consider only the contribution from inside the sphere. With a 
Taylor series expansion of the well-bchaved p(x’) around x’ = x, one finds 

(x) = 

RK 2 2 

vo,(x) = - 4 -+f —- [ow + cUp +: | Pdr + O(a) oP +a 
Dircct integration yields 

Vb,(x) = =e p(x) (1 + Ofa7/R?)) + OC, alog a) Vp + --- 
& 

In the limit a — 0, we obtain the Poisson equation (1.28). 
The singular nature of the Laplacian of 1/r can be exhibited formally in terms 

of a Dirac delta function. Since V’(t/r) = 0 for r # 0 and its volume intcgral is 
—4m, we can write the formal equation, V°(i/r) = —478(x) or, more generally, 

1 
=) = —478(x — x’) (1.31) 

1.8 Green’s Theorem 

If electrostatic problems always involved localized discrete or continuous distri- 
butions of charge with no boundary surfaces, the general solution (1.17) would 
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be the most convenient and straightforward solution to any problem. There 
would be no need of the Poisson or Laplace equation. In actual fact, of course, 

many, if not most, of the problems of electrostatics involve finite regions of space, 
with or without charge inside, and with prescribed boundary conditions on the 

bounding surfaces. These boundary conditions may be simulated by an appro- 
priate distribution of charges outside the region of interest (perhaps at infinity), 
but (1.17) becomes inconvenient as a means of calculating the potential, except 

in simple cases (e.g., method of images). 
To handie the boundary conditions it is necessary to develop some new math- 

ematical tools, namely, the identities or theorems due to George Green (1824). 
These foilow as simpic applications of the divergence theorem. The divergence 
theorem: 

[v ade=$ A-mda 
v s 

applics to any well-behaved vector field A defined in the volume V bounded by 

the closed surface S. Let A = Vs, where @ and y are arbitrary scalar fields. 
Now 

Vi (pd Ve) = 6 Ve t+ Vb> Vy (1.32) 

and 

= yet oVeen= es (1.33) 

where 6/dn is the normal derivative at the surface S (directed outward from inside 

the volume V), When (1.32) and (1.33) are substituted into the divergence the- 
orem, there results Green's first identity: 

| (6 Vw + Vb> Vy) d?x -4 Par (1.34) 
Vv san 

If we write down (1.34) again with ¢ and y interchanged, and then subtract it 
from (1.34), the V+ Vys terms cancel, and we obtain Green's second identity or 
Green's theorem: 

I (b Vy — Ww Vd) r= 4 |*- vi da (1.35) 
v S on on 

The Poisson differential equation for the potential can be converted into an 
integral equation if we choose a particular % namely 1/R = 1/|x — x'|, where x 
is the observation point and x’ is the integration variable. Further, we put @ = ®, 
the scalar potential, and make use of V°@ = —p/ep. From (1.31) we know that 

W(I/R) = —478(x — x’), so that (1.35) becomes 

, Fr oap ae na [Sera bad (ula Veet nck Ir [, [-4296@ 00-09 + A ote] a -fjo2 (3) £20 aa 

If the point x lies within the volume V, we obtain: 

= [Mar tffia oa fi , 
0) = Gre, v R oe vrs SLR an’ er R Ba (128) 
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If x lies outside the surface S, the left-hand side of (1.36) is zero.* [Note that this 
is consistent with the interpretation of the surface integral as being the potential 
due to a surface-charge density o = € 4@/an' and a dipole layer D = —e,. The 
discontinuities in electric field and potential (1.22) and (1.27) across the surface 
then lead to zero field and zero potential outside the volume V.] 

Two remarks are in order about result (1.36). First, if the surface $ goes to 
infinity and the electric field on S falls off faster than R~', then the surface integral 
vanishes and (1.36) reduces to the familiar result (1.17). Second, for a charge- 

free volume, the potential anywhere inside the volume (a solution of the Laplace 
equation) is expressed in (1.36) in terms of the potential and its normal derivative 
only on the surface of the volume. This rather surprising result is not a solution 
to a boundary-value problem, but only an integral statement, since the arbitrary 
specification of both @ and ad/an (Cauchy boundary conditions) is an overspe- 
cification of the problem. This is discussed in detail in the next sections, where 

techniques yielding solutions for appropriate boundary conditions are developed 
using Green's theorem (1.35). 

1.9 Uniqueness of the Solution with Dirichlet 
or Neumann Boundary Conditions 

What boundary conditions are appropriate for the Poisson (or Laplace) equation 
to ensure that a unique and well-behaved (i., physically reasonable) solution 
will exist inside the bounded region? Physical experience leads us to believe that 
specification of the potential on a closed surface (e.g., a system of conductors 
held at different potentials) defines a unique potential problem. This is called a 
Dirichlet problem, or Dirichlet boundary conditions. Similarly it is plausible that 
specification of the electric field (normal derivative of the potential) everywhere 
on the surface (corresponding to a given surface-charge density) also defines a 
unique problem. Specification of the normal derivative is known as the Neumann 
boundary condition. We now proceed to prove these expectations by means of 
Green's first identity (1.34). 

We want to show the uniqueness of the solution of the Poisson equation, 
Vd = —p/ey, inside a volume V subject to either Dirichlet or Neumann boundary 

conditions on the closed bounding surface S$. We suppose, to the contrary, that 

there exist two solutions ®, and ®; satisfying the same boundary conditions. Let 

U=,- 4, (1.37) 

Then VU = 0 inside V, and U = 0 or aU/an = 0 on S for Dirichlet and Neumann 

boundary conditions, respectively. From Green’s first identity (1.34), with @ = # 

= U_we find 

au J. (U VU + YU+ VU) dx = ¢ Us, da (1.38) 

“The reader may complain that (1.36) has been obtained in an illegal fashion since i/|x — x’ | is not 
well-behaved inside the volume ¥. Rigor can be restored by using a limiting process, as in the pre- 
ceding section, or by excluding a small sphere around the offending point, x = x’. The result is still 
(1.36). 
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With the specified properties of U, this reduces (for both types of boundary 

condition) to: 

| |VUP d’x =0 v 
which implies VU = 0. Consequently, inside V, U is constant. For Dirichlet 
boundary conditions, U = 0 on S so that, inside V, ®, = &, and the solution is 

unique. Similarly, for Neumann boundary conditions, the solution is unique, 
apart from an unimportant arbitrary additive constant. 

From the right-hand side of (1.38) it is evident that there is also a unique 
solution to a problem with mixed boundary conditions (i.e., Dirichlet over part 

of the surface S$, and Neumann over the remaining part). 
It should be clear that a solution to the Poisson equation with both ® and 

a@/dn specified arbitrarily on a closed boundary (Cauchy boundary conditions) 

does not exist, since there are unique solutions for Dirichlet and Neumann con- 

ditions separately and these will in gencral not be consistent, This can be verified 

with (1.36). With arbitrary values of © and d¢/d inserted on the right-hand side, 

it can be shown that the valucs of @(x) and V(x) as x approaches the surface 
are in general inconsistent with the assumed boundary vaiucs, The question of 
whether Cauchy boundary conditions on an open surface define a unique elec- 
trostatic problem requires more discussion than is warranted here. The reader 
may refer to Morse and Feshbach (Section 6.2, pp. 692-706) or to Sommerfeld 
(Partial Differential Equations in Physics, Chapter II) for a detailed discussion 
of these questions. The conclusion is that clectrostatic problems are specified 
only by Dirichlet or Neumann boundary conditions on a closed surface (part or 
all of which may be at infinity, of course). 

1.10 Formal Solution of Electrostatic Boundary-Value 
Problem with Green Function 

The solution of the Poisson or Laplace equation in a finite volume V with cither 
Dirichlet or Neumann boundary conditions on the bounding surface $ can be 
obtained by means of Green’s theorem (1.35) and so-called Green functions. 

In obtaining result (1.36)—not a solution—we chose the function p to be 

1/|x — x’|, it being the potential of a unit point source, satisfying the equation: 

ve? 1 

Ix - 
The function 1/|x — x'| is only one of a class of functions depending on the 
variables x and x’, and called Green functions, which satisfy (1.31). In general, 

V°G(x, x’) = —4778(x — x’) (1.39) 

= —478(x — x’) (1.31) 

where 

1 
G(x, x') = —— + Axx’ : G(x, x") rea F{x, x') (1.40) 

with the function F satisfying the Laplace equation inside the volume V: 

VP, x’) = 0 (1.41) 
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In facing the problem of satisfying the prescribed boundary conditions on & 
or a@/an, we can find the key by considering result (1.36). As has been pointed 
out already, this is not a solution satisfying the correct type of boundary condi- 

tions because both ® and 4®/an appear in the surface integral. It is at best an 
integral relation for ®. With the generalized concept of a Green function and its 
additional freedom [via the function F(x, x’)], there arises the possibility that we 
can usc Green’s theorem with ¢ = G(x, x‘) and choose F{x, x‘) to climinate one 

or the other of the two surface integrals, obtaining a result that involves only 
Dirichlet or Neumann boundary conditions. Of course, if the necessary G(x, x’) 
depended in detail on the exact form of the boundary conditions, the method 
would have little generality. As will be seen immediately, this is not required, 
and G(x, x’) satisfies rather simple boundary conditions on S. 

With Green’s theorem (1.35), 6 = ®. ys = G(x, x’), and the specified prop- 
erties of G (1.39), it is simple to obtain the generalization of (1.36): 

i 
(x) = ra f p(x')G(x. x") dex’ 

5 AG(X, x") 

4a ds on’ 

sy (1.42) 

[ia 2 — &(x') | 

The freedom available in the definition of G (1.40) means that we can make the 
surface integral depend only on the chosen type of boundary conditions. Thus, 
for Dirichlet boundary conditions we demand: 

G,(x, x’) = 0 for x’ on S (1.43) 

Then the first term in the surface integral in (1.42) vanishes and the solution is 

AG, 
(x) = oa 1 PUIG r(x, x!) dx! — af (x!) 2 2 aa’ (1.44) 

For Neumann boundary conditions we must be more careful. The obvious 
choice of boundary condition on G(x, x’) seems to be 

for x’ on S 

since that makes the second term in the surface integral in (1.42) vanish. as de- 
sired. But an application of Gauss’s theorem to (1.39) shows that 

0G 
f = da' = — 40 

Ss On 

Consequently the simpiest allowable boundary condition on Gy is 

dGy 4 ae 8) = _ for x’ on S (1.45) 

where S is the total area of the boundary surface. Then the solution is 

1 i. 1 P 
P(x) = (D)s + — Bx! + — DP — Gy da’ : (x) = ()s tne, A(x )Gu(x. x") x’ + TP 5 Gy da’ (1.46) 

where (®), is the average value of the potential over the whole surface. The 

customary Neumann problem is the so-called exterior problem in which the vol- 
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ume V is bounded by two surfaces, one closed and finite, the other at infinity. 
Then the surface area S is infinite; the boundary condition (1.45) becomes ho- 
mogencous: the average value (@),; vanishes. 

We note that the Green functions satisfy simple boundary conditions (1.43) 
or (1.45) which do not depend on the detailed form of the Dirichlet (or Neumann) 
boundary values. Even so, it is often rather involved (if not impossible) to de- 
termine G(x, x’) because of its dependence on the shape of the surface S. We 
will encounter such problems in Chapters 2 and 3. 

The mathematical symmetry property G(x, x’) = G(x’, x) can be proved for 
the Green functions satisfying the Dirichlet boundary condition (1.43) by means 

of Green’s theorem with ¢ = G(x, y) and w= G(x’, y), wherc y is the integration 
variable. Since the Green function, as a function of one of its variables, is a 

potential due to a unit point source, the symmetry merely represents the physica! 
interchangeability of the source and the observation points. For Neumann 
boundary conditions the symmetry is not automatic, but can be imposed as a 
separate requirement.* 

AS a final, important remark we note the physical meaning of F(x, x’)/47€,. 
It is a solution of the Laplace equation inside V and so represents the potential 
of a system of charges external to the volume V. It can be thought of as the 
potential duc to an external distribution of charges chosen to satisfy the homo- 
geneous boundary conditions of zero potential (or zero normal derivative) on 
the surface S when combined with the potential of a point charge at the source 
point x’. Since the potential at a point x on the surface due to the point charge 
depends on the position of the source point, the external distribution of charge 
F(x, x') must also depend on the “parameter” x', From this point of view, 
we sce that the method of images (to be discussed in Chapter 2) is a physical 
equivalent of the determination of the appropriate F(x, x‘) to satisfy the bound- 
ary conditions (1.43) or (1.45). For the Dirichict problem with conductors, 

K(x, x’)/47re, can also be interpreted as the potential duc to the surface-charge 
distribution induced on the conductors by the presence of a point charge at the 
source point x’. 

1.11 Electrostatic Potential Energy 
and Energy Density; Capacitance 

In Section 1.5 it was shown that the product of the scalar potential and the charge 
of a point object could be interpreted as potential energy. More precisely, if a 
point charge q; is brought from infinity to a point x, in a region of localized electric 
fields described by the scalar potential ® (which vanishes at infinity), the work 
done on the charge (and hence its potential energy) is given by 

W, = q(x) (1.47) 

The potential @ can be viewed as produced by an array of (n — 1) charges 
aU = 1,2,..., — t) at positions x;. Then 

iy w 
O(x,) = 1.48 

amen Fi ix: — x] a 

*See KJ. Kim and J. D. Jackson, Am. J. Phys. 61, (12) 1144-1146 (1993). 
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so that the potential energy of the charge q; is 

w,-— > = 1.49 
Ane, j ve) 

The total potential energy of all the charges due to all the forces acting between 
them is: 

We 
Ane) i fe 

1 G4 

Ix: — %| 
as can be scen most easily by adding each charge in succession. A more symmetric 
form can be written by summing over i and j unrestricted, and then dividing by 2: 

(1.50) 
y 

-t yy (1.51) 
7 |x, > | 

Tt is understood that i = j terms (infinite “self-energy” terms) are omitted in the 
double sum. 

For a continuous charge distribution [or, in general, using the Dirac delta 
functions (1.6)] the potential energy takes the form: 

2 tf plxyo(x') 
 8€ |x —x'| 

d’x d°x' (1.52) 

Another expression, equivalent to (1.52), can be obtained by noting that one of 
the integrals in (1.52) is just the scalar potential (1.17). Therefore 

We= 5 f eee ax (1.53) 

Equations (1.51), (1.52), and (1.53) express the electrostatic potential energy 
in terms of the positions of the charges and so emphasize the interactions between 
charges via Coulomb forces. An alternative, and very fruitful, approach is to 
emphasize the electric field and to interpret the energy as being stored in the 
electric field surrounding the charges. To obtain this latter form, we make use of 
the Poisson equation to eliminate the charge density from (1.53): 

we | ® VO d'x 

Integration by parts leads to the result: 

w= 2] ivop as = 2 f ep a's (1.54) 

where the integration is over all space. In (1.54) all explicit reference to charges 
has gone, and the energy is expressed as an integral of the square of the electric 
field over all space. This leads naturally to the identification of the integrand as 
an energy density w: 

& 2 
y= >|Ef 1.55 wes |E| (1.55) 

This expression for energy density is intuitively reasonable, since regions of high 
fields ‘must’ contain considerable energy. 

There is perhaps one puzzling thing about (1.55). The energy density is pos- 
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itive definite. Consequently its volume integral is necessarily nonnegative. This 
seems to contradict our impression from (1.51) that the potential energy of two 
charges of opposite sign is negative. The reason for this apparent contradiction 
is that (1.54) and (1.55) contain “self-energy” contributions to the energy density, 
whereas the double sum in (1.51) does not. To illustrate this, consider two point 
charges q, and q located at x, and xp, as in Fig. 1.8, The electric field at the point 
P with coordinate x is 

1 gm), 1 a(x = x) 
4me |x — x, — 4ar€) |x — x,)* 

so that the energy density (1.55) is 

2 
iT 5 X— XX) °(X — X&, 2reqw = i, 2 G2 1) ( x} (1.56) 

Ix— x)" [x — x3] Ix — xf |x — xo? 
Clearly the first two terms are “self-energy” contributions. To show that the third 
term gives the proper result for the interaction potential energy we integrate over 
all space: 

_ 442 [Soe ea) , 2 
"16776 2 |x — x [* [x — x.[? ae (1.57) 

A change of integration variable to p = (x — x,)/|x, — X2| yields 

1 aa 1 foot) 2, (1.58) 
Amey |x — &| 4a/ p* |p + nf 

int = 

where n is a unit vector in the direction (x, — x). Using the fact that (p + n)/ 
|p + n|’ = -V,(1/|p + n]), the dimensionless integral can easily be shown to 
have the value 47, so that the interaction energy reduces to the expected value. 

Forces acting between charged bodies can be obtained by calculating the 
change in the total electrostatic energy of the system under small virtual displace- 
ments. Examples of this are discussed in the problems. Care must be taken to 
exhibit the energy in a form showing clearly the factors that vary with a change 
in configuration and those that are kept constant. 

As a simple illustration we calculate the force per unit arca on the surface 
of a conductor with a surface-charge density a(x). In the immediate neighbor- 
hood of the surface the energy density is 

& 
2 

If we now imagine a small outward displacement Ax of an clemental area Aa of 
the conducting surface, the electrostatic energy decreases by an amount that is 
the product of energy density w and the excluded volume Ax Aa: 

AW = -o? Aa Ax/2e, (1.60) 

w= 2 |EP = 07/2e, (1.59) 

jP 

Hi 
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This means that there is an outward force per unit area equal to o7/2e, = w at 

the surface of the conductor. This result is normally derived by taking the product 
of the surface-charge density and the electric field, with care taken to eliminate 
the electric field duc to the clement of surface-charge density itself. 

For a system of » conductors, cach with potential V,; and total charge 
Q; (i = 1,2,...,n) in otherwise empty space, the electrostatic potential energy 
can be expressed in terms of the potentials alone and certain geometrical quan- 
tities called coefficients of capacity. For a given configuration of the conductors, 
the linear functional dependence of the potential on the charge density implies 
that the potential of the ith conductor can be written as 

Viz DQ G1 2eem) 
where the p, depend on the geometry of the conductors. These n equations can 
be inverted to yield the charge on the ith conductor in terms of all the potentials: 

Q=D6V, @=1.2...,n) (1.61) 
mt 

The coefficients C,, are called capacities or capacitances while the C;, i # j, are 

called coefficients of induction. The capacitance of a conductor is therefore the 
total charge on the conductor when it is maintained at unit potential, all other 
conductors being held at zero potential. Sometimes the capacitance of a system 
of conductors is also defined. For example, the capacitance of two conductors 
carrying equal and opposite charges in the presence of other grounded conduc- 
tors is defined as the ratio of the charge on one conductor to the potential dif- 
ference between them. The equations (1.61) can be used to express this capaci- 
tance in terms of the coefficients C;;. 

The potential energy (1.53) for the system of conductors is 

ay er ogee 
Sai eM ae Pte (1.62) 

‘The expression of the energy in terms of the potentials V, and the C,,, or in terms 
of the charges Q; and the coefficients p,,, permits the application of variational 
methods to obtain approximate values of capacitances. It can be shown, based 
on the technique of the next section (sec Problems 1.17 and 1.18), that there are 
variational principles giving upper and lower bounds on C,,. The principles permit 
estimation with known error of the capacitances of relatively involved configu- 
rations of conductors. High-speed computational techniques permit the use of 
elaborate trial functions involving several parameters. It must be remarked, how- 
ever, that the need for a Green function satisfying Dirichlet boundary conditions 
in the lower bound makes the error estimate nontrivial. Further consideration of 
this technique for calculating capacitances is left to the problems at the end of 
this and subsequent chapters. 

1.12. Variational Approach to the Solution of the Laplace 
and Poisson Equations 

Variational methods play prominent roles in many areas of classical and quantum 
physics. They provide formal techniques for the derivation of “equations of mo- 
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tion” and also practical methods for obtaining approximate, but often accurate, 

solutions to problems not amenable to other approaches. Estimates of resonant 
frequencies of acoustic resonators and energy eigenvalues of atomic systems 
come readily to mind. 

The far-reaching concept that physical systems in equilibrium have minimal 
energy content is gencralized to the consideration of energy-like functionals. As 
an example, consider the functional 

1 
Ty] = 3 | vw. vud's = IP gy d*x (1.63) 

where the function (x) is well-behaved inside the volume V and on its surface 

S (which may consist of several separate surfaces), and g(x) is a specified 
“source” function without singularities within V. We now examine the first-order 
change in the functional when we change ys — + di, where the modification 

5y/(x) is infinitesimal within V. The difference &{ = I[ ys + dy] — I [yp] is 

81 = f Vu V(Sui) dx — if gop de ++ (1.64) , v 

The neglected term is semipositive definite and is second order in dy, Use of 
Green’s first identity with @ = dy and y = yields 

= _ywy — 3 ou ; a= vy slovdr +f ay da (1.65) 

Provided 6y = 0 on the boundary surface S$ (so that the surface integral vanishes), 
the first-order change in /[y] vanishes if ys(x) satisfies 

Vy = -8 (1.66) 

Recalling that the neglected term in (1.64) is semipositive definite, we see that 
I[y] is a stationary minimum if y satisfies a Poisson-like equation within the 
volume V and the departures 6y vanish on the boundary. With ¢—> ®andg—> . 
p/€y, the minimization of the functional yields the “*equation of motion” of the 

electrostatic potential in the presence of a charge density and Dirichlet boundary 
conditions ( given on S and so 6@ = 0 there). 

The derivation of the Poisson equation from the variational functional is the 
formal aspect. Equally important, the stationary nature of the extremum of /[y] 
permits a practical approach to an approximate solution for W(x). We choose a 

flexible “trial” function w(x) = AV(x, a, B,...) that depends on a normalization 

constant A and some number of other parameters, «, 8,..., and is constructed 

to satisfy the given boundary conditions on the surface S. The function ‘W¥ may 

be a sum of terms with the parameters as coefficients, or a single function of 
several parameters; it should be chosen with some eye toward the expected form 

of the solution, (Intuition plays a role here!) Calculation of J[¥] gives the func- 
tion, /(A, a, B, . . .). We now vary the parameters to locate the extremum (actually 
a minimum) of /(A, a, B,...). With the optimum parameters, the trial solution 

is the best possible approximation to the true solution with the particular func- 
tional form chosen. For the Laplace equation, the normalization constant is de- 
termined by the Dirichlet boundary values of #. For the Poisson equation, it is 
determined by the source strength g(x}, as well as the boundary values on S. 

A different functional is necessary for Neumann boundary conditions. Sup- 
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pose that the boundary conditions on & are specified by dip/an 
locates a point on the surface S. The appropriate functional is 

F(s), where s 

1 
If] = aa Vib Vue dex — L gud? x — $ fda (1.67) 

‘The same steps as before with ¢ > y + dy lead to the first-order difference in 

functionals, 

él = i (-Vw — g] by d?x + $ (2 - 19) dy da (1.68) 

The requirement that / vanish independent of Sy implies 

Vy = —gwithinV and oe = f(s)on S$ (1.69) 

Again the functional is a stationary minimum for wsatisfying (1.69). Approximate 
solutions can be found by the use of trial functions that satisfy the Neumann 
boundary conditions, just as described above for Dirichlet boundary conditions. 

As a simple application to the Poisson equation, consider the two-dimen- 
sional problem of a hollow circular cylinder of unit radius centered on the z-axis, 

with an interior source density g(x) = g(p), azimuthally symmetric and inde- 
pendent of z. The potential vanishes at p = 1. The “equation of motion” for 
(a function of p alone) in polar coordinates is 

gd (- 2#) = -g(9) (1.70) 

For trial functions we consider finite polynomials in powers of (1 — p) and p. A 
three-parameter function of the first type is 

W, = a(l — p) + Bl — py + y(t — py (a.7y 

‘This choice might seem natural because it automatically builds in the boundary 
condition at p = t, but it contains a flaw that makes it a less accurate represen- 
tation of y than the power series in p. The reason is that, if the source density ¢ 
is well behaved and finite at the origin, Gauss’s law shows that ¢ has a maximum 
or minimum there with vanishing slope. The requirements at both the origin and 
p = 1 are met by a three-paramcter trial function in powers of p: 

W, = ap’ + Bp’ + yp" — (a + B+ y) (1.72) 

We expect this trial function in general to be a better approximation to # than 

, for the same number of variational parameters. [We could, of course, impose 

the constraint, a, + 28, + 3y, = 0 on (1.71) to get the proper behavior at the 
origin, bul that would reduce the number of parameters from three to two.] 

The functional integral (1.63) for 2 is casily shown to be 

t 1, 6 4 3, 
aq [l¥l = [3 +zaBtzayt 48 

(1.73) 

+ & By + | — ea + es8 + ery] 

where e, = fi g(o)(o" — 1) pdp. 
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The integral for ¥, bas the same form as (1.73), but different coefficients. 

As described above, we seek an extremum of (1.73) by setting the partial deriv- 
atives with respect to the parameters a, 8, and y equal to zero. The three coupled 

algebraic linear equations yield the “best” values, 

a = 225) — 420e; + 210e, 
450 B= —420e) + ane ey — 420e, (1.74) 

4 
y = 210e, — 420e, + Shes 

These values can be inserted into (1.73) to give /[Vo]min as a not very illuminating 

function of the ¢,,. One would then find that the ‘kinetic’ (first) bracket was 

equal to half the “potential” (second) bracket and opposite in sign, a character- 
istic of the extremum. 

To go further we must specify g(p). The results for the best trial functions 
W, and W, are shown in Fig. 1.9 for the source density, 

g(p) = —S(L — p) + 104p°(1 — p)? (1.75) 

The choice of source is arbitrary and is chosen to give a potential that is not quite 
featureless. The “best” parameters for V, are w = 2.915, 8 = -7.031, and y = 
3.642. The variational integral has the value, [[W2}min = —1.5817, compared to 
A[Plexacr = —1.6017. The fractional error is 1.3%. 

Note that the trial function V, fails rather badly for p < 0,3 because it does 
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Figure 1.9 Comparison of the exact solution (p) (solid curve) with two variational 
approximations for the potential, ¥; (dotted curve) and ¥; (dashed curve). The charge 
density (1.75) is indicated by the dash-dot curve (arbitrary scale). 
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not respect the vanishing slope at p = 0. Nonetheless, it gives {[V)}nin = — 1.5136, 
which is somewhat, but not greatly. worse than W, (5.5% error). The insensitivity 
of /[P] to errors in the trial function illustrates both a strength and a weakness 
of the variational method. If the principle is used to estimate eigenvalues (related 

to the value of /[¥]}, it does well. Used as a method of estimating a sotution 
=~ W, it can fail badly, at least in parts of the configuration space. 

The reader will recognize from (1.70) that a polynomial source density leads 
to an exact polynomial solution for , but the idea here is to illustrate the vari- 

ational method, not to demonstrate a class of explicit solutions. Further illustra- 
tion is left to the problems at the end of this and later chapters. 

1.13 Relaxation Method for Two-Dimensional 
Electrostatic Problems 

The relaxation method is an iterative numerical scheme (sometimes called iter- 

ative finite difference method) for the solution of the Laplace or Poisson equation 

in two dimensions. Here we present only its basic ideas and its connection with 
the variational method. First we consider the Laplace equation with Dirichlet 
boundary conditions within a two-dimensional region S with a boundary contour 
C, We imagine the region S spanned by a square lattice with lattice spacing h 
{and the boundary contour C approximated by a step-like boundary linking lat- 
tice sites along C). The independent variables are the integers (é, j) specifying 
the sites; the dependent variables are the trial values of the potential w(i, /) at 
each site. The potential values on the boundary sites are assumed given. 

To establish the variational nature of the method and to specify the iterative 
scheme, we imagine the functional integral /[y| over S as a sum over small do- 
mains of area h”, as shown in Fig. 1.10a. We consider the neighboring trial values 
of the potential as fixed, while the value at the center of the subarea is a varia- 
tional quantity to be optimized. The spacing is small enough to permit us to 
approximate the derivatives in, say, the northeast quarter of the subarea by 

Oe) ses Migensegye. if Ob)e cede (2) =i wy (2). 5, (dn ~ vo) 
and similarly for the other three quarters. The functional integral over the north- 
east quarter is 

1 Ah2 { ‘ayy 2 ay 2 

mez, af, | (3) + yy, 
1 (1.76) 

wg [Co — By)? + Wo ~ Hd?) 
The complete integral over the whole (shaded) subarea is evidently 

1 
T= 7 [Go — du)? + (ho ~ dey? + (do — ds) + (do — dw)"] (1.77) 

Minimizing this integral with respect to #% gives the optimum valuc, 

1 
Weprimaum = 4 Cn + Ye + ds + tw) (1.78) 
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Ws 

@ (b) 
Figure 1.19 (a) Enlargement of one of the subarcas in the functional integral (shaded). 
The trial values of the potential at the neighboring sites are labeled Yin, Ws. Ue, and yw, 
while the value at the center of the subarea is yf. (6) Onc possible itcration is to 
replace the trial values at the lattice sites (©) with the average of the valucs at the 
surrounding sites (x). 

The integral is minimized if f is equal to the average of the values at the “cross” 
points. 

Now consider the whole functional integral, that is, the sum of the integrals 
over all the subarcas. We guess a set of yi. j) initially and approximate the 
functional integral {[y] by the sum of terms of the form of (1.77), Then we go 
over the lattice and replace half the values, indicated by the circles in Fig. 1.10b, 
by the average of the points (crosses) around them. The new set of trial values 
(i, j) will evidently minimize /[¥] more than the original set of values; the new 
set will be closer to the correct solution. Actually, there is no need to do the 
averaging for only half the points—that was just a replication for half of the 
subareas of the process for Fig. t.10a. 

There arc many improvements that can be made. One significant one con- 
cers the type of averaging. We could have taken the average of the values at 
the corners of the large square in Fig. 1.10a instead of the “cross” values. Or we 
could take some linear combination of the two. It can be shown (see Problem 
1,22) by Taylor series expansion of any well-behaved function F(x, y) that a 
particular weighted average, 

(FG, y))) = acy # : (F). (1.79) 

where the “cross” and “square” averages are 

(FS We = : [Forth y) + F(x, v+h) + Fh, y) + F(x, y-h)} (1.802) 

(Fle Whe = 5 FAC, yt) + Fecth, yh) 
(1.80b) 

+ Fax-h, yt+h) + Fax-h, y—-h)| 

yields 

(FO, y))) = Fey) + - WR + a hY V(V2F) + O(h*) (1.81) 
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Tn (1.81) the Laplacians of F are evaluated at (x, y). If F(x, y) is a solution of the 
Laplace equation, the weighted averaging over the eight adjacent lattice sites in 
(1.79) gives F at the center with corrections only of order A®. Instead of (1.78), 
which is the same as (1.80a), a better iteration scheme uses Yrew(é, j) = (Yi f))) 

+ O(h°), With cither the “cross” or “square” averaging separately, the error is 
O(n‘). The increase in accuracy with ((y)) is at the expense of twice as much 

computation for cach lattice site, but for the same accuracy, far fewer lattice sites 
are needed: ((N)) = O((N)*), where ((N)) is the number of sites needed with 
((q)) and (N) is the corresponding number with the ‘“‘cross” or “‘squarc” average. 

Equation (1.81) has an added advantage in application to the Poisson equa- 
tion, V°ys = —g. The terms of order f? and h* can be expressed directly in terms 
of the specified charge density and the simplest approximation for its Laplacian. 
It is easy to show that the new value of the trial function at (i, /) is generated by 

a | eee 
sad +5 (gi, Ye + O(n) (1.82) 

where (g), is the “cross” average of g, according to (1.80a). 

A basic procedure for the iterative numerical solution of the Laplace or 
Poisson ¢quation in two dimensions with Dirichlet boundary conditions is as 
follows: 

Yrowlés I) = Kyi, f))) + 

1. A square lattice spacing h is chosen and the lattice sites, including the sites 
on the boundary, are labeled in some manner [which we denote here as (i, /)]. 

2. The values of the potential at the boundary sites are entered in a table of the 
potential at all sites. 

3. A guess is made for the values, called ®\y(¢, /), at all interior sites. A constant 

value everywhere is easiest. These are added to the table or array of “start- 
ing” values, 

4, The first iteration cycle begins by systematically going over the lattice sites, 
one by one, and computing ((P(i, j))) with (1.79) or one of the averages in 
(1.80). This quantity (or (1.82) for the Poisson cquation) is entered as 
®,.4(i, f) ina table of “new” values of the potential at each site. Note that 

the sites next to the boundary benefit from the known boundary values, and 

so their (()) values are likely initially to be closer to the ultimate values of 

the potential than those for sites deep in the interior. With each iteration, 
the accuracy works its way from the boundaries into the interior. 

5. Once all interior sites have been processed, the set of Para(i, /) is replaced 

by the set of @,...(é, /}, and the iteration cycle begins again. 

6. Iterations continue until some desired level of accuracy is achieved. For ex- 

ample, one might continue iterations until the absolute vatue of the differ- 

ence of old and new values is less than some preassigned value at every 

interior site. 

The scheme just outlined is called Jacobian iteration. It requires two arrays 
of values of the potential at the lattice sites during each iteration. A better 
scheme, called Gauss-Seidel iteration, employs a trivial change: one replaces 
Pau, f) with ®,..(é, /) as soon as the latter is determined. This means that during 
an iteration one benefits immediately from the improved values. Typically, at any 
given site, ({)}) is made up half of old values and half of new ones, depending 
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on the path over the lattice. There are many other improvements possible— 
consult Press et al., Numerical Recipes, or some of the references cited at the end 

of the chapter. The relaxation method is also applicable to magnetic field prob- 
lems, as described briefly in Section 5.14. 

References and Suggested Reading 

On the mathematical side, the subject of delta functions is treated simply but rigor- 
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Lighthill 
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Kellogg 
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Readers interested in variational methods applied to electromagnetic problems can 
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Cairo and Kahan 
Collin, Chapter 4 
Sadiku, Chapter 4 
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Polya and Szegi. 

for elegant and powerful mathematical techniques. 

The classic references to relaxation methods are the two books by R. V. Southwell: 

Relaxation Methods in Engineering Science, Oxford University Press, Oxford 
(1940). 
Relaxation Methods in Theoretical Physics, Oxford University Press, Oxford 
(1946). 

Physicists will be more comfortable with the second volume, but much basic material is 

in the first, More modern references on relaxation and other numerical methods are 
Sadiku 
Zhou 

Problems 

1.1 Use Gauss’s theorem [and (1.21) if necessary] to prove the following: 
(a) Any excess charge placed on a conductor must lie entirely on its surface. (A 

conductor by definition contains charges capable of moving freely under the 
action of applied electric fields.) 
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{b) A closed, holiow conductor shields its interior from fields due to charges out- 
side, but does not shield its exterior from the fields due to charges placed 
inside it. 

(c) The electric field at the surface of a conductor is normal to the surface and 
has a magnitude aie), where o is the charge density per unit area on the 
surface. 

The Dirac delta function in three dimensions can be taken as the improper limit as 

a ~> 0 of the Gaussian function 

1 

2a? 
Dee, x.y, 2) = mya ‘ex| - (+t “| 

Consider a general orthogonal coordinate system specified by the surfaces u = 
constant, v = constant, w = constant, with length clements di/U, dv/V, dw/W in 

the three perpendicular directions. Show that 

8(x — x") = (0 — uv’) 8(v — v') dw — ww’) UVW 

by considering the limit of the Gaussian above. Note that as @ ~> 0 only the infin- 
itesimal length element need be used for the distance between the points in the 

exponent, 

Using Dirac delta functions in the appropriate coordinates, express the following 
charge distributions as three-dimensional charge densities p(x). 

(a) In spherical coordinates, a charge Q uniformly distributed over a spherical 
shell of radius R. 

{b) In cylindrical coordinates, a charge A per unit length uniformly distributed 
over a cylindrical surface of radius 6. 

{c) In cylindrical coordinates, a charge Q spread uniformly over a flat circular 
disc of negligible thickness and radius R. 

(d) ‘The same as part (c), but using spherical coordinates. 

Euch of three charged spheres of radius a, one conducting, one having a uniform 
charge density within its volume, and one having a sphcrically symmetric charge 
density that varies radially as r” (#7 > —3), has a total charge Q. Use Gauss’s theorem 
to obtain the electric ficlds both inside and outside cach sphere. Sketch the behavior 
of the fields as a function of radius for the first two spheres, and for the third with 
n=-2,+2. 

The time-averaged potential of a neutral hydrogen atom is given by 

qe" ar 
ib 1+ > 

°° tae, 7 ( =) 

where g is the magnitude of the electronic charge, and a ' = a/2, do being the 
Bohr radius. Find the distribution of charge (both continuous and discrete) that will 
give this potential and interpret your result physically. 

A simple capacitor is a device formed by two insulated conductors adjacent to each 
other. [f equal and opposite charges are placed on the conductors, there will be a 
certain difference of potential between them. The ratio of the magnitude of the 
charge on one conductor to the magnitude of the potential difference is called the 
capacitance (in SE units it is measured in farads). Using Gauss’s law, calculate the 

capacitance of 

(a) two large, flat, conducting sheets of area A, separated by a small distance a; 

(b) two concentric conducting spheres with radii a, b (b > a); 

{e) two conceniric conducting cylinders of length L, large compared to their radii 
a,b (b > a). 
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(a) What is the inner diameter of the outer conductor in an air-filled coaxial cable 

whose center conductor is a cylindrical wire of diameter 1 mm and whose 

capacitance is 3X ]07! F/m? 3 x 107? Fim? 
Two long, cylindrical conductors of radii a, and a, are parallel and separated by a 
distance d, which is large compared with either radius. Show that the capacitance 
per unit length is given approximately by : c= sal) 

a 

where a is the geometrical mean of the two radii. 
Approximately what gauge wire (state diameter in millimeters) would be nec- 

essary to make a two-wire transmission line with a capacitance of 1.2 x 107'! F/m 
if the separation of the wires was 0.5 cm? J.5 em? 5.0 cm? 

(a) For the three capacitor geometries in Problem 1.6 calculate the total electro- 

static energy and express it alternatively in terms of the equal and opposite 
charges Q and -Q placed on the conductors and the potential difference 

between them. 

(b) Sketch the energy density of the electrostatic field in each case as a function 
of the appropriate linear coordinate. 

Calculate the attractive force between conductors in the parallel plate capacitor 

(Problem 1.6a) and the parallel cylinder capacitor (Problem 1.7) for 

(a) fixed charges on each conductor; 

{b) fixed potential difference between conductors. 

Prove the mean value theorem: For charge-free space the value of the electrostatic 
potential at any point is equal to the average of the potential over the surface of 
any sphere centered on that point. 

Use Gauss’s theorem to prove that at the surface of a curved charged conductor, 

the normal derivative of the electric field is given by 

where R, and R; are the principal radii of curvature of the surface. 

Prove Green's reciprocation theoreni: If ® is the potential due to a volume-charge 
density p within a volume V and a surface-charge density o on the conducting 
surface S bounding the volume V, while ®' is the potential due to another charge 
distribution p’ and o”, then 

| pe dx + I a®' da = ik PP dx + [ o'® da 
Vv s v s 

Two infinite grounded parailel conducting planes are separated by a distance d. A 
point charge q is placed between the planes. Use the reciprocation theorem of 

Green to prove that the total induced charge on one of the planes is equal to (—q) 
times the fractional perpendicular distance of the point charge from the other plane. 
(Hint: As your comparison electrostatic problem with the same surfaces choose one 
whose charge densities and potential are known and simple.) 

Consider the electrostatic Green functions of Section 1.10 for Dirichlet and 
Neumann boundary conditions on the surface S bounding the volume V. Apply 
Green’s theorem (1.35) with integration variable y and @ = G{x, y), # = G(x’, y). 
with V?, G(z, y) = —4a8(y - 2). Find an expression for the difference [G(x, x’) — 
G(x’, x}] in terms of an integral over the boundary surface S. 
(a) For Dirichlet boundary conditions on the potential and the associated bound- 

ary condition on the Green function, show that Gp{x, x’ must be symmetric 
in x and x’. 
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(b) For Neumann boundary conditions, use the boundary condition (4.45) for 
Gtx, x’) to show that G,(x, x’) is not symmetric in general, but that Gx, 
x’) — F(x) is symmetric in x and x’, where 

1 
FO) = 5 § Gulx. y) da, 

(c) Show that the addition of F(x) to the Green function does not affect the po- 
tential (x). See problem 3.26 for an example of the Neumann Green function. 

Prove Thomson's theorem: If a number of surfaces are fixed in position and a given 

total charge is placed on cach surface, then the electrostatic energy in the region 
bounded by the surfaces is an absolute minimum when the charges are placed so 
that every surface is an equipotential, as happens when they are conductors, 

Prove the following theorem: If a number of conducting surfaces are fixed in po- 
sition with a given total charge on each, the introduction of an uncharged, insulated 
conductor into the region bounded by the surfaces lowers the electrostatic energy. 

A volume V in vacuum is bounded by a surface $ consisting of several separate 
conducting surfaces S,. One conductor is held at unit potential and all the other 
conductors at zero potential. 

(a) Show that the capacitance of the onc conductor is given by 

C=6@ f |VOP ax 

where ©(x) is the solution for the potential. 

{b) Show that the true capacitance C is always less than or equal to the quantity 

cy = «| IVYP dx 

where ¥ is any trial function satisfying the boundary conditions on the con- 
ductors. This is a variational principle for the capacitance that yields an upper 
bound. 

Consider the configuration of conductors of Problem 1.17, with all conductors ¢x- 
cept S, held at zero potential. 

(a) Show that the potential &(x) anywhere in the volume V and on any of the 
surfaces S, can be written 

(x) = zb. ox G(x, x’) da’ 

where o}(x') is the surface charge density on S, and G(x, x’) is the Green 
function potential for a point charge in the presence of all the surfaces that 
are held at zero potential (but with S, absent). Show also that the electrostatic 

energy is 

Bie, 
t, da t. da’ ofx)G(x. x)a,(x') 

where the integrals are only over the surface S,. 

(b) Show that the variational expression 

7 da ¢, da’ o(x)G{x, x'Jo(x') 

self. o(x) aa} 

with an arbitrary integrable function g(x) detined on S,. is stationary for small 
variations of o away from o;. Use Thomson's theorem to prove that the 

Cfo] = 
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reciprocal of C ‘[o] gives a lower bound to the true capacitance of the con- 
ductor S$). 

For the cylindrical capacitor of Problem 1.6c, evaluate the variational upper bound 
of Problem 1.17b with the naive triat function, ¥,{p) = (6 — p){b — a), Compare 

the variational result with the exact result for b/a = 1,5, 2, 3. Explain the trend of 
your results in terms of the fuactional form of ¥,. An improved trial function is 
treated by Collin (pp. 275-277). 

In estimating the capacitance of a given configuration of conductors, comparison 
with known capacitances is often helpful. Consider two configurations of n conduc- 
tors in which the (7 — 1) conductors held at zero potential are the same, but the 
one conductor whose capacitance we wish to know is different. In particular, let the 
conductor in one configuration have a closed surface S, and in the other configu- 

ration have surface Sj, with Sj totally inside S,. 

(a) Use the extremum principle of Section 1.12 and the variational principle of 
Problem 1.17 to prove that the capacitance C’ of the conductor with surface 
S| is less than or equal to the capacitance C of the conductor with surface S; 
that encloses Sj. 

{b) Set upper and lower limits for the capacitance of a conducting cube of side a. 
Compare your limits and also their average with the numerical value, 
C = 0.655(4 7eya). 

(c) By how much do you estimate the capacitance per unit length of the two-wire 
system of Problem 1.7 will change (larger? smaller?) if one of the wires is 
replaced by a wire of square cross section whose side is equal to its diameter? 

A two-dimensional potential problem consists of a unit square area (0 = x = 1, 
0 = y = 1) bounded by “surfaces” held at zero potential. Over the entire square 
there is a uniform charge density of unit strength (per unit length in z). 

(a) Apply the variational principle (1.63) for the Poisson equation with the “vari- 
ational” trial function V(x, y) = A+ x(1 — x) {1 — y) to determine the best 
value of the constant A. (I use quotation marks around variational because 
there are no parameters to vary except the overall scale.] 

(b) The exact (albeit series) solution for this problem is [see Problems 2.15 and 
2.16] 

dneyb(x, y) = 18 > sin{(2m + Dax] {1 _ cosh[(2m + 1)aty = 2} 
wiimy m+ i) cosh[(2m + 1) 7/2] 

For y = 0.25 and y = 0.5, plot and compare the simple variational solution of 
part a with the exact solution as functions of x. 

Two-dimensional relaxation calculations commonly use sites on a square lattice with 
spacing Ax = Ay = h, and label the sites by (i, j). where i, j are integers and x, = 
ih + xo, y; = jh + yo. The value of the potential at (i, j) can be approximated by 
the average of the values at neighboring sites. [Recall the relevant theorem about 
harmonic functions.) But what average? 

(a) If F(x, y) is a well-behaved fuaction in the neighborhood of the origin, but 
not necessarily harmonic, by explicit Taylor series expansions, show that the 
“cross” sum 

S. = Fh, 0) + Fh) + Ah, 0) + FRO, —hy 

can be expressed as 
i 

S. = 4F(0, 0) + RF + Fane + Fy) + OCF) 
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Similarly, show that the “square” sum, 

Ss = Fh h) + FC hy h) + K(k, ~h) + Ph, -h) 

can be expressed as 

ne nt 
Ss = 4F(0, 0) + 2WF — <7 (Fes + Fyyvy) + z VWF) + O(h*) 

Here F,,,, is the fourth partial derivative of F with respect to x, evaluated at 

x=0,y = 0, ete. If VF = 0, the averages S,/4 and S,/4 each give the value of 

F(0, 0), correct to order #* inclusive. Note that an improvement can be ob- 
tained by forming the “improved” average, 

1 1 
(FO, O) = = [s. + s| 

where 

3 payp 4 B yyy, 6 (FO, 0))) = FO, 0) + To WPF + 77 VWF) + Oh) 

If VF = 0, then S$ gives F(0, 0), correct to order A’ inclusive. For Poisson's 
equation, the charge density and its lowest order Laplacian can be inserted 
for the same accuracy. 

1.23 A transmission line consists of a long straight conductor with a hollow square region 
in its interior, with a square conductor of one-quarter the arca of the hollow region 
centered in the empty space. with edges parallel to the inner sides of outer con- 
ductor. If the conductors are raised to different potentials, the potential and electric 
field in the space between them exhibit an eightfold symmetry; the basic unit is 
sketched in the accompanying figure. The efficacy of the relaxation method in de- 
termining the properties of the transmission line can be illustrated by a simple 
calculation. 

(a) 

{b) 

{c) 

Using only the four interior points indicated in the figure, write down the 
relaxation cquation for each point for the ‘‘cross” and the “improved” aver- 
aging schemes (defined in Problem 1.22) if the inner conductor has & = 100 
V and the outer has = 0. By performing cither the relaxation iteration 
process or solving the set of algebraic equations for each scheme, find esti- 
mates for the potential at each of the four points for the two schemes. 

From the results of part a make the best estimate (or estimates) you can for 
the capacitance per unit length of the transmission fine. 

(Optional) Using your favorite computational tools, repeat the relaxation cal- 
culation with haif the lattice spacing (21 interior points) and compare. 

Answer: ©, = 48.87 V, ®; = 47.18 V, &, = 38.34 V, @, = 19.8] V and C = 10.23 
€) Fim [from an accurate numerical calculation]. 

Problem 1.23 
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1.24 Consider solution of the two-dimensional Poisson equation problem of Problem 
1.21, a unit square with zcro potential on the boundary and a constant unit charge 
density in the interior, by the technique of relaxation. Choose h = 0.25 so that there 
are nine intcrior sites. Use symmetry to reduce the number of needed siles to three, 
at (0.25, 0.25), (0.5, 0.25}, and (0.5, 0.5). With so few sites, it is easy to do the 
iterations with a block of paper and a pocket calculator, but suit yourself. 

{a) Use the “improved grid” averaging of Problem 1.22 and the simple (Jacobian) 
iteration scheme, starting with 47e, = 1.0 at all three interior sites, Do at 
least six itcrations, preferably eight or ten. 

(b) Repeat the iteration procedure with the same starting values, but using Gauss— 
Svidel iteration. 

(ec) Graph the two sets of results of each iteration versus iteration number and 

compare with the exact values, 47re,(0.25, 0.25) = 0.5691, 4re,(0.5, 0.25) 
= 0.72085, 47€9(0.5, 0.5) = 0.9258. Comment on rate of convergence and final 
accuracy. 



CHAPTER 2 

Boundary-Value Problems 
in Electrostatics: I 

Many problems in electrostatics involve boundary surfaces on which cither the 

potential or the surface-charge density is specified. The formal solution of such 
problems was presented in Section 1.10, using the method of Green functions. 
In practical situations (or even rather idealized approximations to practical sit- 
uations) the discovery of the correct Green function is sometimes casy and some- 
times not. Consequently a number of approaches to electrostatic boundary-value 
problems have been developed, some of which are only remotely connected to 
the Green function method. In this chapter we will examine three of these special 
techniques: (1) the method of images, which is closely related to the use of Green 
functions; (2) expansion in orthogonal functions, an approach directly through 
the differential equation and rather remote from the direct construction of a 
Green function; (3) an introduction to finite element analysis (FEA), a broad 
class of numerical methods. A major omission is the use of complex-variable 
techniques, including conformal mapping, for the treatment of two-dimensional 
problems. The topic is important, but Jack of space and the existence of self- 
contained discussions elsewhere accounts for its absence. The interested reader 
may consult the references cited at the end of the chapter. 

2.1 Method of Images 

The method of images concerns itself with the problem of one or more point 
charges in the presence of boundary surfaces, for example, conductors either 
grounded or held at fixed potentials. Under favorable conditions it is possible to 
infer from the geometry of the situation that a small number of suitably placed 
charges of appropriate magnitudes, external to the region of interest, can simu- 

late the required boundary conditions. These charges are called image charges, 
and the replacement of the actual problem with boundaries by an enlarged region 
with image charges but not boundaries is called the method of images. The image 

charges must be external to the volume of interest, since their potentials must be 
solutions of the Laplace equation inside the volume; the “particular integral” 
(i.c., solution of the Poisson equation) is provided by the sum of the potentials 

of the charges inside the volume. 
A simple example is a point charge located in front of an infinite plane con- 

ductor at zcro potential, as shown in Fig. 2.1. It is clear that this is equivalent to 
the problem of the original charge and an equal and opposite charge located at 
the mirror-image point behind the plane defined by the position of the conductor. 

57 
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2.2 

S 

N 

T 
1 
! Figure 2.1. Solution by method of 
| images. The original potential problem 
4 is on the left, the equivalent-image 
H problem on the right. 

Point Charge in the Presence of a Grounded 
Conducting Sphere 

As an illustration of the method of images we consider the problem illustrated 
in Fig. 2.2 of a point charge g located at y relative to the origin, around which is 
centered a grounded conducting sphere of radius a. We seek the potential (x) 
such that (|x| = a) = 0. By symmetry it is evident that the image charge q’ 
(assuming that only one image is necded) will lic on the ray from the origin to 
the charge g. If we consider the charge q outside the sphere, the image position 
y’ will lie inside the sphere. The potential due to the charges q and q’ is: 

game, — q'l4rey 

PO) = yl ix-y'l Qu1) 

We now must try to choose q’ and |y’| such that this potential vanishes at |x| = a. 
If nis a unit vector in the direction x, and n'a unit vector in the direction y, then 

_ _ glamey q'lArey 

P(x) = jan — yn’| [xn — y‘n'] 22) 

If x is factored out of the first term and y' out of the second, the potential at 
x = a becomes: 

game, _g'Aréy 
Ox = a) = (2.3) 

Figure 2.2. Conducting sphere of radius 
a, with charge q and image charge q'. 
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From the form of (2.3) it will be seen that the choices: 

Got! ew 
a y aoy 

make ®(x = a) = 0, for all possible values of n-n 
position of the image charge are 

. Hence the magnitude and 

g=-2 2f 2.4 q yh Y (2.4) 

We note that, as the charge g is brought closer to the sphere, the image charge 
grows in magnitude and moves out from the center of the sphere. When gq is just 
outside the surface of the sphere, the image charge is equal and opposite in 
magnitude and lies just beneath the surface. 

Now that the image charge has been found, we can return to the original 
problem of a charge q outside a grounded conducting sphere and consider various 
effects. The actual charge density induced on the surface of the sphere can be 
calculated from the normal derivative of @ at the surface: 

Ls 

Sahl (:) ———= 
- ome od a2 xva be "(14 $-28 ) 

y 
~ cos ¥ 
y 

ie 
and oF ~EQ— a (2.5) 

where is the angle between x and y. This charge density in units of —q/47a’ is 
shown plotted in Fig. 2.3 as a function of y for two values of y/a. The concentra- 

coed 

Figure 2.3 Surface-charge density o induced on the grounded sphere of radius @ as a 

result of the presence of a point charge q located a distance y away from the center of 
the sphere. ois plotted in units of —g/47a? as a function of the angular position y away 
from the radius to the charge for y = 2a, 4a. Inset shows lines of force for v = 2a. 
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dF = (07/2egida 

Figure 2.4 

tion of charge in the direction of the point charge q is evident, especially for 
yla = 2. It is easy to show by direct integration that the total induced charge on 
the sphere is equal to the magnitude of the image charge, as it must be, according 
to Gauss’s law. 

The force acting on the charge q can be calculated in different ways. One 
(the easiest) way is to write down immediately the force between the charge ¢ 
and the image charge q’. The distance between them is y — y' = y(1 ~ a/y?). 
Hence the attractive force, according to Coulomb's law, is: 

Lg fa : @\? 

l= ane (2) (0 -§) sy 
For large separations the force is an inverse cube law, but close to the sphere it 
is proportional to the inverse square of the distance away from the surface of the 
sphere. 

The alternative method for obtaining the force is to calculate the total force 
acting on the surface of the sphere. The force on each element of area da is 
(o7/2€y) da, where ois given by (2.5), as indicated in Fig. 2.4. But from symmetry 
it is clear that only the component parallel to the radius vector from the center 
of the sphere to q contributes to the total force. Hence the total force acting on 
the sphere (equal and opposite to the force acting on q) is given by the integral: 

2 2 
__ ¢ a _@ | cos ¥ 

m= Sa) (1-3) (2% ) Were 
1+ 7 cos ¥ 

Integration immediately yields (2.6). 
The whole discussion has been based on the understanding that the point 

charge q is outside the sphere. Actually, the results apply equally for the charge 
q inside the sphere. The only change necessary is in the surface-charge density 
(2.5), where the normal derivative out of the conductor is now radially inward, 
implying a change in sign. The reader may transcribe all the formulas, remem- 
bering that now y = a. The angular distributions of surface charge are similar to 
those of Fig. 2,3, but the total induced surface charge is evidently equal to ~—q, 
independent of y. 

2.3 Point Charge in the Presence of a Charged, Insulated, 
Conducting Sphere 

In the preceding section we considered the problem of a point charge g near a 
grounded sphere and saw that a surface-charge density was induced on the 
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sphere. This charge was of total amount 4’ = —ag/y, and was distributed over 
the surface in such a way as to be in equilibrium under all forces acting. 

If we wish to consider the problem of an insulated conducting sphere with 
total charge Q in the presence of a point charge g, we can build up the solution 

for the potential by lincar superposition. In an operational sense, we can imagine 
that we start with the grounded conducting sphere (with its charge q' distributed 
over its surface). We then disconnect the ground wire and add to the sphere an 
amount of charge (Q — q’). This brings the total charge on the sphere up to Q. 

To find the potential we merely note that the added charge (Q — q’) will dis- 
tribute itself uniformly over the surface, since the electrostatic forces due to the 
point charge q are already balanced by the charge q‘. Hence the potential due 
to the added charge (Q — q') will be the same as if a point charge of that mag- 
nitude were at the origin, at least for points outside the sphere. 

The potential is the superposition of (2.1) and the potential of a point charge 
(Q — q’) at the origin: 

; a+ 4 
(x) = a ng (2.8) 

The force acting on the charge q can be written down directly from Coulomb's 
law. It is directed along the radius vector to q and has the magnitude: 

3 2 22 

--4o- ero) e9) 
TE Y yy’ a’y y 

In the limit of y >> a, the force reduces to the usual Coulomb’s law for two small 
charged bodies, But close to the sphere the force is modified because of the 
induced charge distribution on the surface of the sphere. Figure 2.5 shows the 
force as a function of distance for various ratios of Q/q. The force is expressed 
in units of q?/47eoy?; positive (negative) values correspond to a repulsion (at- 
traction). If the sphere is charged oppositely to g, or is uncharged, the force is 
attractive at all distances. Even if the charge Q is the same sign as q, however. 
the force becomes attractive at very close distances. In the limit of Q >> q, the 

point of zcro force (unstable equilibrium point) is very close to the sphere, 
namely, at y = a(1 + Vq/Q). Note that the asymptotic value of the force is 
attained as soon as the charge q is more than a few radii away from the sphere. 

This example exhibits a general property that explains why an excess of 
charge on the surface does not immediately leave the surface because of mutual 
repulsion of the individual charges. As soon as an element of charge is removed 

from the surface, the image force tends to attract it back. If sufficient work is 

done, of course, charge can be removed from the surface to infinity. The work 

function of a metal is in large part just the work done against the attractive image 

force to remove an clectron from the surface. 

2.4 Point Charge Near a Conducting Sphere at Fixed Potential 

Another problem that can be discussed easily is that of a point charge near a 
conducting sphere held at a fixed potential Y. The potential is the same as for 
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Figure 2.5 The force on a point charge q duc to an insulated, conducting sphere of 
radius a carrying a total charge Q. Positive values mean a repulsion, negative an 
attraction. The asymptotic dependence of the force has been divided out. 47reyFy7/q" is 
plotted versus y/a for O/q = —1, 0, 1, 3. Regardless of the value of Q, the force is 
always attractive at close distances because of the induced surface charge. 

the charged sphere, except that the charge (Q — q’) at the center is replaced by 
a charge (Va). This can be seen from (2.8), since at |x] = a the first two terms 
cancel and the last term will be equal to V as required. Thus the potential is 

1 q aq Va 
(x) = - + 2.10 © = Fes | ix - yl @ ||” sai) q fa 

The force on the charge q due to the sphere at fixed potential is 

4 1 _ gay | y 
Fs | Va - — — 5 |= 2.11 

a [ Amey (y?— ay Jy es 
For corresponding values of 47ey)Va/q and Q/q this force is very similar to that 
of the charged sphere, shown in Fig. 2.5, although the approach to the asymptotic 
value (Vaq/y*) is more gradual. For Va >> g, the unstable equilibrium point has 
the equivalent location y = a(1 + $V qlAreVa). 

2.5 Conducting Sphere in a Uniform Electric Field 
by Method of Images 

As a final example of the methed of images we consider a conducting sphere of 
radius ¢ in a uniform electric field Ey. A uniform field can be thought of as being 
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produced by appropriate positive and negative charges at infinity. For example, 
if there are two charges +Q, located at positions z = +R, as shown in Fig. 2.6a, 
then in a region near the origin whosc dimensions are very small compared to R 
there is an approximatcly constant electric field Ey ~ 20/477€)R* parallel to the 

zaxis. In the limit as R, Q > ~, with Q/R? constant, this approximation becomes 

exact. 

If now a conducting sphere of radius a is placed at the origin, the potential 
will be that duc to the charges +Q at +R and their images +Qa/R at z = 

+a IR: 

ee OlAane, x Ol re, 
(P+ R? + IR cos 0)? — (ry? + R? — 2rR cos 4)'? (2.12) 

aQlare, aQld rey 

: a (dar at a 2a*r ad 
a(r+ R cose) nee G-% cos8) 

where ® has been expressed in terms of the spherical coordinates of the obser- 

vation point. In the first two terms R is much larger than r by assumption. Hence 
we can expand the radicals after factoring out R’. Similarly, in the third and 
fourth terms, we can factor out y? and then expand, The result is: 

1 22 2Q a 
@= | -Breose + 225 cove tee (2.13) 

where the omitted terms vanish in the limit R — ©. In that limit 20/4 ae)? 
becomes the applied uniform field, so that the potential is 

a 
P= “bal - £) cos @ (2.14) 

The first term (— pz) is, of course, just the potential of a uniform ficld Fy which 
could have been written down directly instead of the first two terms in (2.12). 

(@) 

@) 
Figure 2.6 Conducting sphere in a uniform electric field by the method of images. 
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The second is the potential due to the induced surface-charge density or, equiv- 
alently, the image charges. Note that the image charges form a dipole of strength 
D = QaiR X 2@/R = 476, Ea’. The induced surface-charge density is 

= 3e,£y cos 6 (2.15) 

We note that the surface integral of this charge density vanishes, so that there is 
no difference between a grounded and an insulated sphere. 

2.6 Green Function for the Sphere; General Solution 
for the Potential 

In preceding sections the problem of a conducting sphere in the presence of a 
point charge was discussed by the method of images. As mentioned in Section 

1.10, the potential duc to a unit source and its image (or images), chosen to satisfy 
homogeneous boundary conditions, is just the Green function (1.43 or 1.45) ap- 
propriate for Dirichlet or Neumann boundary conditions. In G(x, x') the variable 
x' refers to the location P’ of the unit source, while the variable x is the point P 
at which the potential is being evaluated. These coordinates and the sphere are 
shown in Fig. 2.7. For Dirichlet boundary conditions on the sphere of radius a 
the Green function defined via (1.39) for a unit source and its image is given by 
(2.1) with q > 47ey and relations (2.4). Transforming variables appropriately, 
we obtain the Green function: 

G(x, x’) = (2.16) 
Ix— x] 

Figure 2.7 
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In terms of spherical coordinates this can be written: 

1 1 
Ge + x? — Dex’ cos 7)? re, TE 

x ta’ — 2xx’ cosy 
a 

Gx, x’) = (2.17) 

where y is the angle between x and x’. The symmetry in the variables x and x’ 
is obvious in the form (2.17), as is the condition that G = 0 if either x or x' is on 
the surface of the sphere. 

For solution (1.44) of the Poisson equation we need not only G, but also 
aGian'. Remembering that n‘ is the unit normal outward from the volume of 
interest (i.e., inward along x’ toward the origin), we have 

aG (2? = a) 
an’ a(x? + a — 2ax cos yy? 

(2.18) 

[Note that this is essentially the induced surface-charge density (2.5).] Hence the 
solution of the Laplace equation outside a sphere with the potential specified on 

its surface is, according to (1.44), 

a(x? — a’) 

(x? + @ — 2ax cos yy? au (2.19) 
(x) = = | P(a, 0. b') 

4a 

where dM’ is the element of solid angle at the point (a, 6’, d’) and cos y = 

cos 8 cos 6’ + sin 6 sin 6’ cos(@ — $'). For the interior problem, the normal 
derivative is radially outward, so that the sign of dG/én' is opposite to (2.18). 
This is equivalent to replacing the factor (x? — a) by (a? — x”) in (2.19), For a 
problem with a charge distribution, we must add to (2.19) the appropriate integral 
in (1.44), with the Green function (2.17). 

2.7 Conducting Sphere with Hemispheres at Different Potentials 

As an example of the solution (2.19) for the potential outside a sphere with 
prescribed values of potential on its surface, we consider the conducting sphere 
of radius a made up of two hemispherical shells separated by a small insulating 
ring. The hemispheres are kept at different potentials. It will suffice to consider 
the potentials as + V, since arbitrary potentials can be handled by superposition 

of the solution for a sphere at fixed potential over its whole surface. The insu- 
lating ring lies in the z = 0 plane, as shown in Fig. 2.8, with the upper (lower) 

hemisphere at potential + V (—V). 

Figure 2.8 
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From (2.19) the solution for (2, 6, $) is given by the integral: 

vp 1 
P(x, 6 6) = Zi, ae'{f d(cos 6") 

; atx? ~ @) 
f. aC08.¢ } {a + x? — 2ax cos y)*? 

By a suitable change of variables in the second integral (6’ > 7 — 4, 6' > 

@’ + a), this can be cast in the form: 

(2.20) 

20 
(x, 6, 6) = uae 

1 
dd’ f d(cos 6')[(a? + x? — 2ax cas y) *? 

lo (2.21) 
-(@ + x? + 2ax cos y) *7} 

Because of the complicated dependence of cos y on the angles (6’, #’) and (6, ¢), 

equation (2.21) cannot in general be integrated in closed form. 
As a special case we consider the potential on the positive z axis, Then 

cos y = cos 6’, since 6 = 0. The integration is elementary, and the potential can 

be shown to be 

_ @-#) | (2.22) =V wea 
(2) [: wzta 

At z = a, this reduces to ® = V as required, while at large distances it goes 

asymptotically as @ = 3Va’/2z”. 
In the absence of a closed expression for the integrals in (2.21), we can ex- 

pand the denominator in power series and integrate term by term. Factoring out 

(@ + x”) from each denominator, we obtain 

Vax? — a@) (?” y 
oe |, do’ i; d(cos 6’)[(i — 2acos y) *? 

— (1 + 2ecos y)*?] 
ae (2.23) 

where a@ = ax/{a + x). We observe that in the expansion of the radicals only 
odd powers of acos y will appear: 

[(1 — 2acos y)~*? — (1 + 2ecos y) *?] = 6acos y + 35a* cos? y + +++ (2.24) 

It is now necessary to integrate odd powers of cos y over dg’ d(cos 6’): 

an 1 
I dg’ ‘i d(cos 6’) cos y = cos @ 

Qn 1 (2.25) 
i dd’ i d(cos 6’) cos*y = 4 cos 6(3 — cos?@) 

If (2.24) and (2.25) are inserted into (2.23), the potential becomes 

3Va2 (2300? — a? 95 ax? 
ix, 8, 6) = 5S ( 2) cos cE +5 Gi (3 — cos?8) + | 

(2.26) 
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We note that only odd powers of cos @ appear, as required by the symmetry of 
the problem. If the expansion parameter is (a/x*), rather than a’, the series takes 
on the form: 

2 2 
(x, 8 6) = “ [ese = ss G cos? — 5 cos °) + | (2.27) 

For large values of x/a this expansion converges rapidly and so is a useful rep- 
resentation for the potential. Even for x/a = 5, the second term in the series is 
only of the order of 2%. It is easily verified that, for cos 6 = 1, expression (2.27) 
agrees with the expansion of (2.22) for the potential on the axis. (The particular 
choice of angular factors in (2.27) is dictated by the definitions of the Legendre 
polynomials. The two factors are, in fact, P,(cos 6) and P(cos 6), and the expan- 
sion of the potential is one in Legendre polynomials of odd order. We establish 
this in a systematic fashion in Section 3.3.} Further consideration of both the 
exterior and interior problem of the two hemispheres is found in Problem 2.22. 

2.8 Orthogonal Functions and Expansions 

The representation of solutions of potential problems (or any mathematical phys- 
ics problem) by expansions in orthogonal functions forms a powerful technique 
that can be used in a large class of problems. The particular orthogonal set chosen 
depends on the symmetries or near symmetries involved. To recall the general 
properties of orthogonal functions and expansions in terms of them, we consider 
an interval (a, 6) in a variable & with a set of real or complex functions U,,(é), 
n= 1,2,..., square integrable and orthogonal on the interval (a, 6). The ortho- 
gonality condition on the functions U,,(é) is expressed by 

iM US(E)U,,() dE = 0, men (2.28) 

If n = m, the integral is nonzero. We assume that the functions are normalized 

so that the integral is unity. Then the functions are said to be orthonormal, and 
they satisfy 

h 

[ UNE lE) dé = Bim (2.29) 

An arbitrary function f(£), square integrable on the interval (a, 6), can be 
expanded in a series of the orthonormal functions U,,(é). If the number of terms 
in the series is finite (say N), 

N 

foe > 4,U,(E) (2.30) 

then we can ask for the ‘‘best’’ choice of coefficients a, so that we get the “best” 

representation of the function f(é). If ‘best’ is defined as minimizing the mean 
square error M,;: 

y= [re - 3 evs ae em) 
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it is easy to show that the coefficients are given by 

4, = [ UN EHE) dé (2.32) 

where the orthonormality condition (2.29) has been used. This is the standard 
result for the coefficients in an orthonormal function expansion. 

If the number of terms N in series (2.30) is taken larger and larger, we in- 
tuitively expect that our series representation of f(é) is “better” and “better.” 

Our intuition will be correct provided the set of orthonormal functions is com- 
plete, completeness being defined by the requirement that there exist a finite 
number N, such that for N > Ng the mean square error My can be made smaller 

than any arbitrarily small positive quantity. Then the series representation 

2D, aUilé) = H6) (2.33) 

with a,, given by (2.32) is said to converge in the mean to f(€). Physicists generally 
leave the difficult job of proving completeness of a given set of functions to the 
mathematicians. All orthonormal sets of functions normally occurring in math- 
ematical physics have been proven to be complete. 

Series (2.33) can be rewritten with the explicit form (2.32) for the coef- 
ficients a,: 

16) = [ {3 vxewsce)} ner ae eM) 
Since this represents any function f(€) on the interval (a, 5), it is clear that the 

sum of bilinear terms U7(é')U,(€) must exist only in the neighborhood of 

é' = & In fact, it must be true that 

>> UME)U,(E) = 8(& — £) (2.35) 

This is the so-called completeness or closure relation. It is analogous to the or- 
thonormality condition (2.29), except that the roles of the continuous variable é 
and the discrete index n have been interchanged. 

The most famous orthogonal functions are the sines and cosines, an expan- 
sion in terms of them being a Fourier series. If the interval in x is (—a/2, a/2), the 

orthonormal functions are 

p 2 (=) p (=) 
= sin F = COS) ——— 

ya ap ya a 

where m is a non-negative integer and for m = 0 the cosine function is 1/V/a. 
The series equivalent to (2.33) is customarily written in the form: 

F(x) = 2A0 + » [40 cos( 22) +B, sin( =) | (2.36) 

where 

2 2amx 
An = af fx) oos( 3 ) dx (237) 

uz f wo Ef tol 



Sect. 2.8 Orthogonal Functions and Expansions 69 

If the interval spanned by the orthonormal set has more than one dimension, 
formulas (2.28)-(2.33) have obvious generalizations. Suppose that the space is 
two-dimensional, and the variable € ranges over the interval (a, b} while the 

variable 4 has the interval (c, d). The orthonormal functions in cach dimension 

are U,(é) and V,,(). Then the expansion of an arbitrary function f(é, 9) is 

£m) = LY aun OVnln) (2.38) 

where 

» 
im = i, def dW novecnne n) (2,39) 

If the interval (a, ) becomes infinite, the set of orthogonal functions U,,(é) 

may become a continuum of functions, rather than a denumerable set. Then the 
Kronecker delta symbol in (2.29) becomes a Dirac delta function. An important 
example is the Fourier integral. Start with the orthonormal set of complex 
exponentials, 

1 U,(x) = a gil2nmatay (2.40) 

m=(0, +1, £2,..., om the interval (—a/2, a/2), with the expansion: 

i < 
Aes Aerie) 2.41 He) = Yq 2 At pm 

where 

1 
ee —M2amx'la) g¢ » ‘ 

An Va | ae f(x’) dx (2.42) 

Then let the interval become infinite (a > %), at the same time transforming 

2 2am 
a 

oe af" 
> =f _dma=z | dk (2.43) 

The resulting expansion, equivalent to (2.41), is the Fourier integral, 

fe) = Fe [Ate ae (244) 

where 

A(k) = zl. e F(x) dx (2.45) 

The orthogonality condition is 

fete de = ok - &) (2.46) 
Qa d-< 
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while the completeness relation is 

D {Fed 4 sa} eh) dk = B(x — x) (2.47) 
Qrl-x 

These last integrals serve as convenient representations of a delta function. We 
note in (2.44)-(2.47) the complete equivalence of the two continuous variables 
xand k. 

2.9 Separation of Variables; Laplace Equation 
in Rectangular Coordinates 

The partial differential equations of mathematical physics are often solved con- 
veniently by a method called separation of variables. In the process, one often 
generates orthogonal sets of functions that are useful in their own right. Equa- 
tions involving the three-dimensional Laplacian operator are known to be sep- 
arable in eleven different coordinate systems (see Morse and Feshbach, pp. 509, 
655). We discuss only three of these in any detail—rectangular, spherical, and 
cylindrical—beginning with the simplest, rectangular coordinates. 

The Laplace equation in rectangular coordinates is 

Pd Pd ed 

ax? * ay ee (248) 

A solution of this partial differential equation can be found in terms of three 
ordinary differential equations, all of the same form, by the assumption that the 
potential can be represented by a product of three functions, one for each 
coordinate: 

P(x, y, 2) = XO)YO)Z(Z) (2.49) 
Substitution into (2.48) and division of the result by (2.49) yields 

2 2 2 1 ax 1 @y 1 WZ 4 (2.50) 

XQ) dx?" ¥(y) dv?” ZQ@) dd? 

where total derivatives have replaced partial derivatives, since each term involves 
a function of one variable only. If (2.50) is to hold for arbitrary values of the 
independent coordinates, each of the three terms must be separately constant: 

= -# (2.51) 

where 

e+P=a¥7 

If we arbitrarily choose a* and £? to be positive, then the solutions of the three 
ordinary differential equations (2.51) are e~**, e='®, e” “""**. The potential 
(2.49) can thus be built up from the preduct solutions: 

© = ering Bg VOB: (2.52) 
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At this stage @ and B are completely arbitrary. Consequently (2.52), by linear 

superposition, represents a very large class of solutions to the Laplace equation. 

To determine @ and £ it is necessary to impose specific boundary conditions 

on the potential. As an example, consider a rectangular box, located as shown 
in Fig. 2.9, with dimensions (a, b, c) in the (x, y, z) directions. All surfaces of the 

box are kept al zero potential, except the surface z = c, which is at a potential 
V(x, y). It is required to find the potential everywhere inside the box. Starting 
with the requirement that © = 0 for x = 6, y = 0, z = 0, it is easy to see that the 
required forms of X, Y, Z are 

X = sinay 

Y = sin py (2.53) 

Z = sinh(Va? + Bz) 

To have ® = (atx = a and y = b, we must have aa = nawand Bb = mo. With 
the definitions, 

(2.54) 

Yam = 

we can write the partial potential ©,,,,, satisfying all the boundary conditions 

except one, 

Dim = SiN(@,X) SIN(BoY) SIMA YmZ) (2.55) 

The potential can be expanded in terms of these ®,,,, with initially arbitrary 

coefficients (to be chosen to satisfy the final boundary condition): 

Px, yz) = y Anm Sina, x) Sin(B,y) SIDA(YpnzZ) (2.56) 

There remains only the boundary condition ® = V(x, y) atz = ¢: 

Via, y) = Y Aim SIM @,X) SIM(BnY) SIMA Yume) (2.57) 

Figure 2.9 Hollow, rectangular box 
with five sides at zero potential, while 
the sixth {z = c) has the specified 
potential ® = V(x, v}. 



72 Chapter 2 Boundary-Value Problems in Electrostatics: ISI 

This is just a double Fourier series for the function V(x, y). Consequently the 
coefficients A,,,, are given by: 

4 » 
Aum = wb sinh(ynne) ie dx [ dy V(x, y) sin(a,,x) sin(B,v} (2.58) 

If the rectangular box has potentials different from zero on all six sides, the 
required solution for the potential inside the box can be obtained by a linear 
superposition of six solutions, one for each side, equivalent to (2.56) and (2.58). 
The problem of the solution of the Poisson equation, that is, the potential inside 
the box with a charge distribution inside, as well as prescribed boundary condi- 
tions on the surface, requires the construction of the appropriate Green function, 
according to (1.43) and (1.44). Discussion of this topic will be deferred until we 
have treated the Laplace equation in spherical and cylindrical coordinates. For 
the moment, we merely note that the solution given by (2.56) and (2.58) is equiv- 
alent to the surface integral in the Green function solution (1.44). 

2.10 A Two-Dimensional Potential Problem; 
Summation of a Fourier Series 

We now consider briefly the solution by separation of variables of the two- 
dimensional Laplace equation in Cartesian coordinates, By two-dimensional 
problems we mean those in which the potential can be assumed to be indepen- 
dent of one of the coordinates, say, z. This is usually only an approximation, but 
may hold true to high accuracy, as in a long uniform transmission line. If the 
potential is independent of z, the basic solutions of the previous section reduce 
to the products 

vinx eatery 

where « is any real or complex constant. The imposition of boundary conditions 
on the potential will determine what values of a are permitted and the form of 
the linear superposition of different solutions required. 

A simple problem that can be used to demonstrate the separation of variables 
technique and also to establish connection with the use of complex variables is 
indicated in Fig. 2.10. The potential in the region, 0 = x < a, y = 0, is desired, 
subject to the boundary conditions that ® = 0 at x = 0 and x = a, while ® = V 
at y = 0 for 0 =x = a and © — 0 for large y. Inspection of the basic solutions 
shows that a is real and that, to have the potential vanish at x = 0 and x = a 
for all y and as y — %, the proper linear combinations are e~“” sin(ax) with 
a = nola. The linear combination of solutions satisfying the boundary conditions 
on three of the four boundary surfaces is thus 

P(x, y) = S A,, exp(—n7yla) sin(aax/a) (2.59) 

The coefficients A,, are determined by the requirement that ® = V for y = 0, 
Q =x = a. As discussed in Section 2.8, the Fourier coefficients are 

A, = 5 i (x, 0) sin(nmxa) de (2.60) 
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ate 

Figure 2.10 Two-dimensional potential problem, 

With (x, 0) = V, one finds 

4V Ji for n odd 
A, =— 

an |0 for n even 

The potential B(x, y) is therefore determined to be 

P(x, y) = ls > z exp(—nay/a) sin(nax/a) (2.61) 
TF noun 

For smail values of y many terms in the series are necessary to give an accurate 
approximation, but for y = a/z it is evident that only the first few terms are 
appreciable. The potential rapidly approaches its asymptotic form given by the 

first term, 

(x, y) > = exp(—y/a) sin(mx/a) (2.62) 

Parenthetically, we remark that this general behavior is characteristic of all 
boundary-value problems of this type, independently of whether P(x, 0) is a 
constant, provided the first term in the series is nonvanishing. The coefficient A, 
(2.60) will be different, but the smooth behavior in x of the asymptolic solution 
sets in for y 2 a, regardless of the complexities of P(x, 0). This is shown quan- 
titatively for the present example in Fig. 2.11 where the potential along the two 
dashed lines, y/a = 0.1, 0.5, of Fig. 2.10 is plotted. The solid curves are the exact 

potential, the dotted, the first term (2.62). Close to the boundary (y/a = 0.1) the 
curves differ appreciably, but for y/a = 0.5 the asymptotic form is already an 
excellent approximation. 
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10/- 

ala 

Figure 2.41 Potentials at y/a = 0.1, 0.5 (along the dashed tines of Fig. 2.10) as 

functions of x/a. The solid curves are the exact solution; the dashed curves are the first 

term in the series solution (2.61). 

There are many Fourier series that can be summed to give an answer in 

closed form. The series in (2.61) is one of them. We proceed as follows. Observing 

that sin @ = Im(e’’), where Im stands for the imaginary part, we see that (2.61) 

can be written as 

4Vv ote. y) = im Shenae 
n odd 

With the definition, 
Z = elirianativd (2.63) 

this can be put in the suggestive form, 
Zz 

(x, y) = e 
(e ¥) a nodd ft 

At this point we can perhaps recall the expansion,* 

Int + Z) = Z—-43Z? 4427 -4Z* +--+ 

*Alternatively, we observe that (d/dZ)(2s 1Z"/n) = 
Xz Zn = -In(1 - Z). 

12" (1 - Z). Integration then gives 
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Evidently, 

Zr 1 (+z 
nose 2 \T-Z 

and 

2Vv 1+Z 
(x, y) = — Im] In (2.64) 

7 1-Z 

Since the imaginary part of a logarithm is equal to the phase of its argument, we 
consider 

14+Z (+ 2Z)0-2*) _ 1-[Z2 +2iImz 
1-Z lt — ZP fi — Ze 

The phase of the argument of the logarithm is thus tan™'[2 Im Z/(1 - |Z[)]. 
With the explicit form (2.63) of Z substituted, it is found that the potential 
becomes 

sin ae 

ex, y) = tan! = (2.65) 
ce my 

sinh aE 

The branch of the tangent curve corresponds to the angle lying between 0 and 
a2, The infinite series (2.61) has been transformed into the explicit closed form 
(2.65). The reader may verify that the boundary conditions are satisfied and that 
the asymptotic form (2.62) emerges in a simple manner. 

The potential (2.64) with Z given by (2.63) is obviously related to functions 
of a complex variable. This connection is a direct consequence of the fact that 
the real or the imaginary part of an analytic function satisfies the Laplace equa- 
tion in two dimensions as a result of the Cauchy—-Riemann equations. As men- 
tioned at the beginning of the chapter, we omit discussion of the complex-variable 
technique, not because it is unimportant but for lack of space and because 
completely adequate discussions exist elsewhere. Some of these sources are listed 
at the end of the chapter. The methods of summation of Fourier series, with 

many examples, are described in Collin (Appendix A.6). 

2.11 Fields and Charge Densities in Two-Dimensional 
Corners and Along Edges 

in many practical situations conducting surfaces come together in a way that can 

be approximated, on the small scale at least, as the intersection of two planes. 
The edges of the box shown in Fig. 2.9 are one example, the corners at x = 0, 
y = Gand x = a, y = 0 in Fig. 2.10 another. It is useful therefore to have an 
understanding of how the potential fields, and the surface-charge densities be- 
have in the neighborhood of such sharp “corners” or edges. To be able to look 
at them closely enough to have the behavior of the fields determined in functional 
form solely by the properties of the “corner” and not by the details of the overall 
configuration, we assume that the “corners” are infinitely sharp. 



76 Chapter 2 Boundary-Value Problems in Electrostatics: I—SE 

The general situation in two dimensions is shown in Fig. 2.12. Two conducting 

planes intersect at an angle 8. The planes are assumed to be held at potential V. 

Remote from the origin and not shown in the figure are other conductors or 

possibly configurations of charges that specify the potential problem uniquely. 

Since we are interested in the functional behavior of the ficlds, etc. near the 

origin, but not in the absolute magnitudes, we leave the “far away” behavior 

unspecified as much as possible. 
The geometry of Fig. 2.12 suggests use of polar rather than Cartesian coor- 

dinates. In terms of the polar coordinates (p, @), the Laplace equation in two 

dimensions is 

la ( ab) 2 
pap si op 

Using the separation of variables approach, we substitute 

(p, 6) = R(p)¥(o) 

This leads, upon multiplication by p?/, to 

pd ) 1a os (iw) 4s 2.67 
24 (ot vas? 267) 

Since the two terms are separately functions of p and # respectively, each one 

must be constant: 

=0 (2.66) 

pda (dR) _ Lg cp 
Rdp (> #) =e ye ggee (2.68) 

The solutions to these equations are 

R(p) = ap’ + bp* 2.69 
Wid) = A cos(vd) + B sin(vd) (2:69) 

For the special circumstance of v = 0), the solutions are 

R(p) = a + By In 
2.70. 

W(d) = Ao + Bob ike 

x 

Figure 2.12 Intersection of two conducting planes defining a corner in two dimensions 
with opening angle B. 
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These are the building blocks with which we construct the potential by linear 
superposition. 

Although not central to our present purpose, we note the gencral solution 
of the Laplace equation in two dimensions when the full azimuthal range is per- 
mitted as, for example, for the potential between two cylindrical surfaces, p = @ 

and p = b, on which the potential is given as a function of @. If there is no 

restriction on @, il is necessary that » be a positive or negative integer or zero to 
ensure that the potential is single-valued. Furthermore, for v = 0, the constant 
Bo in (2.70) must vanish for the same reason. The gencral solution is therefore 
of the form, 

D(p, 6) = ay + by np + D a,p" sin(nd + a) 
= an (2.71) 

+ > bap "singnd + B,) 
ca 

If the origin is included in the volume in which there is no charge, all the h, are 

zero. Only a constant and positive powers of p appear. If the origin is excluded, 
the b,, can be different from zero. In particular, the logarithmic term is equivalent 
to a line charge on the axis with charge density per unit length A = —27€qbp, as 
is well known, 

For the situation of Fig. 2.12 the azimuthal angle is restricted to the range 
0s $s B. The boundary conditions are that & = V for all p = 0 when = 0 
and @ = 8. This requires that by = By = 0 in (2.70) and b = 0 and A = 0 in 

(2.69). Furthermore, it requires that » be chosen to make sin(v8) = 0. Hence 

aan m=1,2,... 

and the general solution becomes 

P(p, ) = V+ S anp"** sin(mad/p) (2.72) 
1 

The still undetermined coefficients a,, depend on the potential remote from the 
corner at p = 0). Since the series involves positive powers of p”*, for small enough 
p only the first term in the series will be important.* Thus, near p = 0, the po- 
tential is approximately 

lp, 6) ~ V + ap” sin(ad/B) (2.73) 

The electric field components are 

Elo, 6) = on = B p?") sin( iB) 

lab a FAL 

pag B 

(2.74) 
Eslp, 6) = — pe! cos(a/B) 

“Here we make a necessary assumption about the remote boundary conditions, namely, that they 
are such that the coefficient a, is not zero. Ordinarily this is of no concern. but special symmetries 
might make a), of even ap, etc., vanish. These unusual examples must be treated separately. 
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The surface-charge densities at ¢ = O and d= Bare equal and are approximately 

Te 

o(p) = exEalp, 0) = —2 3 A pleas (2.75) 

The components of the field and the surface-charge density near p = 0 all vary 

with distance as p'~” °'. This dependence on p is shown for some special cases 
in Fig. 2.13. For a very deep corner (small 8) the power of p becomes very large. 

Essentially no charge accumulates in such a corner. For 8 = 7 (a flat surface), 

the field quantities become independent of p, as is intuitively obvious. When 

B > 7, the two-dimensional corner becomes an edge and the field and the surface- 

charge density become singular as p > 0. For 8 = 27 (the edge of a thin sheet) 

the singularity is as p '”. This is still integrable so that the charge within a finite 

distance from the edge is finite, but it implies that field strengths become very 

large at the edges of conducting sheets (or, in fact, for any configuration where 

B> 7). 
The preceding two-dimensional electrostatic considerations apply to many 

three-dimensional situations, even with time-varying fields. If the edge is a sharp 

edge of finite length, as the edge of a cube away from a corner, then sufficiently 

close to the edge the variation of the potential along the edge can be ignored. 

The two-dimensional considerations apply, although the coefficient a, in (2.75) 

may vary with distance along the edge. Similarly, the electrostatic arguments are 

valid even for time-varying ficlds. The point here is that with time dependence 

another length enters, namely, the wavelength. Provided one is concerned with 

distances away from the edge that are small compared to a wavelength, as well 

as other relevant distances, the behavior of the fields reduces to electrostatic or 

magnetostatic behavior. In the diffraction of microwaves by a hole in a thin 

conducting sheet, for example, the fields are singular as p”' as p — 0, where p 

is the distance from the boundary of the hole, and this fact must be taken into 

account in any exact solution of the diffraction problem. 
The singular behavior of the fields near sharp edges is the reason for the 

effectiveness of lightning rods. In the idealized situation discussed here the field 

strength increases without limit as p — 0, but for a thin sheet of thickness @ with 

a smoothly rounded edge it can be inferred that the field strength at the surface 
will be proportional to d '. For small enough d this can be very large. In ab- 
solute vacuum such field strengths are possible; in air, however, electrical break- 

down and a discharge will occur if the ficld strength exceeds a certain value 

(depending on the exact shape of the clectrode, its proximity to the other clec- 

3 13 we 

Figure 2.13 Variation of the surface-charge density (and the electric field) with 
distance p from the “corner” or edge for opening angles 8 = w/4, 7/2, 7, 37/2, and 27. 



Sect. 2.12 Introduction to Finite Element Analysis for Electrastatices 79 

trodes, etc., but greater than about 2.5 x 10° V/m for air at normal temperature 
and pressure (NTP), sometimes by a factor of 4). In thunderstorms, with large 

potential differences between the ground and the thunderclouds, a grounded 
sharp conducting edge, or better, a point (see Section 3.4), will have breakdown 
occur around it first and will then provide one end of the jagged conducting path 

through the air along which the lightning discharge travels. 

2.12 Introduction to Finite Element Analysis for Electrostatics 

Finite element analysis (FEA) encompasses a variety of numerical approaches 

for the solution of boundary-value problems in physics and engineering. Here 
we sketch only an introduction to the essential ideas, using Galerkin’s method 
for two-dimensional electrostatics as an illustration. The generalization to three 
dimensions is mentioned briefly at the end. The reader who wishes a deeper 
introduction may consult Binns, Lawrenson, and Trowbridge, Ida and Bastos, 
Sadiku, Strang, or Zhou. 

Consider the Poisson equation, Vy = —g in a two-dimensional region R, 
with Dirichlet boundary conditions on the boundary curve C. We construct the 
vanishing integral, 

I, (¢ Vu + gb] dx dy = 0 (2.76) 

where (x, y) is a test function specified for the moment only as piecewise con- 
tinuous in R and vanishing on C. Use of Green's first identity on the first term 
above leads to 

I [Vod+ Vu - gh] dx dy = 0 (2.77) 

The surface integral vanishes because # vanishes on C. Galerkin’s method con- 
sists first of approximating the desired solution (x, y) by a finite expansion in 
terms of a set of localized, linearly independent functions, (x, y), with support 
only in a finite neighborhood of x = x,, y = y,- For definiteness, we imagine the 
region R spanned by a square lattice with lattice spacing h. Then a possible choice 
for dy(x, ¥) is, 

bya. y) = (1 |x = xh) — |p — yilihy (2.78) 
for |x — x,| =A, [y — y,| < A: otherwise, $;(x, y) = 0. The sum of all the @y over 
the square lattice is unity. Other choices of the localized functions are possible, 

of course. Whatever the choice, if the number of lattice sites, including the bound- 
ary, is No, the expansion of y{x, y) takes the form 

Wo) 
ox, y) = > Wabi ¥) (2.79) 

Apart from the known values at siles on the boundary, the constant coefficients 
,, may be thought of as the approximate values of (x,. y;). If the lattice spacing 
A is small enough, the expansion (2.79) will be a reasonable approximate to the 
true #, provided the coefficients are chosen properly. 

The second step in Galerkin’s method is to choose the test function ¢ in 
(2.77) to be the (i, j)"" function on the expansion set, with 7 and j running suc- 
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cessively over ali N internal sites of the latlice. The typical equation derived from 

(2.77) is 

(Xo) 
> Fu | Vebilx. y) + Vd, y) dx dy = gr. »f (x, y) dx dy (2.80) 
Ad R Rg 

While the integrals are indicated as being over the whole region R, &, has support 
only in a small region around the site (x;, y;). In (2.80) it is assumed that g(x, y) 
varies slowly enough on the scale of the cell size to be approximated in the 
integral on the right by its value at the lattice site. Once the integrals have been 
performed, (2.80) becomes one of N coupled inhomogeneous linear algebraic 
equations for the N unknowns, ¥,;. The coupling among the V;,; is confined to a 

small number of sites near (x), y;), a8 indicated in Fig. 2.14 for the localized 
function (2.78). It is left as a problem to show that the needed integrals for the 

functions (2.78) are 

fs by(x, yd dy = WP hed: Rep (2.81) 

[, vanc y+ Vbuilx. y)dx a} {te k=itlt=} W(X, YP * x. xe = or ee 

piek BI Vents k=i, b=j+l 
=jtl 

When the site (i, j) is adjacent to the boundary, there are three or more terms 

on the left-hand side of (2.80) that are (—1/3) times known boundary values of 

cee 

(oe) 

Figure 2.14 Sketch of the },{x, y) im (2.78). The sites marked with a dot in the lattice 
(bottom) are those coupled by the integrals on the left in (2.80) for the localized 
function (2.78). 
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y. These can be moved to the right-hand side as part of the inhomogeneity. If 

we write (2.80) in matrix form, KW = G, with K an N X N square matrix and 

W and G N-column vectors, the matrix K is a “sparse” matrix, with only a few 

nonvanishing elements in any row or column. The solution of the matrix operator 
equation by inversion of such a sparse matrix can be accomplished rapidly by 
special numerical techniques (see Press et al.). Concrete illustration of this ap- 
proach is left to the problems at the end of the chapter. 

A square lattice is not optimal in many problems because the solution may 
change more rapidly in some parts of the domain of interest than in other parts. 
In such regions one wishes to have a finer mesh. An FEA method with a standard 

generic shape, but permitting different sizes, will be more flexible and therefore 

superior. We describe the popular triangle as the basic unit in two dimensions. 

The triangular element is assumed to be small enough that the field variable 
changes little over the element and may be approximated by a linear form in 
each direction. The basic triangular element e(1, 2, 3) is shown in Fig. 2.15. Within 
this region, we approximate the field variable yx, y) ~ W(x, y) = A + Bx + 

Cy. The three values (4, Ym, Ys) al the nodes or vertices determine the coeffi- 

cients (A, B, C). [tis useful, however, to systematize the procedure for numerical 
computation by defining three shape functions N‘(x, y), one for each vertex, 
such that Nf? = 1 when x = x, y = y, and N{? = 0 at the other vertices. The 
shape functions for the element ¢ vanish outside that triangular domain. 

Consider N{? = a, + bx + cy. Demand that 

ay + yxy + Gyr 

a + dix. + Gyr = 0 

a + bx + Gy, = 0 

The determinant D of the coefficients on the left is 

Tay 

D = [1 x yo] = G2 — 20s — ¥) — Os — 202 ~ 0) 
1 x3 ys 

The determinant D is invariant under rotations of the triangle; in fact, D = 28,, where 5, 
is the area of the triangle. The coefficients (a,, ), ¢)) are 

1 
a (ays — Xay2) 

1 
b= 2s, (2 — ys) 

=I 
Om oy (x2 — x3) 

3 
sy) 

2 
aya) 

Figure 2.45 Basic triangular element 
1 e(1, 2, 3) with area S, for FEA in two 

py dimensions. 
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The other N‘' can be written down by cyclic permutation of indices. The N, and their 

coefficients obey the following relations: 

3 3 3 3 
SNPKWSh Dash Db =e Dea = 
a A a a 

= cenert | 7 
a + BX. + Ge = 3 Gj = 1,2, 3) 

Here ¥, = (x) + x2 + x;)/3 and F. = (1 + yo + ys)/3 are the coordinates of the center of 

gravity of the triangular element e. 

The shape functions for the triangular elements spanning the region R can 

be used in the Galerkin method as the localized linearly independent expansion 

set. The field variable w(x. y) has the expansion, 

wey) =D WPNPC. y) (2.82) 
Sad 

where the sum goes over all the triangles f and over the vertices of each triangle. 

The constants V‘? are the desired values of the field at the vertices. (There is 

redundant labeling here because adjacent triangles have some vertices in com- 

mon.) It is worth noting that despite the shift from one set of shape functions to 

another as the point (x, y) crosses from one triangle to one adjacent to it, the 

function defined by the right-hand side of (2.82) is continuous, Because of the 

linearity of the shape functions, the value of (2.82) along the common side of 

the (wo triangles from either representation is the same weighted average of the 

values at each end, with no contributions from the shape functions for the vertices 

not in common. 
We return to the Poisson equation with Dirichlet boundary conditions and 

the vanishing integral (2.77). With the expansion (2.82) for y(x, y). we choose 

the test function (x, y) = N$(x, y} for some particular element ¢ and vertex i 

(only avoiding vertices on the boundary because we require ¢ = 0 on C). The 

choice reduces the integral [and the sum in (2.82)] to one over the particular 

element chosen, just as did the choice of the localized function in (2.80). The 

integral, with the inhomogeneity transferred to the right-hand side, is 

3 
ve [ VND UNO dx dy = I gNO dx dy (2.83) 
A le e 

If g(x, y) changes very little over the element e, it can be approximated by ils 

value g, = g(X-, ¥-) at the center of gravity of the triangle and factored out of 

the right-hand integral. The remaining integral is 

i N® dx dy = Sa, + bX, + 6F,) = Se (2.84) 

For the left-hand integral in (2.83), the linearity of the shape functions means 

that the integrand is a constant. We note that AN{/ax = b,, IN/M"ay = c, and 

define 

KP = SAbiby + c) (2.85) 

The coefficients &{ form an array of dimensionless coupling coefficients for the 

triangle e. It is straightforward 1o show that they depend on the shape of the 
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Figure 2.16 Examples of the triangular coupling coefficients. The “diagonal” 
coefficients are at the corners (vertices) and the “off-diagonal” coefficients along the 
sides, between vertices. 

triangle, but not its orientation or size. Two examples are shown in Fig. 2.16, 
where the diagonal elements KS"? are located at the corresponding vertices (i) and 
the off-diagonal elements k‘ along the line connecting vertex i with vertex j. 

With the definition (2.85) of the coupling coefficients, (2.83) becomes 
3 

1 
yi KV = 
ie 

For each element e there are three algebraic equations, except when the side(s) 
of the triangle form part of the boundary. The three coupled equations can be 
written in matrix form, KOW = GO. 

The result for one element must now be generalized to include all the tri- 
angular elements spanning R. Let the number of interior vertices or nodes be N 
and the total number of vertices, including the boundary, be Ny. Label the inter- 

nal nodes with j = 1, 2, 3,..., N, and the boundary nodes by j = N + 1, 
N + 2,.... Np. Now enlarge and rearrange the matrix k“ — K, where K is an 

N X N matrix with rows and columns labeled by the node index. Similarly. define 
the N-column vectors, W and G. For each triangular element in turn, add the 
elements of k{ and S,g,/3 to the appropriate rows and columns of K and G. The 
end result is the matrix equation 

48 GH 1,23) (2.86) 

KY =G (2.87) 

where 

K = (ky) with kg = DAP and ky = KP Ej 
‘ Ns = (2.88) 

Ge=Zd Ske — DY KPwP 37 pees 

The summation over T means over all the triangles connected to the internal 

node i; the summation over E means a sum over all the triangles with a side from 
internal node to internal node j. The final sum in G, contains, for nodes con- 

nected directly to the boundary nodes. the known boundary values of y there 
and the corresponding k{? values (not present in the matrix K). The reader may 
ponder Fig. 2.17 to be convinced of the correctness of (2.88). Just as for the square 
lattice, the N x N matrix K is a symmetric sparse matrix, with posilive diagonal 
elements. As mentioned earlier. there are special efficient methods of inverting 
such matrices, even if very large. 
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Figure 2.17 A part of the array of 
triangular elements spanning the region R, 

Boundary 103 assumed to have 100 internal nodes. 

The obvious generalization of the triangle to three-dimensional FEA is to 

add another vertex out of the plane to make a tetrahedron the basic element of 

volume. Now four shape functions, N{(x, y, z), are used (o give an approxima- 

tion to the field variable within the tetrahedron. The algebra is more involved, 

but the concept is the same. 
Our discussion is a bare introduction to finite clement analysis. Many variants 

exist in every branch of physics and engineering. National laboratories and com- 

mercial companies have “canned” FEA packages: POISSON is one such pack- 

age, developed at the Lawrence Berkeley National Laboratory jointly with 

Livermore National Laboratory, TOSCA and CARMEN are two developed at 

the Rutherford—Appleton Laboratory in Britain. 
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books; among the better or more extensive discussions are those by 

Jeans, Chapter VHI 
Maxwell, Vol. 1, Chapter X¥ 
Smythe, Chapters IV and V 

The classic use of inversion by Lord Kelvin in 1847 to obtain the charge distribution on 
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cesses and Compuiation, Oxford University Press, New York (1994). 
C. W. Steele, Numerical Computation of Electric and Magnetic Fields, Van 
Nostrand, New York (1987). 

The first of these has a brief but clear discussion of FEA in Chapter 7; the second treats 
FEA and related topics in greater depth. 

Problems 

21 A point charge q is brought to a position a distance d away from an infinite plane 
conductor held at zero potential. Using the method of images, find: 

{a) the surface-charge density induced on the plane, and plot it: 

(b) the force between the plane and the charge by using Coulomb's law for the 
force between the charge and its image; 

(c) the total force acting on the plane by integrating o7/2e, over the whole plane; 

(a) the work necessary to remove the charge q from its position to infinily; 

{e) the potential energy between the charge q and its image [compare the answer 
to part d and discuss]. 

(f) Find the answer to part d in electron volts for an electron originally one ang- 
strom from the surface. 

2.2, Using the method of images, discuss the problem of a point charge ¢ inside a hollow, 
grounded, conducting sphere of inner radius a. Find 
(a) the potential inside the sphere: 

(b) the induced surface-charge density; 

(ce) the magnitude and direction of the force acting on q, 

(d@) Is there any change in the solution if the sphere is kept at a fixed potential V? 
If the sphere has a total charge Q on its inner and outer surfaces’ 

2.3 A straight-line charge with constant linear charge density A is located perpendicular 
to the x-y plane in the first quadrant at (x), yy). The intersecting planes x = 0, 
y = Oand y = 0, x = 0 are conducting boundary surfaces held at zero potential. 
Consider the potential, fields, and surface charges in the first quadrant. 
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2.5 

2.6 

{a) The well-known potential for an isolated line charge at (xo, yo) is P(x. y) = 

(Ald rrep)In(R2/77}, where = (x — x9) + (y — yoy and R is a constant, De- 

termine the expression for the potential of the line charge in the presence of 

the intersecting planes. Verify explicitly that the potential and the tangential 

electric field vanish on the boundary surfaces. 

{b) Determine the surface charge density « on the plane y = 0.x = 0. Plot o/A 
versus x for (to = 2, Yo = 1). (to = 1. yo = Ve and (te = 1, yo = 2)- 

{c) Show that the total charge (per unit length in z) on the plane y = 0,x 20 is 

Q, = -2, wan(®) 
7 Yo, 

What is the total charge on the plane x = 0? 

(€) Show that far from the origin (p>>py, where p = V@™+y") and 
po = V (xa + ¥a)] the leading term in the potential is 

_ 4A (ayo (29) 
P > Dow * 

mp 

Interpret. 

A point charge is placed a distance ¢ > R from the center of an equally charged, 

isolated, conducting sphcre of radius R. 

(a) Inside of what distance from the surface of the sphere is the point charge 

attracted rather than repelled by the charged sphere? 

(b) What is the limiting value of the force of attraction when the point charge is 

located a distance a (= d — R) from the surface of the sphere, if a << R? 

(c) What are the results for parts a and b if the charge on the sphere is twice 

(half) as large as the point charge, but stil] the same sign? 

{Answers: (a) d/R — 1 = 0.6178, (b) F = —q'(167e a"). i.c., image force, (¢) for 

Q = 2q. diR — 1 = 0.4276; for Q = q/2, diR — 1 = 0.8823. The answer for part b 

is the same.] 

(a) Show that the work done to remove the charge q from a distance r > a to 

infinity against the force, Eq. (2.6), of a grounded conducting sphere is 

2 ca w-— _ 
Rrreg(r? — a) 

Relate this result to the electrostatic potential, Eq. (2.3). and the encrgy dis- 
cussion of Section 1.11. 

(b) Repeat the calculation of the work done to remove the charge ¢ against the 

force, Eq. (2.9), of an isolated charged conducting sphere. Show that the work 

done is 

4ne, (2 —@)  2r r 

Relate the work to the electrostatic potential. Eq. (2.8), and the energy dis- 

cussion of Section 1.11. 

The electrostatic problem of a point charge g outside an isolated, charged con- 

ducting sphere is equivalent to that of three charges, the original and two others, 

one located at the center of the sphere and another (“the image charge”) inside 

the now imaginary sphere, on the line joining the center and the original charge. 
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H the point charge and sphere are replaced by two conducting spheres of radii 
r, and rp, carrying total charges Q, and Q,,. respectively. with centers separated by 

a distance d > r, + 75, there is an equivalence with an infinite set of charges within 

each sphere, onc at the center and a set of images along the line joining the centers. 
The charges and their locations can be determined iteratively, starting with a charge 
ql) at the center of the first sphere and g,(1) correspondingly for the sccond 
sphere. The charge q,(1) has its image q,(2) within the first sphere and vice versa. 
Then the image charge within the first sphere induces another image within the 
second sphere, and so on, The sum of all the charges within each sphere must be 
sealed to be equal to Q, or Oy. 

The clectrostatic potential outside the spheres, the force between the spheres, 
etc. can be found by summing the contributions from all the charges. 

{a) Show that the charges and their positions are detcrmined iteratively by the 
relations, 

9D) = rgd — Vidi — 1 MAG) = rad — 1) he) = dH) 

WO = tdi — WAG — Vo WG = GI), df) = dx) 

for j = 2,3.4..... with d,(1) = d,(1) = d, and x,(1) = x,(1) — 0. 

({b) Find the image charges and their locations as well as the potentials on the 
spheres and force between them by means of a suitable computer program. 
[In computing the potential on each sphere, evaluate it in different places: ¢.g,, 
in the equatorial plane and at the pole opposite the other sphere. This permits 
a check on the equipotential of the conductor and on the accuracy of 
computation. ] 

{c) As an example, show that for two equally charged spheres of the same radius 
R, the force between them when almost in contact is 0.6189 times the value 
that would be obtained if all the charge on each sphere were concentrated 
at its center, Show numerically and by explicit summation of the series that 
the capacitance of two identical conducting spheres in contact is C/4eqk = 
1,3863 «+ [= In 4]. 

Reference: J. A. Soules, Am. J. Phys. 58. 1195 (1990). 
Consider a potential problem in the half-space defined by < = 0, with Dirichlet 
boundary conditions on the plane z = U (und at infinity) 

(a) Write down the appropriate Green function G(x, x’). 

(b) Hf the potential on the plane z = 0 is specified to be ® = V inside a circle of 
radius a centered at the origin, and ® = 0 outside that circle, find an integral 
expression for the potential at the point P specificd in terms of cylindrical 
coordinates (p, , z). 

{c) Show that, along the axis of the circle (p = 0). the potential is given by 

o-v(1- ) 
Vet z 

(d) Show that at large distances (p° + z” >> a”) the potential can be expanded in 
a power series in (p? + <*) ‘, and that the leading terms are 

Va* z ee a 

2 (p+ 7p? Apt 2° r+ YP 
p= 

Verify that the results of parts c and d are consistent with cach other in 
their common range of validity. 
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A two-dimensional potential problem is defined by two straight parallel line charges 
separated by a distance R with equal and opposite linear charge densities A 

and —A. 

(a) Show by direct construction that the surface of constant potential V is a cir- 
colar cylinder {circle in the transverse dimensions) and find the coordinates 
of the axis of the cylinder and its radius in terms of R, A, and V. 

(b) Use the results of part a to show that the capacitance per unit length C of two 
right-circular cylindrical conductors, with radii a and b, separated by a distance 

d>at b,is 

27 

& Be 
‘osh a ( ub ) 

(c) Verify that the result for C agrees with the answer in Problem 1.7 in the 
appropriate limit and determine the next nonvanishing order correction in 

powers of a/d and bid. 
(d) Repeat the calculation of the capacitance per unit length for two cylinders 

inside each other (d < |b — al). Check the result for concentric cylinders 
(d = 90). 

An insulated, spherical. conducting shell of radius @ is in a uniform electric field Eo. 
If the sphere is cut into two hemispheres by a plane perpendicular to the field, find 
the force required to prevent the hemispheres from separating 

(a) if the shell is uncharged; 

(b) if the total charge on the shell is Q. 

A large parallel plate capacitor is made up of two plane conducting sheets with 
separation D, one of which has a small hemispherical boss of radius a on its inner 
surface (D >> a). The conductor with the boss is kept at zero potential, and the 
other conductor is at a potential such that far from the boss the electric field between 
the plates is Ey. 

(a) Calculate the surface-charge densities at an arbitrary point on the plane and 
on the boss, and sketch their behavior as a function of distance (or angle). 

(b) Show that the total charge on the boss has the magnitude 37@,Eya”. 

(c) If, instead of the other conducting sheet at a different potential, a point charge 
q is placed directly above the hemispherical boss at a distance d from its center, 
show that the charge induced on the boss is 

e-@ con ee 
7 4| Weta 

A line charge with linear charge density 7 is placed parallel to, and a distance R 
away from, the axis of a conducting cylinder of radius 6 held at fixed voltage such 

that the potential vanishes at infinity. Find 

(a) the magnitude and position of the image charge(s); 

(b) the potential at any point (expressed in polar coordinates with the origin at 
the axis of the cylinder and the direction from the origin to the line charge as 

the x axis), including the asymptotic form far from the cylinder; 

(ce) the induced surface-charge density, and plot it as a function of angle for 

Rib = 2,4 in units of 7/275; 

(d) the force per unit length on the line charge. 
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Starting with the series solution (2.71) for the two-dimensional potential problem 
with the potential specified on the surface of a cylinder of radius }, evaluate the 
coefficients formally, substitute them into the scrics, and sum it to obtain the po- 
tential inside the cylinder in the form of Poisson’s integral: 

Rp 

+ p — 2bp cod’ — &) 

1 
Dp, 6) = I Ob. bd} = dp’ (pb) = 57 J, Pb. b') e 

What modification is necessary if the potential is desired in the region of space 
bounded by the cylinder and infinity? 

(a) Two halves of a long hollow conducting cylinder of inner radius 6 arc scpa- 
rated by small lengthwise gaps on each side, and are kept at different poten- 
tials V, and V>. Show that the potential inside is given by 

=P, 2b, vin y= MMe (gona) 

where ¢ is measured from a plane perpendicular to the plane through the gap. 

(b) Calculate the surface-charge density on each half of the cylinder, 

A variant of the preceding two-dimensional problem is a long hollow conducting 
cylinder of radius 6 that is divided into equal quarters, alternate segments being 
held at potential +V and -V. 

(a) Solve by means of the serics solution (2.71) and show that the potential inside 
the cylinder is 

_4V & (p\""” sinfan + 2)4] 
Hp. 4) = 2 (2) n+ 

(b) Sum the series and show that 

({c) Sketch the field lines and equipotentials. 

(a) Show that the Green function G(x, 
ary conditions for a square two-d: 
an expansion 

y’) appropriate for Dirichlet bound- 
ensional region, 0 Sx = 1,0 y <1, has 

Gls vex. y') = 2 S gly. y’) Sin@amx) sin nx’) 

where g,(y, y') satisfies 
i 
(= <5 ) a0» = ~4n6(y’ — y) and 4,00) = g,0.1) = 0 

(b) Taking for g,(v. y’) appropriate linear combinations of sinh(a7y') and 
cosh(# zy") in the two regions, y’ < y and y’ > y, in accord with the boundary 
conditions and the discontinuity in slope required by the source delta function, 
show that the explicit form of G is 

Gl ye v) 

2 nanny inns) sin(nax') sioh(azy.) sinh[nw() — y.)) 

where y.(y., is the smaller (larger) of y and y’. 
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A two-dimensional potential exists on a unit square area (OS x S 1,0 Sy 5 1) 

bounded by “surfaces” held at zero potential. Over the entire square there is a 
uniform charge density of unit strength (per unit length in z). Using the Green 
function of Problem 2.15, show that the solution can be written as 

(2,5) = 4 > sin{(QQm 4 )nx] {1 _ cosh[(2m + Iyaty ~ a} 
Es Qm +1) cosh[(2m + 1) a2] 

(a) Construct the free-space Green function G(x, y: x’, y’) for two-dimensional 
electrostatics by integrating 1/R with respect to (z' — z) between the limits 
*Z, where Z is taken to be very large. Show that apart from an inessential 
constant, the Green function can be written alternately as 

€ 

Gly yex' yy) = —infe — xP +O - PY] 
= -ln[p? + p'? — 2pp' cos(p — ')] 

(b) Show explicitly by scparation of variables in polar coordinates that the Green 
function can be expressed as a Fourier series in the azimuthal coordinate, 

wes ‘ 
Cae Dd em? g(a, p') 

where the radial Green functions satisfy 

14 (Gm \ me ip — p') 
(0 ‘s) pt bm = 4a p 

Note that g,,,(p, p’) for fixed p is a different linear combination of the solutions. 
of the homogeneous radial equation (2.68) for p’ < p and for p’ > p, with a 
discontinuity of slope at p' = p determined by the source delta function, 

(c) Complete the solution and show that the free-space Green function has the 

expansion 

Glp. & 9-61) = -Inigh) #2. S + (&) -costn(d — $°)1 
where p..(p..) is the smaller (larger) of p and p'. 

(a) By finding appropriate solutions of the radial equation in part b of Problem 
2.17, find the Green function for the interior Dirichlet problem of a cylinder 
of radius b [g,,(p, p’ = b) = 0. See (1.40)]. First find the series expansion akin 
to the free-space Green function of Problem 2.17. Then show that it can be 

written in closed form as 

pip’? + bt = 2pp'b? cos(o — al 
ue wl Se + p= 2pp' cost - $')) 

or 

b — p)\(b? — p2) + Bp — p'P c= eb" — p+ Bp e'| 
& |p - et 

(b) Show that the solution of the Laplace equation with the potential given as 
(b, d) on the cylinder can be expressed as Poisson's integral of Problem 2.12. 

(e) What changes are necessary for the Green function for the exterior problem 
{6 <p < ~), for both the Fourier expansion and the closed form? [Note that 
the exterior Green function is not rigorously correct because it does not vanish 
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for p or p’ — &. For situations in which the potential falls off fast enough as 
p— ©, no mistake is made in its use.] 

Show that the two-dimensional Green function for Dirichlet boundary conditions 
for the annular region, b = p = c (concentric cylinders) has the expansion 

= in(oilb?) In(cips) 5 cosfn(é — 6’) 
~ In(c/b?y oA ml = (bicy"] 

Two-dimensional electric quadrupole focusing fields for particle accelerators can 
be modeled by a set of four symmetrically placed line charges, with linear charge 
densities +A, as shown in the left-hand figure (the right-hand figure shows the elec- 
tric field lines). 

G (pt = Bpey(lipt = pitte™™) 

a 

Problem 2.20 

The charge density in two dimensions can be expressed as 
ya 

a(p. 6) = 5 & (-1)" lp — a) 6 — nid) 

(a) Using the Green function expansion from Problem 2.17c, show that the elec- 
trostatic potential is 

ee | ».\* Se pas n.d) = AS ha (H) conte +2) 0 
(b) Relate the solution of part a to the real part of the complex function 

2A [S — ia)(z + | 
"O* Faes (z= ale + a) 

where z = x + iy = pe’*. Comment on the connection to Problem 2.3. 

(c) Find expressions for the Cartesian components of the electric field near the 

origin, expressed in terms of x and y. Keep the k = 0 and & = | terms in the 
expansion. For y = 0 what is the relative magnitude of the k = 1 (2°-pole) 
contribution to E, compared to the k = 0 (22-pole or quadrupole) term? 

Use Cauchy's theorem to derive the Poisson integral solution. Cauchy's theorem 
states that if F(z) is analytic in a region R bounded by a closed curve C, then 

1 f Fiz’) dz' _ [Fl2) __ inside 
= if zis : 
2miie z'-— 2 0 outside 

Hint: You may wish to add an integral that vanishes (associated with the image 
point) to the integral for the point inside the circle. 
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@) 

(b) 

(&) 

For the example of oppositely charged conducting hemispherical shells sepa- 
rated by a tiny gap. as shown in Figure 2.8, show that the interior potential 
{r <a) on the z axis is 

a (att=-2’) ®,(2) = v=} 1-5 evil ee 
Find the first few terms of the expansion in powers of z and show that they 
agree with (2.27) with the appropriate substitutions. 

From the result of part a and (2.22), show that the radial electric field on the 

positive z axis is 

Vi 
Ez) = ea 

for z >a, and 

wy . YP 3t@y _@ 
ac ae Fi ¥ (lay?) =| 

for |z| < a. Show that the second form is well behaved at the origin, with the 
value, E,(0) = —3V/2a. Show that at z = a@ (north pole inside) it has the value 

-(v2 — 1)V/a. Show that the radial field at the north pole outside has the 

value V2 Via. 
Make a sketch of the electric field lines, both inside and outside the conducting 
hemispheres, with directions indicated. Make a plot of the radial electric field 
along the z axis from z = —2a to z = +2a. 

A hollow cube has conducting walls defined by six planes x = 0, y = 0, z = 0, and 
x =a,y =a,z =a. The walls z = 0 and z = a are held at a constant potential V. 

The other four sides are at zero potential. 

(a) 

(b) 

(c) 

Find the potential (x, y, z) at any point inside the cube. 

Evaluate the potential at the center of the cube numerically, accurate to three 
significant figures. How many terms in the scrics is it necessary to keep in 
order to attain this accuracy? Compare your numerical result with the average 
value of the potential on the walls. See Problem 2.28, 

Find the surface-charge density on the surface z = a. 

In the two-dimensional region shown in Fig. 2.12, the angular functions appropriate 
for Dirichlet boundary conditions at ¢ = 0 and @ = B are (d) = A,, sin(m7dip). 
Show that the completeness relation for these functions is 

8b - 4’) 5 > sin(madiB) sin¢nmd'lB)  for0< 6, b'<B 

‘Two conducting planes at zero potential meet along the z axis, making an angle 8 
between them, as in Fig. 2.12. A unit line charge parallel to the z axis is located 
between the planes at position (p’, 4’). 

(a) Show that (47¢,) times the potential in the space between the planes, that is, 
the Dirichlet Green function G(p, &: p’, 6’), is given by the infinite series 

Glo, 60°, 3) = 4S © preps sin(me mip) sincnnb Ie) 
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(b) By means of complex-variable techniques or other means. show that the series 
can be summed to give a closed form, 

(oyr® + (pty — App") cos ald + “yall 
(PE + (PP? — 2App'y* coslm(b — 4/8] 

(c) Verify that you obtain the familiar results when 8 — 7 and 8 = wi/2. 

Gp. 6: p', b= if: 

The two-dimensional region. p = a. 6 = ¢ = . is bounded by conducting surfaces 
at @ — 0, p =a. and & = B held at vero potential. as indicated in the sketch. At 
large p the potential is determined by some configuration of charges and/or con- 
ductors at fixed potentials. 

Problem 2.26 

{a) Write down a solution for the potential @(p. ) that satisfies the boundary 
conditions for finite p. 

(b) Keeping only the lowest nonvanishing terms. calculate the electric field com- 
ponents £, and £, and also the surface-charge densities o(p. 0). o(p. 8), and 
a(a. #) on the three boundary surfaces. 

(ce) Consider 8 = 7 (a plane conductor with a half-cylinder of radius a on it). 

Show that far from the half-cylinder the lowest order terms of part b give a 
uniform electric ficld normal to the plane. Sketch the charge density on and 
in the neighborhood of the half-cylinder. For fixed electric field strength far 

from the plane. show that the total charge on the half-cylinder (actually charge 
per unit length in the z direction) is twice as large as would reside on a strip 
of width 2a in its absence. Show that the extra portion is drawn from regions 

of the plane nearby. so that the total charge on a strip of width large compared 
to a is the same whether the half-cylinder is there or not. 

Consider the two-dimensional wedge-shaped region of Problem 2.26. with 8 = 27. 

This corresponds to a semi-infinite thin shect of conductor on the positive x axis 
from x = a to infinity with a conducting cylinder of radius a fastened to its edge. 

(a) Sketch the surface-charge densities on the cylinder and on the top and bottom 
of the sheet, using the lowest order solution. 

{b) Calculate the total charge on the cylinder and compare with the total defi- 
ciency of charge on the sheet near the cylinder. that is, the total difference in 
charge for a finite compared with a = 0. assuming that the charge density far 
from the cylinder is the same. 
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A closed volume is bounded by conducting surfaces that are the n sidcs of a regular 

polyhedron ( = 4, 6, 8, 12. 20). The » surfaces are at different potentials V,, 
i= 1,2,....#. Prove in the simplest way you can that the potential at the center 
of the polyhedron is the average of the potential on the » sides. This problem bears 

on Problem 2.23b, and has an interesting similarity to the result of Problem 1.10, 

For the Galerkin method on a two-dimensional square lattice with lattice spacing 
h, verify the relations (2.81) for the localized “pyramid” basis functions, (x, y) 
= (1 = |xf/A)C = fy l/h), |x] <A, |y| < 4, where x and y are measured from the 
site (i, j). In particular, 

[av [ ay va,,- 

fac | ay Vaj4-¥6, = -f: 

| dx dy dix, y) 

| dx ! dy Vbini; + Vb; 

1 facfa Voiviser* Voi = —3 

Using the results of Problem 2.29, apply the Galerkin method to the integral equiv- 
alent of the Poisson equation with zero potential on the boundary, 

I dx dy[V,,+ Vi — Anpd,,] = 0 with wir, y) = si Wry Be ¥) 

for the lattice of Problem 1.24, with its three Siaauant lattice sites. Show that 
you get three coupled equations for the y,; values (4), d2, $a) and solve to find the 
“Galerkin” approximations for the potential at these sites. Compare with the exact 
values and the results of the various iterations of Problem 1.24c. Comment. 

[vy = dre]. 



CHAPTER 3 

Boundary-Value Problems 
in Electrostatics: IT 

In this chapter the discussion of boundary-value problems is continued. Spherical 
and cylindrical geometries are first considered, and solutions of the Laptace equa- 
tion are represented by expansions in series of the appropriate orthonormal func- 
tions. Only an outline is given of the solution of the various ordinary differential 
equations obtained from the Laplace equation by separation of variables, but the 
properties of the different functions are summarized. 

The problem of construction of Green functions in terms of orthonormal 
functions arises naturally in the attempt to solve the Poisson equation in the 
various geometrics. Explicit examples of Grecn functions are obtained and ap- 
plied to specific problems, and the equivalence of the various approaches to 
potential problems is discussed. 

3.1 Laplace Equation in Spherical Coordinates 

In spherical coordinates (r, 8, &), shown in Fig. 3.1, the Laplace equation can be 
written in the form: 

1#& 1a ab 1 & 
pan V®) + r a Teg nome) Famtoag° G1) 

If a product form for the potential is assumed, then it can be written: 

- 2 peas) (32) 

When this is substituted into (3.1), there results the equation: 

2 2, GU, UO d (sno $f) uP_ #O_ 
dr? r? sina dé a6 P sin’ @d6? 7 

If we multiply by 7? sin? 6/UPQ, we obtain: 

1 dU 1 d dP ido 
+ + = 3 ice i dr” Pr sine de (sine e All| ou 9 OS) 

The ¢ dependence of the cquation has now been isolated in the last term. Con- 
sequently that term must be a constant which we call (—m’): 

1@Q__ss 
Ae 3.4 Ode (3.4) 

95 
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Figure 3.1 

This has solutions 

Q=eme (3.5) 

For Q to be single valued, » must be an integer if the full azimuthal range is 
allowed. By similar considerations we find separate equations for P(@) and U(r): 

ifsd aP mi? ee pall ey = 3. sin dé (sn Y *) * [x +0 a sl 3 (36) 
eu tl+t, 7M Dy =o @N) 

where ((/ + 1) is another real constant. 
From the form of the radial equation it is apparent that a single power of r 

(rather than a power series) will satisfy it. The solution is found to be: 

U = Ar! + Br! (3.8) 

but / is as yet undetermined. 

3.2 Legendre Equation and Legendre Polynomials 

The 6 equation for P(@) is customarily expressed in terms of x = cos 9, instead 
of @ itself. Then it takes the form: 

£ [« - | + [w+ )- 
dx i= 

: s|p =0 (39) 

This equation is called the generalized Legendre equation, and its solutions are 

the associated Legendre functions. Before considering (3.9) we outline the 
solution by power series of the ordinary Legendre differential equation with 

2 mn? = 0; 

d 2, dP 2. at Se + - : ae [a x?) jew 1)P =0 (3.10) 

We assume that the whole range of cos @, including the north and south poles, is 
in the region of interest. The desired solution should then be single valued, finite, 
and continuous on the interval ~1 = x < J in order that it represent a physical 
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potential. The solution will be assumed to be represented by a power series of 
the form: 

P(x) = x" Dax! G.11) 
j= 

where a is a parameter to be determined. When this is substituted into (3.10), 

there results the series: 

6 (a+ fla +f - Vax* 2 = [a+ plat f+ 1)— M+ Djax**} = 0 

(3.12) 
In this expansion the coefficient of each power of x must vanish separately. For 
j = 0, 1 we find that 

if ay # 0, then a(a — 1) = i it) 
if a, # 0, then e(a + 1) =0 

while for a general j value 

_ fat f(a +j+t)- M+ 1) 

aa~{ (a + 7+ Ia +j + 2) le (3.14) 

A moment’s thought shows that the two relations (3.13) are equivalent and that 
it is sufficient to choose either ay or a, different from zero, but not both. Making 

the former choice, we have a = 0 or a = 1, From (3.14) we see that the power 

series has only even powers of x (a = 0) or only odd powers of x (a = 1). 
For cither of the series a = 0 or a = 1 it is possible to prove the following 

properties: 

the series converges for x? < 1, regardless of the valuc of & 

the series diverges at x = +1, unless it terminates. 

Since we want a solution that is finite at x = +1, as well as for x? < 1, we demand 
that the series terminate. Since a and j are positive integers or zero, the recur- 
rence relation (3.14) will terminate only if / is zero or a positive integer. Even 
then only one of the two series converges at x = +1. If / is even (odd), then only 
the a = 0 (@ = 1) series terminates.* The polynomials in each case have x! as 
their highest power of x, the next highest being x‘~?, and so on, down to x"(x) 
for / even (odd). By convention these polynomials are normalized to have the 

value unity at x = +1 and are called the Legendre polynomials of order 1, P,(x). 
The first few Legendre polynomials are: 

Pox) = 1 
P(x) =x 

P(x) = 3(3x? - 1) (3.15) 

P3(x) = 3(5x* - 3x) 

+ _ 30x? + 3) 

*For example, if! = 0 the @ = 1 series has a general cocfficient a, = ay/(j + 1) forj = 0,2,4,.... Thus 
the series is a(x + dr” + Le® + ---}, This is just ay times the power series expansion of a function 
Que) + Hn(1 + xyi(1 — x), which clearly diverges at x = +1. For each / value there is a similar function 
Q,(x) with logarithms in it as the partner to the well-behaved polynomial solution. See Magnus et al 
(pp. 151 ff). Whittaker and Watson (Chapter XV) give a treatment using analytic functions. 
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By manipulation of the power series solutions (3.11) and (3.14) it is possible 

to obtain a compact representation of the Legendre polynomials, known as 

Rodrigues’ formula: 

Px) = J de Gah 1) 3.16 10) = sy qa D) 3.16) 

[See, for example, Arfken.] 
The Legendre polynomials form a comptete orthogonal set of functions on 

the interval —1 <x = 1. To prove the orthogonality we can appcal directly to 

the differential equation (3.10). We write down the diffcrential equation for Pix), 

multiply by ?;(x), and then integrate over the interval: 

‘ d 2 AP; y 
{ proof [a -x ei] +Ub+ nein} dx =0 (3.17) 

Integrating the first term by parts, we obtain 

' 
ie [« = Pe nr coro | dv=0 (3.18) 

If we now write down (3.18) with /and /’ interchanged and subtract it from (3.18), 

the result is the orthogonality condition: 

1 
(ae ay-Pe+ nif _ Peta Pia) de = 0 (3.19) 

For / # I’, the integral must vanish. For / = /’, the integral is finite. To determine 

its value it is necessary to use an explicit representation of the Legendre poly- 

nomials, e.g., Rodrigues’ formula. Then the oe is explicitly: 

: a! 5 
wf (P(x) dx = mop l.é ce = 1 a GF Vi de 

Integration by parts / times iio the result: 

( 1y¥ az 

y= GRY ce e- vlas 
The differentiation 2/ times of (x? — 1)! ae the constant (2/)!, so that 

2D Ni Saqup J, 1 Yd 

The remaining integral can be donc by brute force, but also by induction. We 

write the integrand as 

Q- x= - 30 -e= 0 - yt xa 

Thus we have 

_ {a-i (- 1! f' ona 
w= (4 w+ Sat Fal ~ xy) 
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Integration by parts in the last integral yields 

a-i 1 
N= AS)s. 1-5 

2 2 

or 

(2h + 1)N, = (21 — 1)N;-; (3.20) 

This shows that (2/ + 1)N, is independent of /. For / = 0, with Py(x) = 1, we have 
No = 2. Thus N, = 2/(2/ + 1) and the orthogonality condition can be written: 

1 
| _ Pex) de = Pan By (3.21) 

and the orthonormal functions in the sense of Section 2.8 are 
(= 
i+ 

U(x) = {2 Pix) (3.22) 

Since the Legendre polynomials form a complete sct of orthogonal functions, 
any function f(x) on the interval —1 = x = 1 can be expanded in terms of them. 
The Legendre series representation is: 

f(x) = >» A/PAx) (3.23) 

where 

; 
A= 21 grea) ar (24) 

As an cxampie, consider the function shown in Fig. 3.2: 

f(x) = +1 for x > 0 

Sl forx <0 

1 0 
A; = a [I Pij(x) dx - ii Px) as| 

Since P(x) is odd (even) about x = 0 if / is odd (even), only the odd / 
coefficients are different from zero. Thus, for / odd, 

Then 

Ar = (21 +1) [ P(x) dx (3.25) 

Figure 3.2 
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By means of Rodrigues’ formula the integral can be evaluated, yielding 

yo E+ 1)(¢ = 2)! 
P+] 

2 ! (+) 
where (2n + 1}! = (2n + 1)(2n — 1)(2n — 3)--- X S X 3X 1. Thus the series 
for f(x) is: 

Ae Ye 626) 

(2) = FP) — RPalx) + TEPs(X) — (3.27) 

Certain recurrence relations among Legendre polynomials of different order 
are useful in evaluating integrals, generating higher order polynomials from 
lower order ones, etc. From Rodrigues’ formula it is a straightforward matter to 
show that 

dP dP. een = SEE. = 3. rP le (21+ 1)P, = 0 (3.28) 

This result, combined with differential equation (3.10), can be made to yield 
various recurrence formulas, some of which are: 

C+ WP — (22 + U)eP, + IP, = 0 

dP. dP, 7 
he ae (+ 1)P, = 0 (3.29) 

aP, (x? = 1) FF = WP) + IPL = 0 

As an illustration of the use of these recurrence formulas, consider the evaluation 
of the integral: 

1 

= i: XP(X)Py(x) dx (3.30) 

From the first of the recurrence formulas (3.29) we obtain an expression for 
xP,(x). Therefore (3.30) becomes 

a ; P(x + IP (x) + 1P)1(x)] dx 1 “+1 

The orthogonality integral (3.21) can now be employed to show that the integral 
vanishes unless /' = / + 1, and that, for those values, 

20 + 1) Hed iis 
1 Por aw TOP 42? — 

i xPAxyPo(x) dx = {0 * 4 #3) (3.31) 
v=l-} Q- DQ 1) 
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These are really the same result with the roles of / and /' interchanged. In a 
similar manner it is easy to show that 

2d + DE+ 2 
QU+ DQ! + 3)@r+ 5)’ 

2(2F + 21-1) 
Ql NQr+ 1Qr+ 3)" 

Ee i 2 

| x°P/(x)Pr(x) dx = 
‘ ret 

where it is assumed that t’ = 1. 

3.3 Boundary-Value Problems with Azimuthal Symmetry 

From the form of the solution of the Laplace equation in spherical coordinates 
(3.2), it will be seen that for a problem possessing azimuthal symmetry m = 0) in 
(3.5). This means that the general solution for such a problem is: 

Or, 0) = S [Ayr + BrP (cos 8) (3.33) 
i= 

The coefficients A, and B, can be determined from the boundary conditions. 

Suppose that the potential is specified to be V(@) on the surface of a sphere of 
radius a, and it is required to find the potential inside the sphere. If there are no 
charges at the origin, the potential must be finite there. Consequently B, = 0 for 
all 2. The coefficients A, are found by evaluating (3.33) on the surface of the 

sphere: 

v(@) = . A,a'P,(cos @) (3.34) 

This is just a Legendre series of the form (3.23), so that the coefficients A, are: 

aa = i V(@)P,(cos 6) sin 8 48 (3.38) 

If, for example, V(@) is that of Section 2.7, with two hemispheres at equal and 
opposite potentials, 

_f+¥, =< 0< wy 
vo ={*¥ (712 <@5 7) 

then the coefficients are proportional to those in (3.27). Thus the potential inside 
the sphere is 

3 s 
3r Tfr\ lifr 

Ur, 0) = 3 P,(cos @) — (2) P;(cos #) + 4(:) Ps(cos 0) ++ | (3.36) 

To find the potential outside the sphere we merely replace (r/a)' by (a/r)'*'. The 
resulting potential can be seen to be the same as (2.27), obtained by another 
means. 

Series (3.33), with its coefficients determined by the boundary conditions, is 

a unique expansion of the potential. This uniqueness provides a means of ob- 
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taining the solution of potential problems from a knowledge of the potential in 
a limited domain, namely on the symmetry axis. On the symmetry axis (3.33) 
becomes (with z = 1): 

Oe =n = 3 [Apt By 9] (3.37) 

valid for positive z. For negative z cach term must be multiplied by (—1). Sup- 
pose that, by some means, we can cvaluate the potential ®(z) on the symmetry 
axis. If this potential function can be expanded in a power series in z = r of the 
form (3.37), with known coefficients, then the solution for the potential at 
any point in space is obtained by multiplying each power of r/ and r-* by 
P,(cos 6). 

At the risk of boring the reader, we return to the problem of the hemispheres 
at equal and opposite potentials. We have already obtained the series solution 
in two different ways, (2.27) and (3.36). The method just stated gives a third way. 
For a point on the axis we have found the closed form (2.22): 

=rn=V\1—- 
meee [: wee] 

This can be expanded in powers of a’/r*: 

j! ‘ oe = = 2-3 yr 

Comparison with expansion (3.37) shows that only odd / values (! = 2j — 1) enter. 
The solution, valid for all points outside the sphere, is consequently: 

pe fied x 

(7, ) = eS De a ees (‘) Py -,(c08 6) 

This is the same solution as already obtained, (2.27) and (3.36). 

An important expansion is that of the potential at x due to a unit point charge 
atx’: 

= 
re 

= >» pt Pi(cos Y) (3.38) 

where r.. (r..) is the smaller (larger) of |x| and |x’|, and y is the angle between x 
and x’, as shown ip Fig. 3.3. This can be proved by rotating axes so that x’ lies 

Figure 3.3 
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along the z axis. Then the potential satisfies the Laplace equation, possesses 

azimuthal symmetry, and can be expanded according to (3.33), except at the point 

x=x" 

als > (Ay! + Bir © ?)P(cos y) 
Ik-x'| % 

If the point x is on the z axis. the right-hand side reduces to (3.37), while the feft- 

hand side becomes: 

L 1 1 

Ix-x'] (+r? — 2 cosy [r—r'] 

-23 (+) 
For points off the axis it is only necessary, according to (3.33) and (3.37), to 

multiply each term by P,(cos y). This proves the general result (3.38). 
Another example is the potential due to a total charge q uniformly distrib- 

uted around a circular ring of radius a, located as shown in Fig. 3.4, with its axis 
the z axis and its center at z = b. The potential at a point P on the axis of 
symmetry with z = r is just q/47€) divided by the distance AP: 

Expanding, we find, for x on axis, 

Ix - 

q 

are, (r+ C2 = 2er cosa) Oz = 1) = 

where c? = a? + b’? and @ = tan”! (a/b). The inverse distance AP can be expanded 

using (3.38). Thus, for r > ¢, 

O(z =r) = 5 = P{cos a) 
re t 

For r < ¢, the corresponding form is: 

&Z =r) = ea a  P,(c0s a) 
el 

Figure 3.4 Ring of charge of radius a and total 
x charge q located on the z axis with center at z = 6. 
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The potential at any point in space is now obtained by multiplying each member 
of these series by P,(cos 6): 

oe, 
re &(r, 8) = rome > Fr Pilcos a)Pi(cos 6) 

where r.. (r.,) is the smailer (larger) of r and c. 

3.4 Behavior of Fields in a Conical Hole or Near a Sharp Point 

Before turning to more complicated boundary-value problems, we consider one 
with azimuthal symmetry, but with only a limited range of 6. This is a threc- 
dimensional analog of the situation discussed in Section 2.11. Suppose that the 
limited angular region, 0 = 6= 8,0 < #< 27, is bounded by a conical conducting 
surface, as indicated in Fig. 3.5. For 8 < 7/2, the region can be thought of as a 
deep conical hole bored in a conductor. For 8 > 7/2, the region of space is that 
surrounding a pointed conicat conductor. 

The treatment of Section 3.2 for the Legendre differential equation nceds 
modification. With the assumption of azimuth symmetry, (3.10) is still applicable, 
but we now seek solutions finite and single-valued on the range of x = cos # of 
cos B = x < 1. Furthermore, since the conducting surface @ = 8 is at fixed po- 
tential, which we can take to be zero, the sofution in cos # must vanish at @ = 6 
to satisfy the boundary conditions. Since we demand regularity at x = 1 it is 
convenient to make a series expansion around x = 1 instead of x = 0, as was 
done with (3.11). With the introduction of the variable 

€ = 3(1 x) 
the Legendre cquation (3.10) becomes 

d dP 
# |e - eZ] + vv + IP =0 (3.39) 

Figare 3.5 
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where / has been replaced by v to avoid confusion. The corresponding radial 
solutions for U(r\r in (3.2) are r* and r~” '. With a power series solution, 

P(E) = & Sag 

substituted into (3.39), the vanishing of the coefficient of the lowest power of & 
requires a = 0. The recursion relation between successive coefficients in the serics 
is then 

4-1 (= i+ vt 1) 7 ae (3.40) 

Choosing a) = 1 to normalize the solution to unity at £ = 0 (cos @= 1), we have 
the series representation 

(-v)» + 1) (Cr + DU t+ DO +t 2) 
1! a 2! 2! PAE = 1 + ét+ (3.41) 

We first observe that if y is zero or a positive integer the series terminates. The 
reader can verify that for vy = / = 0, 1, 2,.... the series (3.41) is exactly the 
Legendre polynomials (3.15). For v not equal to an integer, (3.41) represents a 
generalization and is called a Legendre function of the first kind and order v. The 
series (3.41) is an example of a hypergeometric function 3/\(a, b: c: z) whose 
series expansion is 

ab iz . a(a + Wb(b + 1) 2? 
z ghia Pies a) ol Fy e+) 2! 

Comparison with (3.41) shows that the Legendre function can be written 

Pix) = ah(-» pelle 5 *) (3.42) 

Here we have returned to our customary variable x = cos 6. The propertics of 
the hypergeometric functions are well known (see Morse and Feshbach, Chapter 
5, Dennery and Krzywicki, Sections IV.16-18, Whittaker and Watson, Chapter 

XIV). The Legendre function P,(x) is regular at x = 1 and for |x| < 1, but is 
singular at x = —1 unless v is an integer. Depending on the value of v, it has a 
certain number of zeros on the range |x| < 1, Since the polynomial P,(x) has / 
zeros for |x| < 1, we anticipate that for real » more and more zeros occur as v 
gets larger and larger. Furthermore, the zeros are distributed more or less uni- 
formly on the interval. In particular, the first zero moves closer and closer to 
x = 1 as v increases. 

The basic solution to the Laplace boundary-value problem of Fig. 3.5 is 

Ar’P,(cos @) 

where y > 0 is required for a finite potential at the origin. Since the potential 

must vanish at @ = § for all 7, it is necessary that 

P.{cos B) = 0 (3.43) 

This is an cigenvalue condition on v. From what was just stated about the 

zeros of P, it is evident that (3.43) has an infinite number of solutions, vy = % 
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(k = 1, 2,...), which we arrange in order of increasing magnitude. For »v = », 
x = cos f is the first zero of P,,(x). For vy = », x = cos B is the second zero 
of P,,(x), and so on. The complete solution for the azimuthally symmetric poten- 
tial in the region 0 = @ = B is* 

(7, #) = 5. Agr P,,(c08 8) (3.44) 

In the spirit of Section 2.11 we are interested in the general behavior of the 
potential and ficlds in the neighborhood of r = 0 and not in the full sotution with 
specific boundary conditions imposed at large r. Thus we approximate the be- 
havior of the potential near r = 0 by the first term in (3.44) and write 

(7, 8) = Ar'P,(cos 8) (3.45) 

where now v is the smallest root of (3.43). The components of electric field and 
the surface-charge density on the conical conductor are 

=the vAr"'P,(cos 8) or 

se OO hh, api leas Ey = 90 Ar” ' sin 6P‘(cos @) (3.46) 

(7) = ~ Fe Ely = — Zo sin BPs(cos 8) O01) = ~ 7 Eales = — gr! sin BP. (cos B 

Here the prime on P, denotes differential with respect to its argument. The ficlds 
and charge density all vary as r* ' as r— 0. 

The order v for the first zero of P,{cos ) is plotted as a function of in Fig. 
3.6. Obviously, for B <<1, v >> 1. An approximate expression for vin this domain 
can be obtained from the Bessel function approximation,' 

P,(cos 6) = in( er + 1) sin :) (3.47) 

valid for targe v and @ < 1. The first zero of Jo(x) is at x = 2.405. This gives 

2.405 1 
aie aie (3.48a) 

Since |E| and o vary as r’~! there are evidently very smail ficlds and very little 
charge decp in a conical hole as 8 — 0. For 6 = 7/2, the conical conductor 
becomes a plane. There v = 1 and o « 1, as expected. For 8 > 7/2, the geometry 
is that of a conical point. Then v < | and the field is singular at r = 0. For 
B— 7, v— 0, but rather slowly. An approximation for (7 — 8) small is 

y= [2 n( 2 3) (3.48b) 

This shows that for (7 — 8) = 10°, » = 0.2 and even for (#7 — 8) = 1°.» = 0.1. 

In any event, for a narrow conical point the fields near the point vary as r7'** 

"The orthogonality of the functions P,, (cos 8) on the interval cos 8S x = 1 can be shown in the 
same way as for P,(cus 0)—sce (3.17)-(3.19}. Completeness can also be shown, 
"Bessel functions are discussed in Section 3.7. 
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90 
8B (degrees) ——>- 

Figure 3.6 The order parameter v for the first zero of P,{cos 8) versus B. The range 
0 < B < 90° corresponds to a conical hole. while 90° < 8 < 180° represents a conical 
point. Near r = 0 the fields and surface-charge density are proportional to r’~!. The 
dashed curves are the approximate expressions, (3.48a) and (3.48b). 

where € << 1. Very high ficids exist around the point. The efficacy of such points 
in lightning rods is discussed in Section 2.11. 

An extended discussion of potential problems of this general kind by R, N. 
Hall [J. Appl. Phys. 20, 925 (1949)] includes graphs for a number of the roots 1, 

of (3.43) as functions of f. 

3.5 Associated Legendre Functions and the 
Spherical Harmonics Y,,,(0, @) 

So far we have deait with potential problems possessing azimuthal symmetry with 
solutions of the form (3.33). Unless the range in @ is restricted, as in Section 3.4, 

these involve only ordinary Legendre polynomials. The gencral potential prob- 
lem can, however, have azimuthal variations so that m # 0 in (3.5) and (3.9). 
Then we need the generalization of P,(cos 6), namely, the solution of (3.9) with 
? and m both arbitrary. In essentially the same manner as for the ordinary 
Legendre functions it can be shown that to have finite solutions on the interval 
-i =. = 1, the parameter ?/ must be zero or a positive integer and the integer m 

can take on only the values —/, —(? — 1)...., 0,.... (2 — 1), L The solution 
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having these properties is called an associated Legendre function P/"(x). For 
positive sm it is defined by the formula*: 

a 

ae” 

If Rodrigues’ formula is used to represent P,(x), a definition valid for both pos- 
itive and negative m is obtained: 

Pix) = (-1)"0 - 2? Pix) (3.49) 

icy a” awe ee" od _ ay PR(x) = mh {1S xy ane (x? — 1) (3.50) 

P(x) and P/"(x) are proportional, since the differential equation (3.9) depends 
only on m? and m is an integer. It can be shown that 

oa ere @51) 
For fixed m the functions P/"(x) form an orthogonal set in the index / on the 

interval -1 = x = 1. By the same means as for the Legendre functions the 
orthogonality relation can be obtained: 

Pra) = (-1)" 

2 +m)! 

2+1(1- m)! 

The solution of the Laplace equation was decomposed into a product of 
factors for the three variables r, @, and ¢. It is convenient to combine the angular 

factors and construct orthonormal functions over the unit sphere. We will call 
these functions spherical harmonics, although this terminology is often reserved 
for solutions of the generalized Legendre equation (3.9). Our spherical harmonics 
are sometimes called “tesseral harmonics” in older books. The functions 
Q,,(@) = e’”"* form a complete set of orthogonal functions in the index m on the 
interval 0 < @ = 27. The functions P7"(cos 8) form a similar set in the index / 
for each m value on the interval —1 = cos @= 1. Therefore their product P7"Q,,, 

will form a complete orthogonal set on the surface of the unit sphere in the two 
indices /, m. From the normalization condition (3.52) it is clear that the suitably 
normalized functions, denoted by Y,,,(@, &), are 

+1 

[, Preopren ar = 1 (852) 

Yim(8. 6) = P?(cos a)e"""® (3.53) 

From (3.51) it can be seen that 

Yi -m(, #) = (-1)"¥in(@ $) (3.54) 
The normalization and orthogonality conditions are 

an 7 

as [ sin 8 dO Yi n(6, b)¥in(@s 6) = 878mm (3.55) lo 0 

The fompletencss relation, equivalent to (2.35), is 

>. S, Y%,(0', b'V¥nl@, @) = 5(6 — H')8(cos @ - cos 6’) (3.56) 

“The choice of phase for Pj'(x) is that of Magnus ef al. and E. U. Condon and G. H. Shortley in 
Theory of Atomic Spectra, Cambridge University Press (1953). For explicit expressions and recursion 
formulas, see Magnus et al.. Section 4.3. 
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For a few smail / valucs and m = 0 the list below shows the explicit form of the 

Y,n(8, ¢). For negative m values (3.54) can be used. 

SPHERICAL HARMONICS Y,,{8, &) 

1=0 

f=1 

fis 
1=2 Yu = - is sin 8 cos 6e'* 

y8r 

Yon a (cos*# = 3) 

tle |5S rest Ys5 = rr yan Ge" 

5 
Yx = B fis sin?@ cos be" 

oe 4y20 

far 
Ya = — laa sin @ (Scos’@ — 1)e"* 

Yu = 3 cos*@ — 3 cos 0) 

Note that, for m = 0, 

Yat. ) = I ! pcos 8) (3.57) 

An arbitrary function g(@, 6) can be expanded in spherical harmonics: 

8. $) = D> >. AinYinl®, 6) (3.58) 
b nis 

where the coefficients are 

Am = | dO. ¥7,,(8, &)g(8, b) 

A point of interest to us in the next section is the form of the expansion for 
@ = 0. With definition (3.57), we find: 

{g(@ Meno = oe wet a, (3.59) 
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Ap = [ao Pi{cos #)g(@. 6) (3.60) 

All terms in the series with m # 0 vanish at @ = 0. 
The general solution for a boundary-value problem in spherical coordinates 

cap be written in terms of spherical harmonics and powers of r in a generalization 
of (3.33): 

where 

e 3 
Hr, 6G) = SD [Arar + Bar Win, 6) (3.61) 

i=0 mat 

Tf the potential is specified on a spherical surface, the coefficients can be deter- 
mined by evaluating (3.61) on the surface and using (3.58). 

3.6 Addition Theorem for Spherical Harmonics 

A mathematical result of considerable interest and use is called the addition 
theorem for spherical harmonics. Two coordinate vectors x and x’, with spherical 
coordinates (r, #, @) and (r', 6’, 6’), respectively, have an angle y between them, 
as shown in Fig. 3.7. The addition theorem expresses a Legendre polynomial of 
order / in the angle yin terms of products of the spherical harmonics of the angles 
0, d and 6, b': 

! 
P(cosy) =— =~ J V4,(0'. 6')¥inl®, $) (3.62) 

2+ 1 ety 

where cos y = cos @ cos 6’ + sin #sin @' cos(¢ — '). To prove this theorem we 
consider the vector x’ as fixed in space. Then P,(cos y) is a function of the angles 
9, @, with the angles 6’, &' as parameters. It may be expanded in a series (3.58): 

= cs 

Pi(cos y) = YD Arm (8, & VY rm, $) (3.63) 
0 m= 

Comparison with (3.62) shows that only terms with /’ = / appear. To see why 
this is so, note that if coordinate axes are chosen so that x’ is on the z axis, then 
y becomes the usual polar angle and P;(cos y) satisfies the equation: 

¥°P(cos y + = D) preos y = 0 (3.64) 

where V’” is the Laplacian referred to these new axes. If the axes are now rotated 
to the position shown in Fig. 3.7, ¥’? = V? and r is unchanged.* Consequently 
P,(cos y) still satisfies an equation of the form (3.64); ie., it is a spherical harmonic 
of order /, This means that it is a linear combination of FY,,,’s of that order only: 

1 
Pcosy) = 2 An(O', 6 )YinlB, #) (3.65) 

The coefficients A,,(0’, 6’) are given by 

AnA8'. 6") = if Y3,(8, b)Pi(cos y} dO (3.66) 

*The proof that ¥? = ¥? under rotations follows most easily from noting that Fy = V- Vwis an 
operator scalar product and that all scalar products are invariant under rotations. 
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Figure 3.7 

To evaluate this cocfficicnt we note that it may be viewed, according to (3.60), 

as the m' = 0 coefficient in an expansion of the function V47/(2i + 1) ¥4,,(6, b) 

in a series of Y,,,-(y, 8) referred to the primed axis of (3.64). From (3.59) it is 
then found that, since only one / value is present, coefficient (3.66) is 

An(O', b') = {Yin 0% BY O60 BYlly-0 (3.67) 
oe 

in the limit y — 0, the angles (8, #), as functions of (y, B), go over into (0', d’). 
Thus addition theorem (3.62) is proved. Sometimes the theorem is written in 
terms of P/"(cos @) rather than Y,,. Then it has the form: 

P{cos y) = P(cos ee A (3.68) 

+2 
eee (tm 

If the angle y goes to zero, results a “sum rule” for the squares of Y,,,,'s: 

> [¥in(@. )P = at (3.69) 

 PP(oos a)Pr"(cos 6’) cos[m(¢ — ’)] 

The addition theorem can be used to put expansion (3.38) of the potential 
at x due to a unit charge at x’ into its most explicit form. Substituting (3.62) for 
P,(cos y) into (3.38), we obtain 

1 So 1 of 
Ix — 22 eA 

Equation (3.70) gives the potential in a compietely factorized form in the coor- 
dinates x and x’. This is useful in any integrations over charge densities, etc., 
where one variable is the variable of integration and the other is the coordinate 
of the observation point. The price paid is that there is a double sum rather than 
a single term. 

YimlO', b')¥im(O. b) (3.70) 

3.7 Laplace Equation in Cylindrical Coordinates; 
Bessel Functions 

In cylindrical coordinates (p, ¢, z), as shown in Fig. 3.8, the Laplace equation 
takes the form: 

FO Lad 1 FO FO 
ag ie a ha, + =0 . oe pap page ae G.71) 
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Figure 3.8 

The separation of variables is accomplished by the substitution: 

P(p, &, 2) = R(p)Q(b)Z(z) 

In the usual way this leads to the three ordinary differential cquations: 

ee Pez 

dz Z 
#O 
<4 Po0= 
dg vQ 

@R dR ) 
s+ P-=j]R= 
dp pdp” ( e 

The solutions of the first two equations are elementary: 

Zz) = e7* 

Og) = e*'"* 

(3.72) 

(3.73) 

(3.74) 

(3.75) 

(3.76) 

For the potential to be single-valued when the full azimuth is allowed, » must be 
an integer. But barring some boundary-condition requirement in the z direction, 
the parameter & is arbitrary. For the present we assume that k is real and positive. 

The radial equation can be put in a standard form by the change of variable 
x = kp. Then it becomes 

@R = 1dR 
— toa 
dx* x dx 

(3.77) 

‘This is the Bessel equation, and the solutions are called Bessel functions of order 
v. If a power series solution of the form 

Ra=x Dd a,x! 
io 

is assumed, then it is found that 

and 

(3.78) 

3.79) 

(3.80) 
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for} = 1,2,3,....Allodd powers of x’ have vanishing coefficients. The recursion 

formula can be iterated to obtain 

(HT +1) 44 - ar G+tat i” G81) 

It is conventional to choose the constant a = [2“T(« + 1)] '. Then the two 

solutions arc 

(eV $__cy fs) 
iy (5) Rigs er (3) G82) 

J @)= @) sly () (3.83) 
jos TG - ev +1) 

These solutions are called Bessel functions of the first kind of order +y. The 

series converge for all finite values of x. If v is not an integer, these two solutions 

J.,(x) form a pair of linearly independent solutions to the second-order Bessel 
equation, However, if v is an integer, it is well known that the solutions are 
lincarly dependent. In fact, for » = m, an integer, it can be seen from the series 
representation that 

Fm) = (VI) (3.84) 

Consequently it is necessary to find another linearly independent solution when 
v is an integer. It is customary, even if v is not an integer, to replace the pair 
J. (x) by J/,(x) and N,{x), the Neumann function {or Bessel function of the sec- 
ond kind): 

_ J.A{x) cos vr — J_ x) 
N, 
vx) sin yr 

(3.85) 

For v not an integer, N,{x) is clearly linearly independent of J,(x). In the timit 
v— integer, it can be shown that N,{x) is still linearly independent of J,(x). As 

expected, it involves log x. Its series representation is given in the reference 
books. 

The Bessel functions of the third kind, called Hankel functions, are defined 

as linear combinations of J,(x) and N,(x): 

H® (x) = F(x) + eo} 

HP (x) = F(x) ~ iN,00) 
(3.86) 

The Hankel functions form a fundamental set of solutions to the Bessel equation, 
just as do J,(x) and N(x). 

The functions J,, N,, H{?, 172 all satisfy the recursion formulas 

OD, x) + Quix) = a0) (3.87) 

a0,Q) 
9, s(x) ~ Qai(X) = 2 (3.88) 

where {2,(x) is any one of the cylinder functions of order v. These may be verified 
directly from the series representation (3.82). 
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For reference purposes, the limiting forms of the various kinds of Bessel 
function are given for small and large values of their argument. For simplicity, 
we show only the leading terms: 

1 x\" 
<« 1) > ———_ {= 3.89 x1 IO) Baa @) (8) 

2 [(3) + 05772 ++ | y=0 
ny ai7) (3.90) Ne ip é 

Tw) () v#0 
T a: 

In these formulas v is assumed to be real and nonnegative. 

P| 1.0) co: (: is 2) x v X)is aS COsp ee 
24 G91) 

The transition from the smal! x behavior to the large x asymptotic form occurs 
in the region of x ~ ». 

From the asymptotic forms (3.91) it is clear that cach Bessel function has an 
infinite number of roots. We will be chicfly concerned with the roots of J,{x): 

I.Qm) =O (n= 1,2,3,...) (3.92) 

x,» is the nth root of J,{x). For the first few integer values of y, the first three 
roots are: 

v=0, 2.405, 5.520, 8.654,... 

v=1, x1, = 3.832, 7.016, 10.173,... 

v= 2, Xm, = 5,136, 8.417, 11.620,... 

For higher roots, the asymptotic formula 

Xm = nT + (v— 4) 

gives adequate accuracy (to at least three figures). Tables of roots are given in 
Jahnke, Emde, and Lésch (p. 194) and Abramowitz and Stegun (p. 409). 

Having found the solution of the radial part of the Laplace equation in terms 
of Bessef functions, we can now ask in what sense the Bessel functions form an 
orthogonal, complete set of functions. We consider only Besse! functions of the 
first kind, and we show that Vp IAx,,p!a), for fixed y = 0,2 = 1,2,..., form 

an orthogonal set on the interval 0 = p = a. The demonstration starts with the 
differentia! equation satisfied by J,(x_,,p/a): 

ld 0 ‘) Fa z te pee ce Xe Fw Py ap ep ap + (3 2) e) 0 (3.93) 
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If we multiply the cquation by p/,(x,,.p/a} and integrate from 0 to a, we obtain 

Ke pe e Jed tw = ln Ef dp = 0 [(@ “yo fm a J, Fm gf 0 

Integration by parts, combined with the vanishing of (p/,./;,) at p = 0 (for v= 0) 
and p = a, leads to the resuit: 

a a °) ate 2) se [ (% 7 Vaal P(e ‘) iat 

»Oap dp 

If we now write down the same expression, with » and n' interchanged, and 
subtract, we obtain the orthogonality condition: 

Gay f ptm Vili 2) dp =0 3.94) 
oO a a 

Adroit use of the differential equation, and the recursion formulas (3.87) and 
(3.88) leads to the normalization integral: 

[rtm 2)A(em2) dp =$UseiedPirn 95) 

Assuming that the set of Bessel functions is complete, we can expand an arbitrary 
function of p on the interval 0) < p <a in a Fourier—Bessel series: 

S Av Xn 2) (3.96) a F(p) 

where 

Am = if opto (22 ) dp (3.97) 
aT in) a 

Our derivation of (3.96) involved the restriction v = 0, Actually it can be proved 
to hold for all » = -1. 

Expansion (3.96) and (3.97) is the conventional Fourier-Bessel series and is 

particularly appropriate to functions that vanish at p = a (e.g., homogeneous 
Dirichlet boundary conditions on a cylinder; see the following section). But it 
will be noted that an alternative expansion is possible in a series of functions 
Vp Jy npla) where y,, is the nth root of the equation [dJ,{x)|/dx = 0. The 

reason is that, in proving the orthogonality of the functions, all that is demanded 
is that the quantity [pJ,(kp)(d/dp)J.(k'p) — pl,(k' p)(didp)J,{kp)] vanish at 
the end points p = 0 and p = a. The requirement is met by A = x,,/a or A = 
Yinla, where J,(x,,) = 0 and Ji{y,,) = 8, or, more generally, by p(d/dp)J,(kp) 
+ AL,{kp) = 0 at the end points, with A a constant independent of k. The expan- 

sion in terms of the set Vp J,(y,,0/4) is especiatly useful for functions with van- 

ishing slope at p = a. (See Problem 3.11.) 
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A Fourier—Bessel serics is only one type of expansion involving Bessel func- 
tions. Some of the other possibilities are: 

Neumann series: 5) @,J,4,(2) 
=o 

Kapteyn series: 5) @,J,..((v + n)z) 
10 

Schlémilch series: > a, {nx) 
al 

The reader may refer to Watson (Chapters XVI-XIX) for a detailed discussion 
of the properties of these series. Kapteyn scrics occur in the discussion of the 
Kepler motion of planets and of radiation by rapidly moving charges (see Prob- 

lems 14.14 and 14.15). 
Before leaving the properties of Bessel functions, we note that if, in the 

separation of the Laplace equation, the separation constant k? in (3.73) had been 

taken as —k?, then Z(z) would have been sin kz or cos kz and the equation for 

R(p) would have been: 

@R 1dR ( =) 
—+-—-[P+5)}R=0 3.98 dp’ p dp e ee 

With kp = x, this becomes 

@R 1aR v wei (1sF\eao (3.99) 

The solutions of this equation are called modified Bessel functions. It is evident 
that they are just Besse! functions of pure imaginary argument. The usual choices 
of linearly independent solutions are denoted by /,(x) and K,(x). They are de- 
fined by 

T(x) = i ‘I,{éx) (3.100) 

K,Q) =2 F(x) (3.101) 

and are real functions for real x and v. Their limiting forms for small and large 
x arc, assuming real » = 0: 

nl L(x) > aan @) (3.102) 

-[in() + 0.5772 °° a »=0 
Ka) 4. . (3.103) 

r@ (2 
a2 2) : Pee 

eee Loo ae a + o(2)] (3.104) 

conn Sofie) 
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3.8 Boundary-Value Problems in Cylindrical Coordinates 

The solution of the Laplace equation in cylindrical coordinates is ® = 
R(p)Q()Z(z), where the separate factors are given in the previous section. Con- 

sider now the specific boundary-value problem shown in Fig. 3.9. The cylinder 
has a radius a and a height L, the top and bottom surfaces being at z = 1 and 
z = 0. The potential on the side and the bottom of the cylinder is zero, while the 
top has a potential & = ¥(p, @). We want to find the potential at any point inside 
the cylinder. In order that ® be singic valucd and vanish at z = 0, 

Ob) = A sinmd + Bcosme 
Zz) = sinh kz 

where v = m is an integer and k is a constant to be determined. The radial factor 
is 

R(p) = CI,{kp) + DN n(kp) 

If the potential is finite at p = 0, D = 0. The requirement that the potential vanish 
at p = a means that k can take on only those special values: 

Kyun = (n= 1.2.3...) 

where x,,,, are the roots of J,,(X%m,) = 0. 
Combining all these conditions, we find that the general form of the solution 

is 

Pp, b, 2) = YD Ink) sinh KnZ (Arn Si mg 
m0 n=l 

+ By, cosmd) 
(3.105a) 

Atz = L. we are given the potential as V(p, #). Therefore we have 

V(p, 6) =X sih(KynL)In(KmnP (Amn $0 mb + Byyy Cosmb) 

& = Vip, d) 

Figure 3.9 
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This is a Fourier series in @ and a Fourier—Bessel series in p. The coefficients 
are, from (2.37) and (3.97), 

2coseeh(Rnl) | ag [do pve, Mal Gmap) sind 
cae BOT 2 (KmnA) Jo 

and (3.105b) 

_ 2eosech(KimnL) [?* f 
Brn = 70°F? (ka) Jo dd | de Vie, bnlkmnp) cos md 

with the proviso that, for m = 0, we use By, in the series. 
The particular form of expansion (3.10Sa) is dictated by the requirement that 

the potential vanish at z = 0 for arbitrary p and at p = a for arbitrary z, For 
different boundary conditions the expansion would take a different form. An 
example where the potential is zero on the end faces and equal to V(, z) on the 

side surface is left as Problem 3.9 for the reader. 
The Fourier—Bessel series (3.105) is appropriate for a finite interval in p, 

0 <= p=a.lfa— %, the series goes over into an integral in a manner entirely 
analogous to the transition from a trigonometric Fourier series to a Fourier in- 
tegral. Thus, for example, if the potential in charge-free space is finite for z = 0 
and vanishes for z — ®, the general form of the solution for z = 0 must be 

Dp, bz) = 3 ily dke 1,,(kp)[A,(k) sinmd + B,(k) cosm@| (3.106) 
m=0 

If the potential is specified over the whole plane z = 0 to be V(p, &) the coeffi- 
cients are determined by 

Vip, b) = s if dk In{kpyAn(k) sind + B,(k) cos mp] 

The variation in ¢ is just a Fourier series. Consequently the coefficients A,,(k) 
and B,,(k) are separately specified by the integral relations: 

1 porn Ate = if Sindh" ats - dk’ (3.107) 

These radial integral equations of the first kind can be easily solved, since they 
are Hankel transforms. For our purposes. the integral relation, 

[ XA, (Rx)J,.{K'x) dx = : d(k' — k) (3.108) 

can be exploited to invert equations (3.107). Multiplying both sides by pJ,,(kp) 
and integrating over p, we find with the help of (3.108) that the coefficients are 
determined by integrals over the whole area of the plane z = 0: 

A,f{k)) ik f* ee sin md 
at =a), eo), 46 Vo ayittoy{ (3.109) 

smb 

As usual, for »: = 0, we must use 4B,(k) in series (3.106), 
While on the subject of expansions in terms of Bessel functions, we observe 

that the functions /,(kx) for fixed v, Re(v) > —1, form a complete. orthogonal 

aso 
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{in &) set of functions on the interval, 0 <x < ~. For each m value (and fixed 
¢ and z), the expansion in & in (3.106) is a special case of the expansion, 

A(x) = [ : A(k)I (kx) dk, where A(k) = k i xA(x)J,(kx) dy (3.110) 

An important example of these expansions occurs in spherical coordinates, with 
spherical Bessel functions, j,(kr),/ = 0,1,2,.... For present purposes we merely 
note the definition, 

dz) = E Jie vi2z) G11) 

[Details of spherical Bessel functions may be found in Chapter 9.] The ortho- 

gonality relation (3.108) evidently becomes 

7 [ Pidkeryidk'r) dr = = lk — k’) (3.112) 

The completeness relation has the same form, with r— k,k > 7, k' > r'. The 
Fourier-spherical Besse! expansion for a given / is then 

- P BRP ges: 
A(r) = iE A(k)j(kr) dk, where A(k) = ae [ PA(r)idkr) dr (3.113) 

Such expansions are useful for current decay in conducting media or time- 
dependent magnetic diffusion for which angular symmetry reduces consideration 
to one or a few / values. See Problems 5.35 and 5.36. 

3.9 Expansion of Green Functions in Spherical Coordinates 

To handle problems involving distributions of charge as welt as boundary values 
for the potential (i.e., solutions of the Poisson equation), it is necessary to deter- 
mine the Green function G(x, x‘) that satisfies the appropriate boundary con- 
ditions, Often these boundary conditions are specified on surfaces of some sep- 
arable coordinate system (c.g., spherical or cylindrical boundaries). Then it is 
convenient to express the Green function as a series of products of the functions 

appropriate to the coordinates in question. We first illustrate the type of expan- 

sion involved by considering spherical coordinates. 
For the case of no boundary surfaces, except at infinity, we already have the 

expansion of the Green function, namely (3.70): 

i Sei av 
jx —x'| wd > at 

1 VIn(O'. H')Yin(8. 4) 

Suppose that we wish to obtain a similar expansion for the Green function ap- 
propriate for the “exterior” problem with a spherical boundary at r = a, The 

result is readily found from the image form of the Green function (2.16). Using 
expansion (3.70) for both terms in (2.16), we obtain: 

O@ x’) = 40 5 f Fras : (5) ene. b')¥inl®, b)  GB.114) 
fm 2b + 1 rt! w 
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To sce clearly the structure of (3.114) and to verify that it satisfies the boundary 
conditions, we cxhibit the radial factors separately for r < r‘ and for r > r': 

1 [ gt! 
1 ' 

t 2\a Se te - ol. rar 

iz -1(2) l- A (3.115) 
ty ae 

Po SSeS irae. 

a Nor! 

First of all, we note that for cither r or r' equai to a the radial factor vanishes, 
as required. Similarly, as r or r' — ©, the radial factor vanishes. It is symmetric 
in rand r’. Viewed as a function of r, for fixed r', the radial factor is just a lincar 

combination of the solutions rand r~“* of the radial part (3.7) of the Laplace 
equation. It is admittedly a different linear combination for r < r’ and for 
r>r’. The reason for this, which will become apparent below, is connected with 

the fact that the Green function is a solution of the Poisson equation with a delta 
function inhomogeneity. 

Now that we have seen the general structure of the expansion of a Green 
function in separable coordinates we turn to the systematic construction of such 
expansions from first principles. A Green function for a Dirichlet potential prob- 
lem satisfies the equation 

ViG(x, x’) = ~4775(x — x’) (3.116) 

subject to the boundary conditions G(x, x') = 0 for either x or x’ on the boundary 

surface S. For spherical boundary surfaces we desire an expansion of the general 
form (3.114). Accordingly we exploit the fact that the delta function can be 
written* 

d(x - x’) = ‘. d(r — r') 5(@ — H') (cos @ — cos 6’) 

and that the completeness relation (3.56) can be used to represent the angular 
delta functions: 

8x — x)= 5 35 Or -r) s S Yinl8", ')Yin(O. b) (3.117) 
Fm 

Then the Green function, considered as a function of x, can be expanded as 

Gx’) = > S Aidt |r, 0. b'WYin(8. &) (3.118) 
10 mat 

Substitution of (3.117) and (3.118) into (3.116) leads to the results 

Anlr|t, 8,8) = Br FV in(Os 6) G.119) 

*To express 6(x x") = 8x1 — x})8(x2 — x4)8(x, — x4) in terms of the coordinates (£:, &, £4). related 
10 (ty. X2, 43) via the Jacobian J(x,. &). we note that the meaningful quantity is A(x x’) *x. Henee 

Ox x)= 8 — &) 5G — &) & — &) 
ai | 

See Problem 1.2. 
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with 

1d +1 4 2S oder) ~ gtr) = —Far- ry) 120) 
The radial Green function is seen to satisfy the homogeneous radial equation 
(3.7) for r # r’. Thus it can be written as 

ine Ar! + Bre) forr<r 

BAT Air + BOY torr >’ 

The coefficients A, B, A’, B’ arc functions of r' to be determined by the boundary 

conditions, the requirement implicd by 6{r — r’) in (3.120), and the symmetry of 

gr, r') in r and r’. Suppose that the boundary surfaces are concentric spheres 
atr = aand r = b. The vanishing of G(x, x’) for x on the surface implics the 
vanishing of g,(r, r') for r = a and r = 6. Consequently g,{r, r') becomes 

ate 
a(x - a7). r<r 

adr, r') = 1 (3.121) 

o( ts = om). cou 

The symmetry in 7 and r’ requires that the coefficients A(r’) and B'(r’) be such 
that g,{r, r') can be written 

t+) ] a 

grr’) = fv - oo \(an - i) (3.122) 

where r., (r,.) is the smaller (larger) of r and r’. To determine the constant C we 
must consider the cffect of the dcita function in (3.120). If we multiply both sides 
of (3.120) by r and integrate over the interval (rom r = r’ — etor=r' +e, 
where e is very small, we obtain 

{Sf veiroaf -{2ueern} =F ory 
Thus there is a discontinuity in slope at r = r’, as indicated in Fig. 3.10. 

Forr =r’ + er. =rnr. =r’. Hence 

[deer =e 2)2(4-22)]. 
FE) Tee] 

gute, )—— 

Figure 3.20 Discontinuity in slope of the 
> radial Green function. 
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Similarly 

{gree} -Sfrer)IP-G)] 
Substituting these derivatives into (3.123), we find: 

an 

Combination of (3.124), (3.122), (3.119), and (3.118) yields the expansion of the 

Green function for a spherical shell bounded by r = @ and r = 6: 

Giaw) =4n SS Vin oil 8) (nT), ia) 
i=0 m=-t a Ve rs b 

Ql+ fi = (2) | 
(3.125) 

For the special cases a > 0, b> », and b > ©, we recover the expansions (3.70) 

and (3.114), respectively. For the “interior” problem with a sphere of radius 6, 
we merely let a — 0, Whercas the expansion for a single sphere is most easily 
obtained from the image solution, the general result (3.125) for a spherical shell 
is rather difficult to obtain by the method of images, since it involves an infinite 
set of images. 

(og (3.124) 

3.10 Solution of Potential Problems with the 
Spherical Green Function Expansion 

The general solution to the Poisson equation with specified values of the potential 
on the boundary surface is (see Section 1.10): 

i ; i jpn 1 9G ys (x) = ee I oe )G(x, x’) dx +h B(x") Fda’ (3.126) 

For purposes of illustration let us consider the potential inside a sphere of radius 
b. First we will establish the equivalence of the surface integral in (3.126) to the 
method of Section 3.5, equations (3.61) and (3.58). With a = 0 in (3.125), the 
normal derivative, evaluated at r’ = 0, is: 

aG _aG 
dn’ ar’ 

F 
Jane (:) Sal. &%in(0) (3.127) 

iin 

Consequently the solution of the Laplace equation inside r = b with @ = 
V(8', &’) on the surface is, according to (3.126): 

! 

(x) = > [/ VO. DY nO. 6’) aor |() Yinl@, 6) 3.128) 
tm 

For the case considered, this is the same form of solution as (3.61) with (3.58). 

There is a third form of solution for the sphere, the so-called Poisson integral 
(2.19). The equivalence of this solution to the Green function expansion solution 
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a 
em 

123 

Figure 3.11 Ring of charge of radius a and total 
charge Q inside a grounded, conducting sphere 
of radius b, 

is implied by the fact that both were derived from the general expression (3. 126) 
and the image Green function. The explicit demonstration of the equivalence of 
(2.19) and the series solution (3.61) will be left to the problems. 

We now turn to the solution of problems with charge distributed in the vol- 
ume, so that the volume integral in (3.126) is involved. 1t is sufficient to consider 

problems in which the potential vanishes on the boundary surfaces. By linear 
superposition of a solution of the Laplace equation, the general situation can be 
obtained. The first illustration is that of a hollow grounded sphere of radius b 
with a concentric ring of charge of radius a and total charge Q. The ring of charge 
is located in the x-y plane, as shown in Fig. 3.11. The charge density of the 
can be written with the help of delta functions in angle and radius as 

p(x’) = 25 8(r’ — a) 8(cos 6’) (3. 

ring 

129) 

In the volume integral over the Green function only terms in (3.125) with m = 0 
will survive because of azimuthal symmetry. Then, using (3.57) and remembering 
that a — 0 in (3.125), we find 

(x) = te -| p(x’)G(x. x") dx! 

° 3 ruow.( te ~ shia) Pcs 
© Attey 

(3. 

where now r.. (r..) is the smaller (larger) of r and a. Using the fact 

P2,41(0) = O and P2,(0) = [(-1)"(2n — 1)!!/2"n!, (3.130) can be written as 

Q & (-1)’(2n - 1)! a 1 ee 
ie 

r Ate, 2=0 2"n! (x) = Ratt Fess) Poleos A (3. 

130) 

that 

131) 

In the limit 5 — 09, it will be seen that (3.130) or (3.131) reduces to the expression 
at the end of Section 3.3 for a ring of charge in free space. The present result can 
be obtained alternatively by using that result and the images for a sphere. 

A second example of charge densities, illustrated in Fig. 3.12, is that ofa 

hollow grounded sphere with a uniform line charge of total charge Q located on 
the z axis between the north and south poles of the sphere. Again with the help 
of delta functions, the cg eae density can be written: 

2 
ie re p(x") = [8(cos 8 — 1) + 6(cos 6” + 1)] GB. 132) 
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Figure 3.12 Uniform line charge of length 
2 and total charge Q inside a grounded, 
conducting sphere of radius b. 

The two delta functions in cos @ correspond to the two halves of the line charge, 
above and below the x-y plane. The factor 277’? in the denominator assures that 

the charge density has a constant /inear density Q/26. With this density in (3.126) 
we obtain 

Q< are fa th 
(x) = Bmre,b & [P:(1) + P{—1)]P,(cos @) if (oe = is) dr’ (3.133) 

The integral must be broken up into the intervals 0 = r' <randr sr’ sb. 
Then we find 

b a 
pe ae [ sth pit [ 1 PN yee 

i? (aa i) rae dr +r  \prat prt ar (3.134) 

_ +1) r= (fy 
~ K+ 1y b 

For / = 0 this result is indeterminate. Applying L’Hospital’s rulc, we have, for 
(= 0 only, 

af, _(ry 
4 dl b d b 
| = lim —————_ = lim | - ee’ "| = Inf = (3.135) emo dy wo | dl r 

dl 

This can be verified by direct integration in (3.133) for / = 0. Using the fact that 

P,(-1) = (-1)%, the potential (3.133) can be put in the form: 

0 ob) Ss Gen [,_ (r" (x) = ib {in(2) + 2 aD [: (:) Pate a} (3.136) 

The presence of the logarithm for / = 0 reminds us that the potential diverges 
along the z axis. This is borne out by the scrics in (3.136), which diverges for 
cos @ = +1, except at r = b exactly. The peculiarity that the logarithm has ar- 
gument (b/r) instead of (5/r sin @) is addressed in Problem 3.8. 

The surface-charge density on the grounded sphere is readily obtained from 
(3.136) by differentiation: 

ab 

or 
=e = 

8) = eo! aa | * 2 are Sra il [: +> AD p eos 0 (3.137) 
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The leading term shows that the total charge induccd on the sphere is —Q, the 
other terms integrating to zero over the surface of the sphere. 

3.11 Expansion of Green Functions in Cylindrical Coordinates 

The expansion of the potential of a unit point charge in cylindrical coordinates 
affords another useful example of Green function expansions. We present the 
initial steps in general enough fashion to permit the procedure to be readily 
adapted to finding Green functions for potential problems with cylindrical bound- 
ary surfaces. The starting point is the equation for the Green function: 

ViG(x, x’) = aS &(p — p') Bb — 4) A(z - 2’) (3.138) 

where the delta function has been expressed in cylindrical coordinates. The 
and z delta functions can be written in terms of orthonormal functions: 

&z- z')= +f dk eG 2) = ‘f, dk cos[k(z — z’)J ipa 

ab — 6°) = . s eink) 

We expand the Green function in similar fashion: 

G08.) = 55S [Fak erme*? costkte — 2 D]entk. pw’) G.140) 
Then substitution into (3.138) leads to an equation for the radial Green function 

Blk, p, p'): 

1d f_ dgm 7 =) 4a - -(k = -p' 3.141 pap (6 tea) (« * pom é 5(p — p') (3.141) 

For p # p’ this is just equation (3.98) for the modified Bessel functions, J,,(kp) 
and K,,,(kp). Suppose that (kp) is some linear combination of /,, and K,, which 
satisfies the correct boundary conditions for p < p’, and that (kp) is a linearly 

independent combination that satisfies the proper boundary conditions for 
p > p'. Then the symmetry of the Green function in p and p’ requires that 

Bndk, p. p') = Yalkp.)¥o(kp-) (3.142) 

The normalization of the product yg is determined by the discontinuity in slope 

implied by the delta function in (3.141): 

Bm 
dp 

- | _ wat 143 dp (3.143) 
p 

where |. means evaluated al p = p’ + e. From (3.142) it is evident that 

[= — bn 
do|, dp{_ 

| = Kas — Yaoi) = kWh, dr) (3.144) 
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where primes mean differentiation with respect to the argument, and W[yq, a] 

is the Wronskian of x and 4. Equation (3.141) is of the Sturm—Liouville type 

d @ 
he [pe rd + g(x)y = 0 (3.145) 

and it is well known that the Wronskian of two linearly independent solutions of 
such an equation is proportional to [i/p(x}]. Hence the possibility of satisfying 
(3.143) for all values of p’ is assured. Clearly we must demand that the normal- 
ization of the product yi be such that the Wronskian has the value 

Wins), vatey] = —= (3.146) 

If there are no boundary surfaces, g,,(k, p, p’) must be finite at p = 0 and 
vanish at p — %, Consequently #(kp) = Al,,(kp) and yo(kp) = K,,(kp). The 

constant A is to be determined from the Wronskian condition (3.146). Since the 
Wronskian is proportional to (1/x) for all values of x, it does not matter where 

we evaluate it. Using the limiting forms (3.102) and (3.103) for small x [or (3.104) 
for large x], we find 

WL Ax). Kin(x)} = -t (3.147) 

so that A = 42. The expansion of 1/|x — x’| therefore becomes: 

rg = 2S [pak cme-# costate ~ 2th IKulke.) 2.148) 

This can also be written entirely in terms of real functions as: 

1 47" 
= ‘/ dk cos[k(z ~ z’)] 

TsO Ix —x’] (3.149) 

x {tke rKtkp y+ DS cosfa(d — 6)L,Akp. IKuke-)| 
mr 

A number of useful mathematical results can be obtained from this expan- 
sion. If we fet x' — 0, only the m = 0 term survives, and we obtain the integral 
representation: 

1 ee: if ei 
Vii ah cos kz Ky(kp) dk (3.150) 

If we replace p? in (3.150) by R? = p? + p" — 2pp' cos( — #'), then we have 
on the left-hand side the inverse distance |x — x'| | with z‘ = 0, i.e., just (3.149) 
with z’ = Q. Then comparison of the right-hand sides of (3.149) and (3.150) 
{which must hold for af! values of z) leads to the identification: 

Ko(k\Vp? + p™ — 2p’ cos( — 4’) = 
(3.151) 

Li{kp)Kolkp.) + 2 >, cos[m(d — O')Mn(kp.)Kn(kp.-) 
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In this last result we can take the limit & > 0 and obtain an expansion for the 
Green function for (two-dimensional) polar coordinates: 

1 

(5 + p? — 2pp' cosld — a 7 

an(+) +2> = (%) cos[n(d — ')] 
mem 

(3.152) 

This representation can be verified by a systematic construction of the two- 
dimensional Green function for the Poisson equation along the lincs leading to 
(3.148). See Problem 2.17. 

3.12 Eigenfunction Expansions for Green Functions 

Another technique for obtaining expansions of Green functions is the use of 

eigenfunctions for some related problem. This approach is intimatcly connected 

with the methods of Sections 3.9 and 3.11. 
To specify what we mean by eigenfunctions, we consider an elliptic differ- 

ential equation of the form 

Vieux) + [F00) + AWG) = 0 (3.153) 
If the solutions W(x) are required to satisfy homogeneous boundary conditions 
on the surface S of the volume of interest V, then (3.153) will not in general have 

well-behaved {e.g., finite and continuous) solutions, except for certain values of 
A. These values of A, denoted by A,,, are cailed eigenvalues (or characteristic val- 
ues) and the solutions y,{x) are called eigenfunctions.* The eigenvalue differ- 
ential equation is written: 

Vinx) + [F(X) + Andyi(x) = 0 G.154) 

By methods similar to those used to prove the orthogonality of the Legendre or 
Besscl functions, it can be shown that the eigenfunctions are orthogonal: 

I B(x) Iodx) BX = Syn (3.155) 

where the cigenfunctions are assumed normalized. The spectrum of eigenvalues 

A, May be a discrete set, or a continuum, or both. It will be assumed that the 

totality of eigenfunctions forms a complete set. 
Suppose now that we wish to find the Green function for the equation: 

VEG(x. x’) + [f(x) + AJG(x. x!) = —478(x — x’) (3.156) 
where A is not equal to one of the eigenvalues A, of (3.154). Furthermore, suppose 
that the Green function is to have the same boundary conditions as the cigen- 
functions of (3.154). Then the Green function can be expanded in a series of the 

eigenfunctions of the form: 

Gx. x) = J a,(x’Wb,(x) (3.157) 

“The reader familiar with wave mechanics will recognize (3.153) as equivalent to the Schrodinger 
equation for a particie in a potential. 



128 Chapter 3 Boundary-Value Problems in Electrostatics: II—SI 

Substitution into the differential equation for the Green function leads to the 
result: 

D 4.x MA — An )Uin(X) = —4778(x — x’) (3.158) 

If we multiply both sides by W(x) and integrate over the volume V, the ortho- 

gonality condition (3.155) reduces the left-hand side to one term, and we find: 

a,(x') = ty (3.159) 

Consequently the eigenfunction expansion of the Green function is: 

Gta x’) = 4g SHAD) a (3.160) 

For a continuous spectrum the sum is replaced by an integral. 

Specializing the foregoing considerations to the Poisson equation, we place 
f(x) = 0 and A = 0 in (3.156). As a first, essentially trivial, illustration we Ict 
(3.154) be the wave equation over all space: 

(V? + k)ti(x) = 0 (3.161) 

with the continuum of eigenvalues, k*, and the eigenfunctions: 

1 i Yax) = am™ eu (3.162) 

These cigenfunctions have delta function normalization: 

| veo dx = &(k — k’) (3.163) 

Then, according tv (3.160), the infinite space Green function has the expansion: 

1 1 ‘ eee 
on Soe 3. 
|x -—x'] 2a ae ke @.164) 

This is just the three-dimensional Fourier integral representation of 1/|x — x'|. 
As a second example, consider the Green function for a Dirichlet problem 

inside a rectangular box defined by the six planes, x = 0, y = 0,2 = 0,4 = a, 
y =b,z =. The expansion is to be made in terms of cigenfunctions of the wave 

equation: 

(¥? + Kenn) Wimn(%. Ys Z) = 0 (3.165) 

where the eigenfunctions which vanish on all the boundary surfaces are 

Winn(%, Yo Z) = EE sin(™*) sin(™2*) sin( 2) 

and (3.166) 
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The expansion of the Green function is therefore: 

32 
Gx, x) = Te (3.167) 

(=) (=) ! (" *) ( 
i sin sin) — J sin 

a a b 

Pom 

Dae a os 
Luanna 

To relate expansion (3.167) to the type of expansions obtained in Sections 
3.9 and 3.11, namely, (3.125) for spherical coordinates and (3.148) for cylindrical 
coordinates, we write down the analogous expansion for the rectangular box. If 

the x and y coordinatcs are treated in the manner of (0, @) or (¢p, z) in those 

cases, while the z coordinate is singled out for special treatment, we obtain the 
Green function: 

n _ lon inx\ . (Inx'\ . (may) . (my! 
G(x, x’) ab Dm a ) sin( Zs ) sin( b ) sin( b ) 

ad sinh(K,,,z..) sinh[K,,(c — z..)] 

Ki, Sin KinC) 

where K,, = (Pla? + m?/b?)"?, Tf (3.167) and (3.168) are to be equal, it must 
be that the sum over n in (3.167) is just the Fourier series representation on the 
interval (0, c) of the one-dimensional Green function in z in (3.168): 

(3.168) 

sin 

sinh(K,,,Z.) sinh[K,,(¢ — z.}} __ 2 < ( c 
Kin SiMh( Kip) 4 Ki, (2) 

The verification that (3.169) is the correct Fourier representation is left as an 
exercise for the reader. 

Further illustrations of this technique will be found in the problems at the 
end of the chapter. 

3.13 Mixed Boundary Conditions; Conducting Plane 
with a Circular Hole 

The potential problems discussed so far in this chapter have been of the orthodox 
kind in which the boundary conditions are of one type (usually Dirichlet) over 
the whole boundary surface. In the uniqueness proof for solutions of the Laplace 
or Poisson equation (Section 1.9} it was pointed out, however, that mixed bound- 
ary conditions, where the potential is specified over part of the boundary and its 
normal derivative is specified over the remainder, also lead to well-defined, 
unique boundary-value problems. Textbooks tend to mention the possibility of 
mixed boundary conditions when making the uniqueness proof and to ignore 
such problemis in subsequent discussion. The reason, as we shall see, is that mixed 
boundary conditions are much more difficult to handle than the normal type. 
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To illustrate the difficulties encountered with mixed boundary conditions, we 
consider the problem of an infinitely thin, grounded, conducting plane with a 
circular hole of radius @ cut in it, and with the electric field far from the hole 
being normal to the plane, constant in magnitude, and having different values on 
either side of the plane. The geometry is sketched in Fig. 3.13. The plane is at 

z = 0; the hole is centered on the origin of coordinates; the nonvanishing as- 

ymptotic electric field components are E, = —E, for z > O and E, = —E, for 

z <0. The problem may seem contrived, but with Fy = 0 or F, ) it has 

application for radiation from small holes in the walls of wave guides, where 

“small” is defined as small compared to a wavelength so that electrostatic con- 

siderations can apply (see Section 9.5). 
Since the clcctric field is specified far from the hole, we write the potential 

as 

ox te +O (2 > Ai (3.170) 

E\z+ OY (2 <0) 

If the hole were not there, &° would be zero. The top surface of the sheet would 
have a uniform surface charge density — €y£y and the bottom surface a charge 
density €)E,. The potential 6? can thus be thought of as resulting from a rear- 
rangement of surface charge in the neighborhood of the hole. Since this charge 
density is located on the plane z = 0, the potential &“ can be represented as 

1 O%C', y') dx' dy’ (1), eee NY 
WED Tre, VamxyYtQ—yyre 

This shows that @“” is even in z, so that Ef” and ES) are even in z, but Et" is 
odd. We note that E{” and ES") are the x and y components of the total electric 
ficld, but that, because of (3.170), £{ is not the total z component. Thus, even 
though it is odd in z, it docs not vanish at z = 0. Rather, it is discontinuous there. 

z 

Ey 

Been 

Figure 3.13 
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Since the total z component of electric field must be continuous across z = 0 in 

the hole, we must have (for p < a) 

-Ey + EM no = ~ Ey + EDM |:-0 
Because E%” is odd in z, this relation determines the normal component of the 
electric field to be 

ED |at = EM |.~0- = 3(En — £1) 
provided (x, y) lic inside the opening (0 = p < a). For points on the conducting 

surface (2 = p < &), the electric field is not known, but the potential is zero by 
hypothesis. From (3.170) this means that &“? = 0 there. Note that in the opening 
we do not know the potential. We therefore have an electrostatic boundary-value 
problem with the following mixed boundary conditions: 

ap 

az 
-(Fy-£)) for0sp<a 

zor 

and (3.171) 

PM) 29 = 0 fora p< 

Because of the azimuthal symmetry of the geomctry, the potential “ can 
be written in terms of cylindrical coordinates [from (3.106)} as 

&%p, 2) = if dk A(kje**Io(kp) (3.172) 

Before proceeding to see how A(k) is determined by the boundary conditions, 
we relate A(k) and its derivatives at k = 0 to the asymptotic behavior of the 
potential. For large p or |z| the rapid oscillations of J,(kp) or the rapid decrease 
ofe *limply that the integral in (3.172) receives its important contributions from 
the region around k = 0. The asymptotic behavior of ” is therefore related to 
the behavior of A(k) at small k. We assume that A(k) can be expanded in a 
Taylor series around k = 0: 

AW) = dy it) 

With this serics inserted into (3.172), the potential &" becomes 

a d'A 
@M%p, 2) = DY 70) Blo. 2) (3.173) & dk 

where 
ate 

Bip, z) = 7 I dk Ke-PI,(kp) (3.174) 

The integral (3.174) can evidently be written 

[ mo 
ai fend i B, Al i) dk e*i(kp) 

Using a result from Problem 3.16c, we find that B, is 

(3.175) 
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The reader should not be surprised to find that explicit calculation yields 

_ Plcos 61) = PAleos 6h 

where cos 6 = z/r and r= Vp + 2°. The asymptotic expansion (3.173) is thus 
an expansion of the spherical harmonic form (3.33): 

o=> AG : Pitloos £1) (3.177) 
mo 

B (3.176) 

As is discussed in the next chapter, this expansion in powers of r~’ is called a 
multipole expansion. The / = 0 coefficient, A(0), is the total charge (divided by 
47). The | = 1 coefficient, dA(0)/dk, is the dipole moment in the z-direction, 

and so on. Once the function A(k) is known these quantities that describe the 

asymptotic behavior of the potential can be evaluated without explicit construc- 
tion of the potential itself. 

We are now ready to discuss the mixed boundary value problem. With the 

assumed form (3.172) for ®“, the boundary conditions (3.171) become a pair of 
integral equations of the first kind for A(k): 

f dk kA(k)Jo{kp) = (Eo - E\)  forO sp<a 

(3.178) 
[ dk A(k)Jo(kp) 0 fora sp<o 

Such pairs of integral equations, with one of the pair holding over one part of 
the range of the independent variable and the other over the other part of the 
range, are known as dual integral equations. The general theory of such integral 
equations is complicated and not highly developed.* Just over a hundred years 
ago H. Weber solved the closely related problem of the potential of a charged 
circular disc by means of certain discontinuous integrals involving Bessel func- 
tions. We appeal to a generalization of Weber’s formulas. Consider the dual 
integral equations, 

f , ay ya(y(yx) =x" forOs x <1 
(3.179) 

if dy gy)JnQx) =O forlsx<e 

Examination of the formula of Sonine and Schafheitlin for the integral of 

JLat)J,(bt)t* (see Watson, pp. 398 ff. or Magnus et al., p. 99) shows that the 
solution for g{y) is 

_ T+). _ Pa +1) n-3(y) 
ty) = Vara a = Tard Gn 

In this relation j,(y) is the spherical Besse] function of order n (see Section 9.6). 

(3.180) 

*One monograph, I. N. Sneddon, Mixed Boundary Value Problems in Potential Theory, North- 
Holland, Amsterdam, and Wiley-Interscience, New York (1966). is devoted to our subject. See also 
Tranter (Chapter VHII). 
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For our pair of equations (3.178) we have n = 0, x = pla, y = ka. Therefore 
A(k) is 

Eq — Esa? Ey — E,) [sink 8 ki Ad = 0 ~ ie jlka) = 4 0 1) [= a acoska 7 r | (3.181) 

The expansion of A(k} for small k takes the form, 

Aug = Fo (FoF laa -a...| 

This means that total charge associated with @ is zero and the leading term in 
the asymptotic potential (3.177) is the / = 1 contribution, 

(Eo- Eye jel oo 
a 3a 

(3.182) 

falling off with distance as r~? and having an effective electric dipole moment, 

p= FE - Ey (20) 183) 
The reversal of the effective dipole moment depending on whether the obser- 
vation point is above or below the plane is a consequence of the fact that a true 
dipole potential is odd in z, whereas (3.182) is even. The idea that a small hole 
in a plane conducting sheet is equivalent far from the opening to a dipole normal 
to the surface is important in ussing the consequences of such openings in 
the walls of waveguides and cavities. Figure 9.4 depicts the origin of the dipole- 
like field as a consequence of the penetration of the field lines through the hole 
to terminate on the side with the smaller constant field. The picture is given 
quantitative meaning through (3.182) and (3.183). 

The added potential ®‘” in the neighborhood of the opening must be cal- 
culated from the exact expression, 

{Ey — Es) 
7 

Pp, 2) = a f dk j\(kaye*iy(kp) (3.184) 
ny 

The integral,* after an integration by parts to replace j, with jy, can be expressed 
as a sum of the imaginary parts of the Laplace transforms (for complex p) of 
J (kp)k for v = 0, 1. The result, after some simplifications, is 

op, = Foe RD Hl e( Fe-5)| (3.188) 

where 

1 2 z z ABS(Pt+P-a), R=V + 42740? 2 

Some special cases are of interest. The added potential on the axis (p = () is 

emo, 2) = Seo a= fue - Bhian(4)| 
a \z| 

“For integrals of the kind encountered here, see Watson (Chapter 13), Gradshteyn and Ryzhik, 
Magnus, Oberhettinger, and Soni, or the Bateman Manuscript Project. 
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For |z| >> @ thus reduces to (3.182) with r = |z|, while for |z| > 0 it is approx- 
imated by the first term. in the plane of the opening (z = 0) the potential b“” is 

%p, 0) = (Eo — Ey) Ve p 
7 

for 0 = p< a (and zero, of course, for p = a). The tangential electric field in the 

opening is a radial field, 

_ (Fo — £1) Even(p, 0) = (3.186) 
p’ 

The normal component of electric field in the opening is, from the first cquation 
in (3.171), just the average of the uniform fields above and below the planc, that 
is, 

Ep, 0) = —(Fy + Fi) (3.187) 

We note that the magnitude of the electric field has a square root singularity at 
the edge of the opening, in agreement with the considcrations of Section 2.11. 
The surface-charge densities on the upper and lower sides of the conducting plane 
in the neighborhood of the hole can be evaluated in a straightforward manner, 
The explicit calculation is left to the problems. 

Equipotential contours near the circular hole for the full potential (3.170) 
are shown in Fig. 3.14 for the situation where E, = 0. At distances more than 

Figure 3.14 Equipotential contours near a circular hole in a conducting plane with a 
normal electric field Ep far from the hole on one side and no field asymptotically on the 
other (E, = 0). The numbers are the vaiues of the potential @ in units of a£y. The 
distribution is rotationally symmetric about the vertical dashed line through the center 
of the hole. 
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two or three times the radius away from the hole, its presence is hardly 
discernible. 

The classic problem of a charged conducting disc is discussed in detail by 
Sneddon (op. cit.}. The mixed boundary conditions for the disc or hole can be 
avoided by separating the Laplace cquation in elliptic coordinates. The disc (or 
hole) is then taken to be the limiting form of an oblate spheroidal surface. For 
this approach, see, for example, Smythe (pp. 124, 171) or Jeans {p. 244). 
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Problems 

3.1 Two concentric spheres have radii a. b (b > a) and each is divided into two hemi- 
spheres by the same horizontal plane. The upper hemisphere of the inner sphere 
and the lower hemisphere of the outer sphere are maintained at potential V. The 
other hemispheres are at zero potential 

Determine the potential in the region a = r = b as a series in Legendre poly- 
nomials. Include terms at least up to / = 4. Check your solution against known 
results in the limiting cases b > *, and a > 0. 

3.2 A spherical surface of radius R has charge uniformly distributed over its surface 
with a density Q/4aR?. except for a spherical cap at the north pole, defined by the 
cone 6= a. 
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33 

{a) Show that the potential inside the spherical surface can be expressed as 

~_@2@$_1 
Se = 2h + 1 

1 
[P.-:(cos a) — P,_,(cos &}] Ra P,(cos @) 

where, for / = 0, P;_,(cos a) = —1. What is the potential outside? 

(b) Find the magnitude and the direction of the electric field at the origin. 

(e) Discuss the limiting forms of the potential (part a) and electric field (part b) 
as the spherical cap becomes (1) very small, and (2) so large that the area with 
charge on it becomes @ very small cap at the south pole. 

A thin, flat, conducting, circular disc of radius X is located in the x-y plane with its 
center at the origin, and is maintained at a fixed potential V. With the information 
that the charge density on a disc at fixed potential is proportional to (R? ~ p?) “, 
where p is the distance out from the center of the disc, 

(a) show that for r > & the potential is 

_WRS (1 (R\” 
(r, 6.6) = Gree i (4) P2{cos 0) 

(b) find the potential for r < R. 

(c) What is the capacitance of the disc? 

The surface of a hollow conducting sphere of inner radius a is divided into an even 
number of equal segments by a set of planes: their common line of intersection is 
the z axis and they are distributed uniformly in the angle &. (The segments are like 
the skin on wedges of an apple, or the earth’s surface between successive meridians 

of longitude.) The segments are kept at fixed potentials + V, alternately. 

(a) Set up a series representation for the potential inside the sphere for the gen- 
eral case of 2n segments, and carry the calculation of the coefficients in the 
series far enough to determine exactly which coefficients are different {rom 
zero. For the nonvanishing terms, exhibit the coefficients as an integral over 
cos 8. 

(b) For the special case of n = | (two hemispheres) determine explicitly the po- 

tential up to and including all terms with / = 3. By a coordinate transformation 
verify that this reduces to result (3.36) of Section 3.3. 

A hollow sphere of inner radius a has the potential specified on its surface to be 
& = V(@. db), Prove the equivalence of the two forms of solution for the potential 

inside the sphere: 
_ ala ~ Ay ve’. d’) 

PO) A ag (P + @ — 2ar cosy) an’ 

where cos ¥ = cos 6 cos 6” + sin @sin 8 cos(d — o")- 
= au f 

(by x) = 5 4n(2) Yin(®. 6} 
FO nix 

where A, =f dQ! Y4,.(8, 6 V(8". 6"). 

Two point charges g and —g are located on the z axis at z = +a and z = —a, 
respectively. 
(a) Find the electrostatic potential as an expansion in spherical harmonics and 

powers of r for both r > a and r < a. 
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Keeping the product ¢ p/2 constant, take the limit of a > 0 and find the 
potential for r # 0. This is by definition a dipole along the z axis and its 
potential. 

Suppose now that the dipole of part b is surrounded by a grounded spherical 
shell of radius 6 concentric with the origin. By linear superposition find the 
potential everywhere inside the shell. 

Three point charges (q, —2g. g) are located in a straight line with separation a and 
with the middle charge (—2g) at the origin of a grounded conducting spherical shell 
of radius 6, as indicated in the sketch. 

(a) 

(b) 

Problem 3.7 

Write down the potential of the three charges in the absence of the grounded 
sphere. Find the limiting form of the potential as a > 0, but the product 
qa” = Q remains finite. Write this latter answer in spherical coordinates. 

The presence of the grounded sphere of radius 6 alters the potential for r <b. 
The added potential can be viewed as caused by the surface-charge density 
induced on the inner surface at r = 6 or by image charges located at r > b. 
Use linear superposition to satisfy the boundary conditions and find the po- 
tential everywhere inside the sphere for r < @ and r > a. Show that in the 

limit a > 0, 

Q s 
(rb) > ( - Pons 8 

‘There is a pursling aspect of the solution (3.136) for the potential inside a grounded 
sphere with a uniformly charged wire along a diameter. Very close to the wire (ie. 
for p = r sin @ << 5), the potential should be that of a uniformly charged wire, 
namely. ® = (Q/4reyb) ln{b/p) + By, The solution (3.136) does not explicitly have 
this behavior. 

(a) Show by use of the Legendre differential equation (3.10) and some integration 
by parts, that In(cosec @) has the appropriate expansion in spherical harmonics 

to permit the solution (3.136) to be written in the alternative form, 

. By _@ ®\) | Sari fr 
0) = Feb {in(- sin ) S 2 3+ D (;) Prfeos a 
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39 

3.10 

3.11 

in which the expected behavior near the wire is manifest. Give an interpre- 
tation of the constant term ®, = —Q/4ze,b. Note that in this form, for any 

rib <1 the Legendre polynomial series is rapidly convergent at all angles. 

(b) Show by use of the expansion (3.38) that 

) =2 3 Py(cos 6) 
& 

and that therefore the charge density on the inner surface of the sphere, Eq, 
(3.137), can be expressed alternatively as 

“A Q 1 1 1 _ aa 1 Sins 

08 = Te (3 (= a” =is) Daa fates a 

‘The (integrable) singular behavior at # = 0 and @ = 7 is now exhibited ex- 
plicitly. The series provides corrections in In(1/A) as @— 0. 

A hollow right circular cylinder of radius b has its axis coincident with the z axis 
and its ends at z = O and z = L. The potential on the end faces is zero, while the 
potential on the cylindrical surface is given as V(, z). Using the appropriate sep- 
aration of variables in cylindrical coordinates, find a series solution for the potential 

anywhere inside the cylinder. 

For the cylinder in Problem 3.9 the cylindrical surface is made of two equal half- 
cylinders, one at potential V and the other at potential -V, so that 

Vv for —7/2 <b < a2 
Vid, 2) = Xb. 2) te for m2 << 3a 

(a) Find the potential inside the cylinder. 

(b) Assuming L >> 6, consider the potential at < = /./2 as a function of p and ob 

and compare it with two-dimensional Problem 2.13. 

A modified Bessel-Fourier series on the interval 0 = p = @ for an arbitrary function 

f(p) can be based on the “homogeneous” boundary conditions: 

Atp=0.  pJ(kp) er ae 

a A 
Atp= a F Inll(kp)]=— 7 (A real) 

The first condition restricts ». The second condition yields eigenvalues k = y,,/@, 
where y,,, is the nth positive root of x dJ,(ajidx + AJ,(x) = 0. 
(a) Show that the Bessel functions of different eigenvalues are orthogonal in the 

usual way. 

(b) Find the normalization integral and show that an arbitrary function f(p) can 
be expanded on the interval in the modified Bessel-Fourier series 

10) = 3 aa) 
with the coefficients A,, given by 

w= 3[l- fons) Lemel)a 
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‘The dependence on A is implicit in this form, but the square bracket has al- 
ternative forms: 

(+- Spann (222 ; 
= Av) — Sv ¥en Vand} 

For A> 2% we recover the result of (3.96) and (3.97). The choice A = 0 is 
another simple alternative. 

An infinite, thin, plane sheet of conducting material has a circular hole of radius « 
cut in it. A thin, flat disc of the same material and slightly smaller radius lies in the 

plane, filling the hole, but separated from the sheet by a very narrow insulating 
ring. The disc is maintained at a fixed potential Y, while the infinite sheet is kept 

at zero potential. 

(a) Using appropriate cylindrical coordinates, find an integral expression involy- 
ing Bessel functions for the potential at any point above the plane. 

(b) Show that the potential a perpendicular distance z above the center of the disc 
is 

z 
Pile) v(: : var) 

(c) Show that the potential a perpendicular distance z above the edge of the disc 
is 

where k = 2al(z? + 4q?)", and K(k) is the complete elliptic integral of the 
first kind. 

Solve for the potential in Problem 3.1, using the appropriate Green function ob- 
tained in the text, and verify that the answer obtained in this way agrees with the 
direct solution from the differential equation. 

A line charge of length 2d with a total charge Q has a linear charge density varying 
as (d? — 2”), where z is the distance from the midpoint. A grounded, conducting, 
spherical shell of inner radius b > d is centered at the midpoint of the line charge. 
(a) Find the potential everywhere inside the spherical shell as an expansion in 

Legendre polynomials. 
(b) Calculate the surface-charge density induced on the shell. 
{e) Discuss your answers to parts a and b in the limit that d << 4. 

Consider the following “spherical cow” model of a battery connected to an external 
circuit. A sphere of radius @ and conductivity @ is embedded in a uniform medium 
of conductivity a’. Inside the sphere there is a uniform (chemical) force in the < 
direction acting on the charge carriers; its strength as an effective electric field 
entering Ohm’s law is F. In the steady state, electric fields exist inside and outside 
the sphere and surface charge resides on its surface. 

(a) Find the electric field (in addition to F) and current density everywhere in 
space. Determine the surface-charge density and show that the electric dipole 
moment of the sphere is p = 4ze,oa*Fio + 20°). 
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{b) Show that the total current flowing out through the upper hemisphere of the 
sphere is 

2e0' 1=—~_- w'F 
otis ™ 

Calculate the total power dissipation outside the sphere. Using the lumped. 
circuit relations, P = 1? R, = IV,. find the eitective external resistance R, and 
voltage V.. 

(c) Find the power dissipated within the sphere and deduce the effective internal 

resistance &, and voltage Vi. 
(d) Define the total voltage through the relation, V, = (R. + &\)/ and show that 

V, = 4aFi3, as well as V, + V, = V,. Show that /V, is the power supplied by 
the “chemical”’ force. 

Reterence: W. M. Saslow, Am. J. Phys. 62, 495-501 (1994}. 

3.16 (a) Starting from the Bessel differential equation and appropriate limiting pro- 
cedures, verify the generalization of (3.108). 

; a 
bok - = | atkois.t&') do 

or equivalently that 

- &(p - p') = if kd, kp sl Akp’) dk 

where Re(v) > —1. 
{b) Obtain the following expansion: 

le 
k= x] ww Sf acon cep ytatkener#- 

(c) By appropriate limiting procedures prove the following expansions: 

1 » 
Vere [ ¢ Medy(kp) dk 

Jk Vo" + p= Zp" cosh) = Del kp nko") 

eitocoss =D) iets, (kp) 

(d) From the last result obtain an integral representation of the Bessel function: 

1 i ; 
Baye Jxcones—hinds Ora}, © b 

Compare the standard integral representations. 

3.17 The Dirichlet Green function for the unbounded space between the planes at 
z= Oand ¢ = L allows discussion of a point charge or a distribution of charge 
between paralle) conducting planes held at zero potential. 

(a) Using cylindrical coordinates show that one form of the Green function is 

G(x. x’} 
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(b) Show that an alternative form of the Green function is 

sinh(kz. ) sinh[k(L — z )] 
sinh(kL) 

The configuration of Problem 3.12 is modifted by placing a conducting plane held 
at zero potential parallel to and a distance L away from the plane with the dise 
insert in it. For definiteness put the grounded plane al z = G and the other plane 

with the center of the disc on the z axis at z = L. 

Gixx)=2 > f dk oi 7, ep Vd") 

(a) Show that the potential between the planes can be written in cylindrical co- 

ordinates (z, p, ) as 

sinh(Az/a) 2, p) =V [ AA IAM ARIA) A TIa) 
{b) Show that in the limit ¢ > © with z, p, L fixed the solution of part a reduces 

to the expected result. Viewing your result as the lowest order answer in an 
expansion in powers of a~', consider the question of corrections to the lowest 
order expression if a is /erge compared to p and L, but not infinite. Are there 

difficulties? Can you obtain an explicit estinrate of the corrections? 

(c) Consider the limit of L > % with (L — z), a and p fixed and show that the 
results of Problem 3.12 are recovered. What about corrections for 7. >> a, but 
not L + %? 

Consider a point charge g between two infinite parallel conducting planes held at 
zero potential. Let the planes be located al z = 0 and z = L in a cylindrical coor- 
dinate system, with the charge on the z axis at z = zo, 0 < zy < L. Use Green's 
reciprocation theorem of Problem 1.12 with problem 3.18 as the comparison 
problem. 

(a) Show that the amount of induced charge on the plate al ¢ — L inside a circle 
of radius a whose center is on the z axis is given by 

Q.(a) = ~4 29, 0) 

where @(zo, 0) is the potential of Problem 3.18 evaluated at z = z. p = 0. 
Find the ¢otal charge induced on the upper plate. Compare with the solution 
{in method and answer) of Problem 1.13. 

(b) Show that the induced charge density on the upper plate can be written as 

g [> ,, sinh(kz) 
ap) = -5— 2a Je Sintckey KP 

This integral can be expressed (see. e.g., Gradshteyn and Ryzhik, p. 728, for- 
mula 6.666) as an infinite series involving the modified Bessel functions 
Ko(n7piL), showing that at large radial distances the induced charge density 
falls off as (p)"7e 7. 

(e) Show that the charge density at p = 0 can be written as the series 

a0) = — sae, De - eb) *— @ + aly’) 
(a) From the results of Problem 3.17 or from first principles show that the poten- 

lial al a point charge q between two infinite parallel conducting planes held 
at zero potential can be written as 

qx nwo\ . {naz nip oh 3 sin") sin(*22) (2) B(z, p) = 
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3.21 

3.22 

where the planes are at 2 = Q and z = L and the charge is on the z axis at the 
point z = Zz. 

(b) Calculate the induced surface-charge densities ofp} and o,(p) on the lower 
and upper plates. The result for o,(p) is 

RO 

=) F) 
Discuss the connection of this expression with that of Problem 3.19b and 3.19¢. 

ofp)=4 43 {-l"'r so( 

{c) From the answer in part b. calculate the total charge Q, on the plate at z = L, 

By summing the Fourier series or by other means of comparison, check your 
answer against the known expression of Problem 1.13 [C. Y. Fong and C. 
Kittel, Am. J. Phys. 35, 1091 (1967). 

(a) By using the Green function of Problem 3.17b in the limit L + %, show that 

the capacitance of a flat, thin, circular, conducting disc of radius K located 
parallel to, and a distance d above. a grounded conducting plane is given by 

R 2 

(f plo{kp)a(p) «| 

| AKL = @ 24) 

[ i patp) do] 

where o(p) is the charge density on the disc. 

(b) Use the expression in part a as a variational or stationary principle for C7! 

with the approximation that o(p) = constant. Show explicitly that you obtain 
the correct limiting value for C~' as d << R. Determine an approximate value 
of C”! for an isolated disc (d >> R) and evaluate the ratio of it to the exact 
result, 47re,/C = (a/2)R7'. 

(c) Asa better trial form for o(p) consider a linear combination of a constant and 
(R? — p*) '*. the latter being the correct form for an isolated disc. 

For part b the following integrals may be of use: 

i af] 8 4 c dt ati 
oT t 

The geometry of a two-dimensional potential problem is defined in polar coordi- 
nates by the surfaces ¢ = 0, 6 = 8, and p = a, as indicated in the sketch. 

a yee 

Using separation of variables in polar coordinates, show that the Green function 
can be written as 

Gp, bp’, OY = = nf & gav( u 7 - 5) sin(™2) sin( ™20") 
(an a B B 

Problem 2.25 may be of use. 
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3.23 A point charge g is located at the point (p’, 6’, 2’) inside a grounded cylindrical 
box defined by the surfaces z = 0. z = L. p = a. Show that the potential inside the 
box can be expressed in the following alternative forms: 

ems-o1y,( Fa) n(*22") 
(x, x’) = 4 Dy . z 

Tey mae aah seytathes sin #=) 

x sinh | z. | sinh] 2 - | @ @ 
nt) 

b,x) = SD einen sin(%22) sin(™2) 
ToL mane nat L L (mm 

NOE, 

nma amp.) _ nm nTp;. (ee \eo(22) -n.(*2) (22) 
ued 

L 

ecepecte S gece) on(F* )o( 4) ) —_—-~- 
TELA yeu Ke A ka\ TL) flies nnd 

x 
— 
~ 
——~ 

3 

Discuss the relation of the last expansion (with its extra summation) to the other 

two. 

3.24 The walls of the conducting cylindrical box of Problem 3.23 are all at zero potential, 
except for a disc in the upper end. defined by p = / <a, at potential V. 

(a) Using the various forms of the Green function obtained in Problem 3.23, find 
three expansions for the potential inside the cylinder. 

(b) For each series, calculate numerically the ratio of the potential at p = 0, 
z = L/2 to the potential of the disc, assuming b = L/4 = a/2. Try to obtain at 
least two-significant-figure accuracy. Is one series less rapidly convergent than 
the others? Why? 
(Abramowitz and Stegun have tables: Mathematica has Bessel (unctions, as 
does the software of Press et al.) 

3.25 Consider the surface-charge densities for the problem of Section 3.13 of the con- 
ducting plane with a circular hole of radius a. 

(a) Show that the surface-charge densities on the top and bottom of the plane for 

p2aare 

o.(p} = —&Ey + So(p) 

wo. (p) = &E, + Aalp) 

where 

eg vga | 
How does Ao(p) behave for large p? is So(p), defined in terms of &", zero 
for p < a? Explain. 
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3.26 

(b) Show by direct integration that 

R A 
lim [2* dp plo. +a) + ae [ dp {Eq — 0] =0 le , Roe 

Interpret. 

Consider the Green function appropriate for Neumann boundary conditions for the 
volume V between the concentric spherical surfaces defined by r = a and r = 6, 

a <6. To be able to use (1.46) for the potential, impose the simple constraint (1.45). 

Use an expansion in spherical harmonics of the form, 

G(x, x!) = >» gr. r')Pcos y) 

where grr’) = Io) + fire’). 
(2) Show that for / > 0, the radial Green function has the symmetric form 

Fly aj 1 (ab 

TOY TT ey 
(b) Show that for / = 0 

y-L_(_@_)\) Bol) = = (= ra 3) 7 tf) 

where f(r) is arbitrary. Show explicitly in (1.46) that answers for the potential 
P(x) are independent of f(r). 
(The arbitrariness in the Neumann Green function can be removed by sym- 
metrizing gy in r and r’ with a suitable choice of f(r).] 

Apply the Neumann Green function of Problem 3.26 to the situation in which the 
normal electric field is E, = —E, cos 6 at the outer surface (r = b) and is E, = 0 
on the inner surface {r = a). 

(a) Show that the electrostatic potential inside the volume V is 

r cos 0 a 
B(x) = Tp (: + $) 

where p = a/b. Find the components of the electric field, 

cos 6 & sin 6 a 
Ex 8) = ~ Eo ( = “). Er, #) = En ( + $) 

(b) Calculate the Cartesian or cylindrical components of the field, E, and E,, and 
make a sketch or computer plot of the lines of electric force for a typical case 
ofp = 05. 



CHAPTER 4 

Multipoles, Electrostatics of 
Macroscopic Media, Dielectrics 

This chapter is first concerned with the potential due to localized charge distri- 
butions and its expansion in multipoles. The development is made in terms of 
spherical harmonics, but contact is established with the rectangular components 

for the first few multipoles. The energy of a multipole in an external field is then 
discussed. An elementary derivation of the macroscopic equations of electro- 

statics is sketched, but a careful treatment is deferred to Chapter 6. Dielectrics 

and the appropriate boundary conditions are then described, and some typical 
boundary-value problems with dielectrics are solved. Simple classical models are 

used to illustrate the main features of atomic polarizability and susceptibility. 
Finally the question of electrostatic energy and forces in the presence of dielec- 
trics is discussed. 

4.1 Multipole Expansion 

A localized distribution of charge is described by the charge density p(x’), which 
is nonvanishing only inside a sphere of radius R around some origin.* The po- 
tential outside the sphere can be written as an expansion in spherical harmonics: 

= 1 ag 

Gre Ah wits +1 
P(x) = (4.1) 14m 

where the particular choice of constant coefficients is made for later convenience. 
Equation (4.1) is called a multipole expansion; the / = 0 term is called the mon- 
opole term, / = 1 are the dipole terms, etc. The reason for these names becomes 

clear below. The problem to be solved is the determination of the constants q,,, 

in terms of the properties of the charge density p(x‘). The solution is very easily 

obtained from the integral (1.17) for the potential: 

1 f _e) ; 
28) amg ix-x4 x 

with expansion (3.70) for 1/|x — x'|. Since we are interested at the moment in 

the potential outside the charge distribution, r, = r' and r, = r. Then we find: 

[f vie. #>e'9009 ax’) M8 aay (x) = — 
(x) apres 

“The sphere of radius R is an arbitrary conceptual device employed merely to divide space into 
regions with and without charge. If the charge density falls off with distance faster than any power, 
the expansion in muitipoles is valid at large enough distances. 

145 
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Consequently the coefficients in (4.1) are: 

dim = | Yin@', 6 r"p(x') dx’ (43) 

These coefficients are called multipole moments. To sce the physical interpreta- 
tion of them we exhibit the first few explicitly in terms of Cartesian coordinates: 

1 , ah — 1 
goo = J ota’) d's = ant (4.4) 

eG ca ae ee cee 
d= ee (x — iy p(x’) Bx! = ~ Vien (Pe ~ ip,) us 

do = feelemen- fe Pz 

(x — iy'Poow') x = & (Qu ~ 21Q.2 ~ Qn) 

“co gue tis os > 
qu = ani? (x iy )p(x’) dx 3 — irs) (4.6) 

(32° = r'?)p(x’) d°x’ = 5 Ee 

Only the moments with m = 0 have been given, since (3.54) shows that for a rcal 
charge density the moments with m < () are related through 

Qt m = (-1)"G hn (4.7) 

In equations (4.4)-(4.6), g is the total charge, or monopole moment, p is the 
electric dipole moment: 

p= [ voce) ax’ (4.8) 

and Q,, is the traceless quadrupole moment tensor: 

Oy = f Geix} — r8,)008") ax’ (49) 
We see that the /th multipole coefficients [(2/ + 1) in number] are linear com- 
binations of the corresponding multipoles expressed in rectangular coordinates. 

The expansion of (x) in rectangular coordinates 

r 
= ]2,0:% 1 x | (4.10) 

by direct Tayior scries expansion of 1/|x — x’| will be left as an exercisc for the 
reader. it becomes increasingly cumbersome to continue the expansion in (4.10) 
beyond the quadrupole terms. 

The electric fietd components for a given multipole can be expressed most 
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easily in terms of spherical coordinates. The negative gradient of a term in (4.1) 
with definite /, m has spherical components: 

~ €+0 ¥inl9 &) 
= Tor ye Gen a? QI + Deo r 

ee ees G+ be Yin FH 5 

if 1 
E,= im 35 * > OPE Ney @ Saas 

aY,,,/00 and Y,,,,/sin @ can be expressed as linear combinations of other Y,,,'s, but 

the expressions are not particularly illuminating and so will be omitted. The 
proper way to describe a vector multipole field is by vector spherical harmonics, 

discussed in Chapter 9. 
For a dipole p along the z axis, the fields in (4.11) reduce to the familiar 

form: 

Ey = 5 Yin(O. $) (411) 

Yip, 6) 

(4.12) 

These dipole fields can be written in vector form by recombining (4.12) or by 
directly operating with the gradient on the dipole term in (4.10). The result for 
the field at a point x due to a dipole p at the point x, is: 

3n(p+n) — p 
E = 

x) 47€9\x — Xo|? 
(4.13) 

where n is a unit vector directed from x, to x. 

There are two important remarks to be made. The first concerns the rela- 
tionship of the Cartesian multipole moments like (4.8) to the spherical multipole 
moments (4.3). The former are (/ + 1)(/ + 2)/2 in number and for / > | are more 
numerous than the (2/ + 1) spherical components. There is no contradiction here. 
The root of the differences lies in the different rotational transformation prop- 
erties of the two types of multipole moments; the Cartesian tensors are reducible, 
the spherical, irreducible—see Problem 4.3. Note that for / = 2 we have recog- 

nized the difference by defining a traceless Cartesian quadrupole moment (4.9). 
The second remark is that in general the multipole moment coefficients in 

the expansion (4.1) depend on the choice of origin. As a blatant example. con- 
sider a point charge e located at x) = (7, 9, bo). Its potential has a multipole 

expansion of the form (4.1) with multipole moments, 

in = CFV Fy {Bon bo) 

These are nonvanishing for all /, m in general. Only the 7 = 0 multipole 

Yoo = ef 4a is independent of the location of the point charge. For two point 

charges + e and —e at Xp and x, a the multipole moments are 

Gin = LOY inkBr Go) — AYinkA, b1)] 
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Now the / = 0 multipole moment of the system vanishes, and the / = 1 moments 
are 

Fo = yan = Zi) 

a= - fetes =) ~ i - yl 
These moments are independent of the location of the origin, depending only on 
the relative position of the two charges, but all higher moments depend on the 
location of the origin as well. These simple examples are special cases of general 
theorem (see Problem 4.4). The values of q,,, for the lowest nonvanishing mul- 
tipole moment of any charge distribution are independent of the choice of origin 
of the coordinates, but all higher multipole moments do in general depend on 
the location of the origin. 

Before leaving the general formulation of multipoles, we consider a result 
that is useful in elucidating the basic difference between electric and magnetic 
dipoles (see Section 5.6) as weil as in other contexts. Consider a localized charge 
distribution (x) that gives rise to an electric field E(x) throughout space. We 

wish to calculate the integral of E over the volume of a sphere of radius R. We 
begin by examining the problem in general, but then specialize to the two ex- 
tremes shown in Fig. 4.1, one in which the sphere contains all of the charge and 
the other in which the charge lies external to the sphere. Choosing the origin of 
coordinates at the center of the sphere, we have the volume integral of the electric 
field, 

{ E(x) d’x = =f V@ dix (4.14) 
rR rR 

This can be converted to an integral over the surface of the sphere: 

[ 7 E(x) d*x = -[. R? dQ. O(x)n (4.15) 

Figure 4.1 Two configurations of charge density and the spheres within which the 
volume integral of electric field is to be calculated. 
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where n is the outwardly directed normal (n = x/R). Substitution of (1.17) for 

the potential leads to 

2 

i R Es) d's = a J Bx! als’) ie ay |x : x'| 

To perform the angular integration we first observe that n can be written in terms 

of the spherical angles (@, 6) as 

(4.16) 

n=isin@cos¢ + j sinésind + k cos@ 

Evidently the different components of n arc linear combinations of Y,,, for 

1 = 1 only. When (3.38) or (3.70) is inserted into (4.16), orthogonality of the Y,,, 
will eliminate all but the / = 1 term in the series. Thus we have 

n re , 
fe dQ = | dfn cosy (4.16') 

where cos y = cos @ cos 6’ + sin @ sin & cos(@ — '). The angular integral is 

equal to 4an'/3, where n’ = r’/r’, Thus the integral (4.16) is 

[Bees =-E fav Sap) (4.17) 

where (r.., 7.) = (r', R) or (R, r') depending on which of r’ and R is larger. 
If the sphere of radius R completely encloses the charge density, as indicated 

in Fig. 41a, then r.. = r’ andr, = R in (4.17). The volume integral of the electric 

field over the sphere then becomes 

Syoc aos i E(x) dx = 36 (4.18) 

where p is the clectric dipole moment (4.8) of the charge distribution with respect 
to the center of the sphere. Note that this volume integral is independent of the 
size of the spherical region of integration provided all the charge is inside. 

If, on the other hand, the situation is as depicted in Fig. 4.1b, with the charge 
all exterior to the sphere of interest, 7. = R andr, = r’ in (4.17). Then we have 

xf n’ By a) oe] gy BE ae? - Bey) d's = ~5— | dx’ Toe) 

From Coulomb's law (1.5) the integral can be recognized to be the negative of 
Arey times the electric ficld at the center of the sphere. Thus the volume integral 

of E is 

[ fe EQ) d*x = = R°E(O) (4.19) 

In other words, the average value of the electric field over a spherical volume 
containing no charge is the value of the ficld at the center of the spherc. 

The result (4.18) implies modification of (4.13) for the electric field of a 
dipole. To be consistent with (4.18), the dipole ficld must be written as 

sie [ae =p 4 
EQ) = Fa [ee 7 PO »)| (4.20) 
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The added delta function does not contribute to the ficld away from the site of 
the dipole. Its purpose is to yield the required volume integral (4.18), with the 
convention that the spherically symmetric (around x») volume integral of the first 
term is zero (from angular integration), the singularity at x = x9 causing an 
otherwise ambiguous result. Equation (4.20) and its magnetic dipole counterpart 
(5.64), when handled carefully, can be employed as if the dipoles were idealized 
point dipoles, the delta function terms carrying the essential information about 
the actually finite distributions of charge and current. 

4.2 Multipole Expansion of the Energy of a Charge Distribution 
in an External Field 

If a localized charge distribution described by p(x) is placed in an external 
potential P(x), the electrostatic energy of the system is: 

We | p(x) D(x) dx (4.21) 

if the potential & is stowly varying over the region where p(x) is nonnegligible, 
then it can be expanded in a Taylor series around a ee chosen origin: 

P(x) = (0) + x+ VO) + 5 ES Se (0) + (4.22) 

Utilizing the definition of the electric field E = —V®, the last two terms can be 
rewritten. Then (4.22) becomes: 

aE, 
®(x) = (0) — x- E@) - ; DD ux, = (0) + 

Md OX; 

Since V+ E = 0 for the external field, we can subtract 

LPV = E(0) 

from the last term to obtain finally the expansion: 

i ak; (x) = (0) — x- E(0) - E> >D Gxx, — 76,) Fe (Dt 4.23) 
i , OX, 

When this is inserted into (4.21) and the definitions of total charge, dipole mo- 
ment (4.8), and quadrupole moment (4.9) are employed, the energy takes the 
form: 

OF; 

W = gb) ~ p-B0) - + SD 0, +-- (424) 
077 5 Ox; 

This expansion shows the characteristic way in which the various multipoles in- 
teract with an external ficld—the charge with the potential, the dipole with the 
clcctric field, the quadrupole with the field gradient, and so on. 

In nuclear physics the quadrupole interaction is of particular interest. Atomic 
nuclei can possess electric quadrupole moments, and their magnitudes and signs 
reflect the nature of the forces between neutrons and protons, as well as the 
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shapes of the nuclei themselves. The energy levels or states of a nucleus are 

described by the quantum numbers of total angular momentum J and its projec- 
tion M along the z axis, as well as others, which we will denote by a general index 
a. A given nuclear state has associated with it a quantum-mechanical charge 

density* pyaa(X). Which depends on the quantum numbers (J, M, q@) but is cylin- 
drically symmetric about the z axis. Thus the only nonvanishing quadrupole mo- 

ment is q2y in (4.6), or Q3; in (4.9)." The quadrupole moment of a nuclear state 
is defined as the value of (1/e) Qa, with the charge density pyayq(X), Where e is the 

protonic charge: 

OQus10 = t | Bz? — P)prmte(x) ax (4.25) 

The dimensions of Qj,,, are consequently (length)”. Unless the circumstances 

are exceptional (e.g., nuclei in atoms with completely closed electronic shells), 
nuclei are subjected to electric fields that possess field gradients in the neighbor- 
hood of the nuclei. Consequently, according to (4.24), the energy of the nuclei 
will have a contribution from the quadrupole interaction. The states of different 
M value for the same J wiil have different quadrupole moments Qyyjq. and sO a 

degeneracy in M valuc that may have existed will be removed by the quadrupole 
coupling to the “external” (crystal lattice, or molecular) electric field. Detection 
of these small energy differences by radiofrequency techniques allows the deter- 
mination of the quadrupole moment of the nucleus.* 

The interaction energy between two dipoles p, and p2 can be obtained di- 
rectly from (4.24) by using the dipole field (4.20). Thus, the mutual potential 

energy is 

{a 
x,|* 

Pi: Po — 3¢ 
Améy|X%) 

Wie = (4.26) 

where n is a unit vector in the direction (x, — x2) and it is assumed that x, # x). 

The dipole-dipole interaction is attractive or repulsive, depending on the orien- 
tation of the dipoles. For fixed orientation and separation of the dipoles, the 
value of the interaction, averaged over the relative positions of the dipoles, is 
zero. If the moments are generally parallel, attraction (repulsion) occurs when 
the moments are oriented more or less parallel (perpendicular) to the line joining 

their centers, For antiparalici moments the reverse is true. The extreme values 

of the potential energy are equal in magnitude. 

4.3 Elementary Treatment of Electrostatics with Ponderable Media 

In Chapters 1, 2, and 3 we considered electrostatic potentials and fields in the 

presence of charges and conductors, but no other ponderable media. We there- 

*See Blatt and Weisskopf (pp. 23 ff.) for an elementary discussion of the quantum aspects of the 
problem 
Actually Qy, and Qzz are different from zero, but are not independent of Qys, being given by 
Qu = Qn = -30s. 
+The quadrupole moment of a nucleus,” denoted by Q. is defined as the value of Qs, in the state 
M = J. See Blatt and Weisskopf, loc. cit. 
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fore made no distinction between microscopic fields and macroscopic fields, al- 
though our treatment of conductors in an idealized fashion with surface charge 

densities implied a macroscopic description. Air is sufficiently tenuous that the 
neglect of its dielectric properties causes no great error; our results so far are 

applicable there. But much of electrostatics concerns itself with charges and fields 

in ponderable media whose respective electric responses must be taken into ac- 
count. In the Introduction we indicated the need for averaging over macroscop- 
ically small, but microscopically large, regions to obtain the Maxwell equations 
appropriate for macroscopic phenomena. This is done in a careful fashion in 

Chapter 6, after the Maxwell equations with time variation have been discussed. 
For the present we merely remind the reader of the outlines of the elementary 
discussion of polarization in a fashion that glosses over difficult and sometimes 
subtle aspects of the averaging procedure and the introduction of the macroscopic 
quantities. 

The first observation is that when an averaging is made of the homogencous 
equation, V X Ej, = 0, the same equation, namely, 

VxE=0 (4.27) 

holds for the averaged, that is, the macroscopic, electric field E. This means that 
the electric field is still derivable from a potential (x) in electrostatics. 

ff an electric field is applied to a medium made up of a large number of 
atoms or molecules, the charges bound in each molecule will respond to the 
applied field and will execute perturbed motions. The molecular charge density 
will be distorted. The multipole moments of each molecule will be different from 
what they were in the absence of the ficld. In simple substances, when there is 
no applied field the multipole moments are all zero, at least when averaged over 
many molecules. The dominant molecular multipole with the applied fields is the 
dipole. There is thus produced in the medium an electric polarization P (dipole 
moment per unit volume) given by 

P(x) = > Nip) (4.28) 

where p, is the dipole moment of the ith type of molecule in the medium, the 
average is taken over a small volume centered at x and N, is the average number 

per unit volume of the ith type of molecule at the point x, If the molecules have 

a net charge e, and, in addition, there is macroscopic excess or free charge, the 
charge density at the macroscopic level will be 

plx) = Nile:) + Percoss (4.29) 

Usually the avcrage molecular charge is zero. Then the charge density is the 
excess or free charge (suitably averaged). 

If we now look at the medium from a macroscopic point of view, we can 

build up the potential or field by linear superposition of the contributions from 
each macroscopicatly smal! volume element AV at the variable point x’. Thus 
the charge of AV is p(x’) AV and the dipoic moment of AV is P(x‘) AY. If there 

are no higher macroscopic multipole moment densities, the potential A®{x, x‘) 
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caused by the configuration of moments in AV can be seen from (4.10) to be 
given without approximation by 

A(x, x’) = [ p(x’) ay 4 POD: x) av] (430) 
4m, | |x — x'| Ix - x’ 

provided x is outside AV. We now treat AV as (macroscopically) infinitesimal, 
put it equal to d*x', and integrate over all space to obtain the potential 

(x) = ex [ee + P(x’) v( u ] (431) 
47€, Ix - x’| - x’| 

The second term is analogous to the dipole layer potential (1.25), but is for a 
volume distribution of dipoles. An integration by parts transforms the potential 
into 

I I Bur lL aes ’ # Os) = Ge | ate’ loc) - PRD (4.32) 

This is just the customary expression for the potential caused by a charge distri- 
bution (9 — V- P). With E = —¥9, the first Maxwell equation therefore reads 

1 
V-E=— [p-V-PI (4.33) 

0 

The presence of the divergence of P in the effective charge density can be un- 
derstood qualitatively. If the polarization is nonuniform there can be a net in- 
crease or decrease of charge within any smail volume. as indicated schematically 
in Fig. 4.2. 

With the definition of the electric displacement D. 

D=e@E+P (4.34) 

(4.33) becomes the familiar 

V-D=p (4.35) 

Equations (4.27) and (4.35) are the macroscopic counterparts of (1.13) and (1.14) 
of Chapter 1. 

As discussed in the Introduction, a constitutive relation connecting D and E 
is necessary before a solution for the electrostatic potential or fields can be ob- 
tained, In the subsequent sections of this chapter we assume that the response 
of the system to an applied field is linear. This excludes ferroelectricity from 

discussion, but otherwise is no real restriction provided the field strengths do not 

Figure 4.2. Origin of polarization-charge density. 
Because of spatial variation of polarization, more 
molecular charge may leave a given small volume 
than enters it. Only molecules near the boundary are 
shown. 
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become extremely large. As a further simpliftcation we supposc that the medium 

is isotropic. Then the induced polarization P is paralle] to E with a coefficient of 

proportionality that is independent of direction: 

P= exE (4.36) 

The constant y, is called the electric susceptibility of the medium. The displace- 

ment D is therefore proportional to E, 

D=& (437) 

where 

€ = €9(1 + x.) (4.38) 

is the electric permittivity; €/e, = 1 + x is called the dielectric constant or relative 

electric permittivity. 
If the dielectric is not only isotropic, but also uniform, then ¢ is independent 

of position. The divergence equations (4.35) can then be written 

V-E=ple (4.39) 

All problems in that medium are reduced to those of preceding chapters, except 
that the electric fields produced by given charges are reduced by a factor €,/e. 
The reduction can be understood in terms of a polarization of the atoms that 
produce fields in opposition to that of the given charge. One immediate conse- 
quence is that the capacitance of a capacitor is increased by a factor of €/€, if the 
empty space between the electrodes is filled with a dielectric with dielectric con- 
stant €/€p (true only to the extent that fringing fields can be neglected). 

If the uniform medium does not fill all of the space where there are electric 
fields or, more gencrally, if there arc different media juxtaposed, not necessarily 
linear in their responses, we must consider the question of boundary conditions 
on D and E at the interfaces between media. These boundary conditions are 
derived from the full set of Maxwell equations in Section L.5. The results are that 
the normal components of D and the tangential components of E on either side 
of an interface satisfy the boundary conditions, valid for time-varying as well as 
static fields, 

(D, ~ Dy) +m: = 4 (440) 
(E, - E)) X m: = 0 

where n, is a unit normal to the surface, directed from region 1 to region 2, and 

ois the macroscopic surface-charge density on the boundary surface (not includ- 
ing the polarization charge). 

4.4 Boundary-Value Problems with Dielectrics 

The methods of earlier chapters for the solution of clectrostatic boundary-vaJue 
problems can readily be extended to handle the presence of dielectrics. In this 

section we treat a few examples of the various techniques applied to dielectric 
media. 

To illustrate the method of images for dielectrics we consider a point charge 
gq embedded in a semi-infinite dielectric €, a distance d away from a plane inter- 
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*% q 

Figure 4.3 

face that separates the first medium from another semi-infinite dielectric €. The 
surface may be taken as the plane z = 0, as shown in Fig. 4.3. We must find the 
appropriate solution to the equations: 

eV-E=p, z>0 
eV:E=0, z<0 

and (4.41) 

Vx E=0, everywhere 

subject to the boundary conditions at z = 0: 

6 F, ©£, 

lim) E, ¢ = limy Ey (4.42) 
20] p al Ge 

Since V x E = 0 everywhere, E is derivable in the usual way from a potential 
«p. In attempting to use the image method it is natural to locate an image charge 
q' at the symmetrical position A’ shown in Fig. 4.4. Then for z > 0 the potential 
at a point P described by cylindrical coordinates (p, ¢, z) will be 

-! (4,94 © aa, ( + ), z>0 (4.43) 

where R, = Vp? + (d — z), Ry = Vp" + (d + 2). So far the procedure is 
completely analogous to the problem with a conducting material in place of the 
diclectric €, for z < 0. But we now must specify the potential for z < 0. Since 
there arc no charges in the region z < 0, it must be a solution of the Laplace 

equation without singularities in that region. Clearly the simplest assumption is 
that for z < 0 the potential is equivalent to that of a charge q” at the position A 

of the actual charge q: 

1 qq 
p=-—-—., <0 4.44 4me RR, * ey) 

@ a 
P 

Ry ‘a 
q @ 
2 er rae 

Figure 4.4 
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Since 

afi __aft id 
82 \Ri/ | 2-0 82 \Ro/|,29  (e? + a?)"? 

wi) |." in (me) Bp ARi/ 220 90 \Ro 

the boundary conditions (4.42) lead to the requirements: 

while 

=p 
Gray 

20 

q-q=q 

Ey, * yalgn 
Zar ee 

These can be solved to yield the image charges q’ and q": 

1.-_-{274 

¢ (2 cf “a 

" 26, 

¢ * a)? 

For the two cases €, > €, and €, < ¢, the lines of force (actually lines of D) are 
shown qualitatively in Fig. 4.5. 

The polarization-charge density is given by -V - P. Inside either dielectric, 
P = e9x.E, so that —V + P = ~eyy.V + E = 0, except at the point charge q. At 
the surface, however, x, takes a discontinuous jump, Vy. = (€: — €)/€y as Z passes 

through z = 0, This implies that there is a polarization-surface-charge density on 
the plane z = (: 

(4.45) 

Opa = —(P2 — Py) + mo, (4.46) 

ee, &) <€, 

Figure 4.5 Lines of electric displacement for a point charge embedded in a dielectric 
€, near a semi-infinite slab of dielectric €. 
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where n;, is the unit normal from dielectric 1 to dielectric 2, and P, is the polar- 

ization in the dietectric i at z = 0. Since 

P, = (6 — &)E, = —(e — €))VP(0") 

it is a simple matter to show that the polarization-charge density is 

Fo = 
_ F &{& — &) d 
2m ee + &) (p? + a?) (a7) 

In the limit €, >> €, the dielectric «, behaves much like a conductor in that the 

electric ficld inside it becomes very small and the surface-charge density (4.47) 
approaches the value appropriate to a conducting surface, apart from a factor of 
€y/€). 

The second illustration of electrostatic problems involving diclectrics is that 
of a diclectric sphere of radius a with dielectric constant €/ey placed in an initially 
uniform electric field, which at large distances from the sphere is directed along 
the z axis and has magnitude E,, as indicated in Fig. 4.6. Both inside and out- 

side the sphere there are no free charges. Consequently the problem is one of 
solving the Laplace equation with the proper boundary conditions at r = a. From 
the axial symmetry of the geometry we can take the solution to be of the form: 

INSIDE: 

©, = > Air'P:(cos &) (4.48) 
mo 

OUTSIDE: 

Boy = > [Berl + Cr |P(cos @) (4.49) 
at 

From the boundary condition at infinity (® > —Fyz = —For cos @) we find that 
the only nonvanishing B, is B} = —£y. The other coefficients are determined 
from the boundary conditions at 7 = a: 

TANGENTIAL E: 

1aMl 1 Dan 
a a0], a 06 |g 

- (4.50) 
Che 

NorMat D: -e€ Win =-q: 
OF |e or | a 

When the series (4.48) and (4.49) are substituted, there result two series of 

Legendre functions equal to zero. Since these must vanish for all 6, the coef- 

P ——> r —> Se Eo § , 

—— a, 

— —> 
Figure 4.6 
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ficient of each Legendre function must vanish separately. For the first boundary 
condition this leads (through orthogonality of P', = éP,/86) to the relations: 

ieeseg 
as (451) 

G ‘i 
A= fori #1 

@ 

while the second gives (through orthogonality of P,): 

Cc 
(le)A, = ~Ey ~ 2 3 

(4.52) 
“d+ 1)S5 fort #1 z (€lenylAy 

The second equations in (4.51) and (4.52) can be satisfied simultaneously only 

with A, = C, = 0 for all / # |. The remaining coefficients are given in terms of 
the applied electric field Fo: 

3 

Ais = + “ieg)® 
i A; (4.53) 

ley — 3 
a (se + 3) Fo 

The potential is therefore 

Din = -(2 <5) Fe cos @ 

(4.54) 

Pou = ~ Er cos 8 + dec 1 E, ae ‘out or de + 2) RO 

The potential inside the sphere describes a constant electric field parallel to 
the applied field with magnitude 

= Fa ag fo < boile> (4.55) 

Outside the sphere the potential is equivalent to the applied field Ey plus the 
field of an electric dipole at the origin with dipole moment: 

(4.56) 

Figure 4.7 Dielectric sphere in a uniform field Eo, showing the polarization on the left 

and the polarization charge with its associated, opposing, electric field on the right. 
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Figure 4.8 Spherical cavity in a dielectric 
with a uniform field applied 

oriented in the direction of the applied ficid. The dipole moment can be inter- 

preted as the volume integral of the polarization P. The polarization is 

eley — 1 J 
P = (€— &)E= 3o( 2), (4.57) 

It is constant throughout the volume of the sphere and has a volume integral 
given by (4.56). The polarization-surface-charge density is, according to (4.46), 

Opa = (Pevyr: 

ley ~ 
Opa = 30(S = 3) cos 6 (4.58) 

This can be thought of as producing an internal field directed oppositely to the 
applied ficld, so reducing the field inside the sphere to its valuc (4.55), as sketched 
in Fig. 4.7. 

The problem of a spherical cavity of radius a in a diclectric medium with 
diclectric constant €/ey and with an applied electric ficld Ey parallel to the z axis, 
as shown in Fig. 4.8, can be handled in exactly the same way as the dielectric 
sphere. In fact, inspection of boundary conditions (4.50) shows that the results 
for the cavity can be obtained from those of the sphere by the replacement 
é/€y — (€o/€). Thus, for example, the field inside the cavity is uniform, parallel 
to Ep, and of magnitude: 

3e€ = apg Fo > Bvite> & (4.59) 

Similarly, the field outside is the applied field plus that of a dipole at the origin 

oriented oppositely to the applied field and with dipole moment: 

éley - 1 
p= 4rep( Seat = i) (4.60) 

4.5 Molecular Polarizability and Electric Susceptibility 

In this section and the next we consider the rclation between molecular prop- 

erties and the macroscopically defined parameter, the electric susceptibility x.. 
Our discussion is in terms of simple classical models of the molecular properties, 
although a proper treatment necessarily would involve quantum-mechanical con- 
siderations. Fortunately, the simpler properties of dielectrics are amenable to 
classical analysis. 
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Before examining how the detailed properties of the molecules are related 
to the susceptibility, we must make a distinction between the fields acting on the 

molecules in the medium and the applicd ficid. The susceptibility is defined 
through the relation P = e,y,E, where E is the macroscopic clectric field. In 

rarefied media where molecular separations arc large there is little difference 
between the macroscopic field and that acting on any molecule or group of mol- 

ecules. But in dense media with closely packed molecules the polarization of 
neighboring molccules gives rise to an internai field E; at any given molecule in 
addition to the average macroscopic field E, so that the total ficld at the molecule 
is E + E,. The internal field E, can be written as the difference of two terms, 

E, = Encore — Ep (4.61) 

where E,,.., is the actual contribution of the molecules closc to the given molecule 

and Ep is the contribution from those molecules treated in an average continuum 
approximation described by the polarization P. What we are saying here is that 
close to the molecule in question we must take care to recognize the specific 
atomic configuration and locations of the nearby molecules. Inside some mac- 
roscopically small, but microscopically large, volume V we therefore subtract out 
the smoothed macroscopic equivalent of the nearby molecular contributions (E,) 
and replace it with the correctly evaluated contribution (E,,,,,.). This difference 
is the extra internal ficld E,. 

The result (4.18) for the integral of the electric field inside a spherical volume 
of radius R containing a charge distribution can be used to calculate Ep. If the 
volume V is chosen to be a sphere of radius R containing many molecules, the 
total dipole moment inside is 

provided V is so small that P is essentially constant throughout the volume. Then 
(4.18) shows that the average clectric field inside the sphere (just what is desired 
for Ep) is 

Ep=—5] Edx=-— (4.62) 

The internal field can therefore be written 

i ,= = Pt+E, 
3€ 

(4.63) 

The ficld due to the molecules near by is more difficult to determine. Lorentz 
(p. 138) showed that for atoms in a simple cubic lattice E,.4, vanishes at any 
lattice site. The argument depends on the symmetry of the problem, as can be 
seen as follows. Suppose that inside the sphere we have a cubic array of dipoles 
such as are shown in Fig. 4.9, with ali their moments constant in magnitude and 
oriented along the same direction (remember that the sphere is macroscopically 
small even though it contains very many molecules). The positions of the dipoles 
ate given by the coordinates x, with the components along the coordinate axes 
(ia, ja, ka), where a is the lattice spacing, and i, j, k each take on positive and 
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Figure 4.9 Calculation of the internal field: 
contribution from nearby molecules in a 
simple cubic lattice. 

negative integer values. The field at the origin due to all the dipoles is, according 

to (4.13), 

e-3 3p: Sia )Xia ~ xP (4.64) 
tk ATE OX ix 

The x component of the field can be written in the form: 

Miep, + ip. + ikp,s) — P+ P+ py 
E, = > Fe Ate Oe ee tk Amen? + P + ky 

Since the indices run equally over positive and negative values, the cross terms 
involving {ip + ikp3) vanish. By symmetry the sums 

(4.65) 

e _ ts Z Ved 

2 Gaps 2 ape ya 
ik tk ak 

are all equal. Consequently 

ay BRE@ +P + PY _ 
B= 2 ane + P+ RY? ae 

Similar arguments show that the y and z components vanish also. Hence 
Eycar = 0 for a simple cubic lattice. 

If Ey... = 0 for a highly symmetric situation, it seems plausible that E,,.., = 0 

also for completely random situations. Hence we expect amorphous substances 
to have no internal ficld due to nearby molecules. For lattices other than simple 
cubic, the components of E,,.,, are related to the components of P through a 

traceless tensor 5, that has the symmetry properties of the lattice. Nevertheless, 

it is a good working assumption that E,,.4, = 0 for most materials. 

The polarization vector P was defined in (4.28) as 

P = NEP) 

where (pyyoi) is the average dipole moment of the molecules. This dipole moment 

is approximately proportional to the electric field acting on the molecule. To 
exhibit this dependence on electric field we define the molecular polarizability 

Ymor AS the ratio of the average molecular dipole moment to ¢€, times the applied 

field at the molecule. Taking account of the internal field (4.63), this gives: 

Pmot) = €o¥mo(E + E;) (4.67) 
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Ymou iS, in principle, a function of the electric field, but for a wide range of field - 
strengths is a constant that characterizes the response of the molecules to an 
applied field, Equation (4.67) can be combined with (4.28) and (4.63) to yield: 

1 
P= Nal + 3 P) (4.68) 

where we have assumed E,.,, = 0. Solving for P in terms of E and using the fact 
that P = e,y,E defines the electric susceptibility of a substance, we find 

N: 
a a (4.69) 1 

= 3 NY mo 

as the relation betwcen susceptibility (the macroscopic parameter) and molecular 
polarizability (the microscopic parameter). Since the dielectric constant is 
é/eg = 1 + y,, it can be expressed in terms of Yo), or alternatively the molecular 

polarizability can be expressed in terms of the dielectric constant: 

3 (ele ~ 1 == w/ Yoo! = Hy (2 - 1) (4.70) 

This is called the Clausius-Mossotti equation, since Mossotti (in 1850) and 
Clausius independently (in 1879) established that for any given substance 
(ele, ~ 1)(e/é, + 2) should be proportional to the density of the substance.* The 
relation hoids best for dilute substances such as gases. For liquids and solids, 
(4.70) is only approximately valid, especially if the dielectric constant is large. 
The interested reader can refer to the books by Béticher, Debye, and Fréhlich 
for further details. 

4.6 Models for the Molecular Polarizability 

The polarization of a collection of atoms or molecules can arise in two ways: 

the applied field distorts the charge distributions and so produces an induced 
dipole moment in each molecule; 

the applied field tends to line up the initially randomly oriented permanent dipole 
moments of the molecules. 

To estimate the induced moments we consider a simple model of harmonically 
bound charges (electrons and ions). Each charge ¢ is bound under the action of 
a restoring force 

F = —moix (4.71) 

where m is the mass of the charge, and w, the frequency of oscillation about 
equilibrium. Under the action of an clectric field E the charge is displaced from 
its equilibrium by an amount x given by 

mozx = eE 

*At optical frequencies, e/e, = n°, where 7 is the index of refraction. With 1? replacing e/ey in (4.70), 
the equation is sometimes called the Lorenz—Lorentz equation (1880). 
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Consequently the induced dipole moment is 

2 G 
=ex= 4.72. Prot = €% = 7G (4.72) 

This means that the polarizability is y = e7/meie. If there are a set of charges e; 
with masses m, and oscillation frequencies «, in each molecule then the molecular 

polarizability is 

1 G 
2 

oF MyoF 
Yenot (4.73) 

To get a feeling for the order of magnitude of y we can make two different 

estimates. Since y has the dimensions of a volume, its magnitude must be of the 
order of molecular dimensions or Jess, namely y,, = 10~?’ m*. Alternatively, we 

note that the binding frequencies of electrons in atoms must be of the order 
of light frequencies. Taking a typical wavelength of light as 3000 A, we find 
w = 6 X 10) s7!. Then the electronic contribution to y is ya ~ (e*/me*ey) ~ 

0.88 x 107” m5, consistent with the molecular volume estimate. For gases at 
NTP the number of molecules per cubic meter is N = 2.7 x 10°, so that their 
susceptibilities should be of the order of x, = 107°. This means dielectric con- 
stants differing from unity by a few parts in 10’, or Jess. Experimentally, typical 
values of dielectric constant are 1.00054 for air, 1.0072 for ammonia vapor, 1.0057 
for methyl alcohol, 1.000068 for helium. For solid or liquid dielectrics, N ~ 10° 
— 10°” molecules/m*. Consequently. the susceptibility can be of the order of unity 
(to within a factor 10*') as is observed.* 

The possibility that thermal agitation of the molecules could modify the re- 
sult (4.73) for the induced dipole polarizability needs consideration. In statistical 
mechanics the probability distribution of particles in phase space (p, q space) is 
some function f(H) of the Hamiltonian. For classical systems, 

fH) = eo Har (4.74) 
is the Boltzmann factor. For the simple problem of the harmonically bound 
charge with an applied field in the z direction, the Hamiltonian is 

2. H= + 5 wx? — eEz (4.75) im? 
where here p is the momentum of the charged particle. The average value of the 

dipole moment in the z direction is 

[ap fae (ez)f(H) 
(Pm = > (4.76) 

fate [ ae son 
If we introduce a displaced coordinate x’ = x — eF%/mg then 

1, mee, CF? 
=— pt tay 4. Hah ty OP aed 7) 

*Sce, e.g. CRC Handbook of Chemistry and Physics, 78th ed., ed. D. R. Lipe, CRC Press, Boca 
Raton, FL (1997-98). 
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and 

[ { er (ee ase Jan 

| ep [ ex son 
Since H is even in z‘ the first integral vanishes. Thus, independent of the form 
of f(7), we obtain 

(Pmot) = (4.78) 

2 e 

Poot) moa 2 

just as was found in (4.72), ignoring thermal motion. 
The second type of polarizability is that caused by the partial orientation of 

otherwise random permanent dipole moments. This orientation polarization is 
important in ‘‘polar” substances such as HCl and H2O and was first discussed by 
Debye (1912). All molecules are assumed to possess a permanent dipole moment 
Po, Which can be oriented in any direction in space. In the absence of a field, 
thermal agitation keeps the molecules randomly oriented so that there is no net 
dipole moment. With an applied field there is a tendency to line up along the 
ficid in the configuration of lowest energy. Consequently there will be an average 
dipole moment. To calculate this we note that the Hamiltonian of the molecule 
is given by 

H=H)~ prE (4.79) 

where Hp is a function of only the “internal” coordinates of the molecule. Using 
the Boltzmann factor (4.74), we can write the average dipole moment as: 

PoE cos *) 
{ dQ py cos 6 eo( kT 

De eet (4.80) 
PoF cos 

dQ ex] J an exo 
where we have chosen E along the z axis, integrated out all the irrelevant vari- 
ables, and noted that only the component of (pp) parallel to the field is different 

from zero. In general, (poE/kT) is very small compared to unity, except al low 

temperatures. Hence we can expand the exponentials and obtain the result: 

1p, 
Prod * 5 ep (4.81) 

The orientation polarization depends inversely on the temperature, as might be 
expected of an effect in which the applied field must overcome the opposition of 
thermal agitation. 

In general both types of polarization, induced (electronic and ionic) and 
orientation, are present, and the general form of the motecular polarization is 

1 pe 
3e, kT Ge) Yor = ¥ + 
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Figure 4.10 Variation of molecular 

polarizability y,,. with temperature 

for polar and nonpolar substances: 
1? —> Yo Versus 77", 

This shows a temperature dependence of the form (@ + 6/T) so that the two 
types of polarization can be separated experimentally, as indicated in Fig, 4.10. 

For “polar” molecules, such as HCI and H,O, the observed permanent dipole 

moments are of the order of an electronic charge times 10 * cm, in accordance 
with molecular dimensions. 

4.7 Electrostatic Energy in Dielectric Media 

In Section 1.11 we discussed the energy of a system of charges in free space. The 
result obtained there, 

1 
We +f nooo dx (4.83) 

for the energy due to a charge density p(x) and a potential (x) cannot in general 
be taken over as it stands in our macroscopic description of dielectric media. The 
reason becomes clear when we recall how (4.83) was obtained. We thought of 

the final configuration of charge as being created by assembling bit by bit the 
elemental charges, bringing each one in from infinitely far away against the action 
of the then existing electric field. The total work done was given by (4.83). With 
dielectric media, work is done not only to bring real (macroscopic) charge into 
position, but also to produce a certain state of polarization in the medium. If p 
and « in (4.83) represent macroscopic variables, it is certainty not evident that 
(4.83) represents the total work, including that done on the dielectric. 

To be general in our description of dielectrics, we will not initially make any 
assumptions about linearity, uniformity, etc., of the response of a diclectric to an 
applied field. Rather, let us consider a smal! change in the energy 6W due to 
some sort of change 8p in the macroscopic charge density p existing in all space. 
The work done to accomplish this change is 

ow = | Splx)P(x) dx (4.84) 

where (x) is the potential due to the charge density p(x) already present. Since 
V-D = p, we can relate the change &p to a change in the displacement of 5D: 

dp = V+ (dD) (4.85) 
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Then the energy change 5W can be cast into the form: 

ow = fe + 8D ax (4.86) 

where we have used E = —V@ and have assumed that p(x) was a localized charge 
distribution. The total electrostatic energy can now be written down formally, 

at least, by allowing D to be brought from an initial value D = 0 to its final 

value D: 

» 
w= [ae [ E- oD (4.87) 

If the medium is finear, then 

E- &D = 35(E- D) (4.88) 

and the total electrostatic energy is 

= sf E-D d*x (4.89) 

This last result can be transformed into (4.83) by using E = —V® and V-D = 
p, or by going back to (4.84) and assuming that » and ® are connected linearly, 
Thus we see that (4.83) is valid macroscopically only if the behavior is linear. 
Otherwise the energy of a final configuration must be calculated from (4.87) and 
might conceivably depend on the past history of the system (hysteresis effects). 

A problem of considerable interest is the change in energy when a dielectric 
object with a linear response is placed in an electric field whose sources are fixed. 
Suppose that initially the electric field Ep due to a certain distribution of charges 
pox) exists in a medium of electric susceptibility €, which may be a function of 
position (for the moment €, is not the susceptibility of the vacuum). The initial 
electrostatic energy is 

1 Wy = 4 | By Dyas 
where Dy = €9Eo. Then with the sources fixed in position a dielectric object of 

volume V, is introduced into the field, changing the field from Ey to E. The 

presence of the object can be described by a susceptibility e(x), which has the 

value €, inside V, and eg outside V;. To avoid mathematical difficulties we can 

imagine €(x) to be a smoothly varying function of position that falls rapidly but 
continuously from ¢, to € at the edge of the volume V,. The energy now has the 

value 

1 
WwW, -tfe-pax 

where D = cE. The difference in the energy can be written: 

iJ W= >] (E-D-E,- Di} dx 
3) 6 Ey + Do) (4.90) 
1 1 

=1f ed, - D-Ejax +3 [& + Eo} + (D — Dy) d?x 
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The second integral can be shown to vanish by the following argument. Since 
Vv x (E + E,) = 0, we can write 

E+E, =-Vo 

Then the second integral becomes: 

T= -1[ v0.@- D,) dx 

Integration by parts transforms this into 

1=1[ov-@ — Do) dx = 0 

since ¥V-{D — Do) = 0 because the source charge density po(x) is assumed 
unaltered by the insertion of the dielectric object. Consequently the energy 

change is 

W= ; { (E+ Dy — D+ Ep) dx (4.91) 

The integration appears to be over all space, but is actually only over the volume 
V, of the object, since, outside V,, D = e)E. Therefore we can write 

1 W=-5 ie (6) — &)E+ Ey dx (4.92) 

Tf the medium surrounding the dielectric body is free space, then using the def- 
inition of polarization P, (4.92) can then be expressed in the form; 

We tf, P-E, dx (4.93) 

where P is the polarization of the dielectric. This shows that the energy density 
of a dielectric placed in a field E, whose sources are fixed is given by 

w=-1P-E, (4.94) 

This result is analogous to the dipole term in the energy (4.24) of a charge dis- 
tribution in an external field. The factor 3 is due to the fact that (4,94) represents 

the energy density of a polarizable dielectric in an external field, rather than a 

permanent dipole, It is the same factor 4 that appears in (4.88). 
Equations (4.92) and (4.93) show that a dielectric body will tend to move 

toward regions of increasing field E, provided €, > €,. To calculate the force 

acting we can imagine a small generalized displacement of the body &é. Then 
there will be a change in the energy 6W. Since the charges are held fixed, there 
is no external source of energy and the change in field energy can be interpreted 
as a change in the potential energy of the body. This means that there is a force 
acting on the body: 

aw 
Fe=-|> 4,95 
. ( o€ ), ae 

where the subscript Q has been placed on the partial derivative to indicate that 
the sources of the field are kept fixed. 



168 Chapter 4 Multipoles, Electrostatics of Macroscopic Media, Dielectries—SI 

In practical situations involving the motion of dielectrics the electric fields 
are often produced by a configuration of electrodes held at fixed potentials by 
connection to an external source such as a battery. To maintain the potentials 
constant as the distribution of dielectric varies, charge will flow to or from the 

battery to the electrodes. This means that energy is being supplied from the 
external source, and it is of interest to compare the energy supplied in that way 
with the energy change found above for fixed sources of the field. We will treat 
only linear media so that (4.83) is valid. It is sufficient to consider small changes 
in an existing configuration. From (4.83) it is evident that the change in energy 
accompanying the changes dp(x) and &@{x) in charge density and potential! is 

6W = if (p 8@ + @ Sp) dx (4.96) 

Comparison with (4.84) shows that, if the dielectric properties are not changed, 
the two terms in (4,96) are equal. If, however, the dielectric properties are altered, 

e(x) > e{x) + 6e(x) (4.97) 

the contributions in (4.96) are not necessarily the same. In fact, we have just 
calculated the change in energy brought about by introducing a dielectric body 
into an electric field whose sources were fixed (8p = 0). Equal contributions in 
(4.96) would imply 8W = 0, but (4.91) or (4.92) are not zero in general. The 
reason for this difference lies in the existence of the polarization charge. The 
change in dielectric properties implied by (4.97) can be thought of as a change 
in the polarization-charge density. If then (4.96) is interpreted as an integral over 
both free and polarization-charge densities (i.e., a microscopic equation), the two 
contributions are always equal. However, it is often convenient to deal with mac- 
roscopic quantities. Then the equality holds only if the dielectric properties are 
unchanged. 

The process of altering the dielectric properties in some way (by moving the 
dielectric bodies, by changing their susceptibilitics, etc.) in the presence of elec- 
trodes at fixed potentials can be viewed as taking place in two steps. In the first 
step the electrodes are disconnected from the batteries and the charges on them 
held fixed (6p = 0). With the change (4.97) in diclectric properties, the energy 
change is 

éW, = if p dd, dx (4.98) 

where 5, is the change in potential produced. This can be shown to yield 
the result (4.92). In the second step the batteries are connected again to the 
electrodes to restore their potentials to the original values. There will be a flow 
of charge Sp, from the batteries accompanying the change in potential* 
6@, = —6®,. Therefore the energy change in the second step is 

1 aW.=5 if (p 8&, + ® dp,) dx = —26W, (4.99) 

+Note that it is necessary merely to know that &, = —&d, on the electrodes, since that is the only 
place where free charge resides. 
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since the two contributions are equal. In the second step we find the external 
sources changing the energy in the opposite sense and by twice the amount of 
the initial step. Consequently the net change is 

aw = -1 [ p90, ae (4.100) 

Symbolically 

bWy = -5Wo (4.101) 

where the subscript denotes the quantity held fixed. If a dielectric with e/e, > 1 

moves into a region of greater field strength, the energy increases instead of 
decreases. For a generalized displacement dé the mechanical force acting is now 

aw F, = -(#) (4.102) 
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Problems 

41 Calculate the multipole moments g,,, of the charge distributions shown as parts a 

and b. Try to obtain results for the nonvanishing moments valid for ali /, but in each 
case find the first pve sets of nonvanishing moments at the very least. 
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fa) (b) 

Problem 4.1 

(c) For the charge distribution of the second set b write down the multipole ex- 

pansion for the potential. Keeping only the lowest-order term in the expan- 
sion, plot the potential in the x-y plane as a function of distance from the 
origin for distances greater than a. 

(a) Calculate directly from Coulomb's law the exact potential for b in the 
x-y plane. Plot it as a function of distance and compare with the result found 
in part ¢. 

Divide out the asymptotic form in parts ¢ and d to see the behavior at large distances 
more clearly. 

A point dipole with dipole moment p is located at the point x). From the properties 
of the derivative of a Dirac delta function, show that for calculation of the potential 
® or the energy of a dipole in an external field, the dipole can be described by an 
effective charge density 

Ped) = —p + VA(X — Xo) 

The /th term in the multipole expansion (4.1) of the potential is specified by the 
(2i + 1) multipole moments q,,,. On the other hand, the Cartesian multipole 
moments, 

29, = ! plxxryhz? dx 

with a, B. y nonnegative integers subject to the constraint a + B + y = J, are 
(+ 1) + 2)/2 in number. Thus, for / > 1 there are more Cartesian multipole 
moments than seem necessary to describe the term in the potential whose radial 
dependence is r-/ 7. 

Show that while the q,,, transform under rotations as irreducible spherical ten- 
sors of rank é, the Cartesian multipole moments correspond to reducible spherical 
tensors of ranks /, / — 2,7 — 4,..., fnins Where dyin = 0 or 1 for / even or odd, 
respectively. Check that the number of different tensorial components adds up to 
the total number of Cartesian tensors. Why are only the g,,, needed in the expansion 
(4.1)? 

(a) Prove the following theorem: For an arbitrary charge distribution p(x) the 
values of the (2/ + 1} moments of the first nonvanishing multipole are inde- 
pendent of the origin of the coordinate axes, but the values of all higher mul- 
tipole moments do in general depend on the choice of origin. (The different 
moments 4;,, for fixed / depend, of course, on the orientation of the axes.) 

(b) A charge distribution has multipole moments q. p, Q,, . .. with respect to one 
set of coordinate axes. and moments q’, p'. Qi,.... with respect to another 
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set whose axes are parallel to the first, but whose origin is located at the point 
R = (X, Y, Z) relative to the first. Determine explicitly the connections be- 
tween the monopole, dipole, and quadrupole moments in the two coordinate 

frames, 

(co) Ifq #0, can R be found so that p’ = 0? Hq # 0, p # 0, or at least p # 0, can 
R be found so that Q}, = 0? 

A localized charge density p(x, y, z) is placed in an external electrostatic field de- 
scribed by a potential bx, y, z). The external potential varies slowly in space 
over the region where the charge density is different from zero. 

{a) From first principles calculate the total force acting on the charge distribution 
as an expansion in multipole moments times derivatives of the electric field, 
up to and including the quadrupole moments. Show that the force is 

aE” 
F = gE(0) + (¥[p- E)]}o + {v [is > Qn wl} 

Compare this to the expansion (4.24) of the energy W. Note that (4.24) is a 
number—it is not a function of x that can be differentiated! What is its con- 
nection to F? 

(b) Repeat the calculation of part a for the total torque. For simplicity, evaluate 
only one Cartesian component of the torque, say N). Show that this compo- 
nent is 

i 4 
a 0), =| — ae poe (0) sta M = fp x E°O) +5 [2 ( uk} ) ax (s O56} YI, + 

A nucleus with quadrupole moment Q finds itself in a cylindrically symmetric elec- 
tric field with a gradient (4F,/4z), along the z axis at the position of the nucleus. 

(a) Show that the energy of quadrupole interaction is 

(b) If it is known that Q = 2 x 10°74 m? and that WA is 10 MHz, where 
A is Planck’s constant, calculate (GE,/dz)y in units of e/4reqa}, where 
ay = 4rregh?ime? = 0.529 X 10°" m is the Bobr radius in hydrogen. 

(ce) Nuclear charge distributions can be approximated by a constant charge density 
throughout a spheroidal volume of semimajor axis a and semiminor axis b. 
Calculate the quadrupole moment of such a nucleus, assuming that the total 
charge is Ze. Given that Eu’ (Z = 63) has a quadrupole moment Q = 
2.5 x 10°*8 m? and a mean radius 

=(@+by2=7xX10 8m 

determine the fractional difference in radius (@ — b)/R. 

A localized distribution of charge has a charge density 

(0) = re * sin’e Pe) bat 

(a) Make a multipole expansion of the potential due to this charge density and 
determine all the nonvanishing multipole moments. Write down the potential 

at large distances as a finite expansion in Legendre polynomials. 
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(b) Determine the potential explicitly at any point in space, and show that near 
the origin. correct to 7” inclusive, 

1 dr) ~ he (:-4 - 7 P(cos a 

(c) If there exists at the origin a nucleus with a quadrupole moment Q = 10°** 
determine the magnitude of the interaction energy, assuming that the unit of 
charge in p{r) above is the electronic charge and the unit of length is the 
hydrogen Bohr radius a = 477e,f/me? = 0.529 x 10°" m. Express your an- 
swer as a frequency by dividing by Planck's constant h. 

The charge density in this problem is that for the m = +1 states of the 
2p level in hydrogen, while the quadrupole interaction is of the same order as 
found in molecules. 

4.8 A very long, right circular, cylindrical shell of dielectric constant €/€ and inner and 
outer radii a and 6, respectively, is placed in a previously uniform electric field E, 
with its axis perpendicular to the field. ‘he medium inside and outside the cylinder 

has a dielectric constant of unity. 

(a) Determine the potential and electric field in the three regions, neglecting end 
effects. 

(b) Sketch the lines of force for a typical case of b = 2a. 

(c) Discuss the limiting forms of your solution appropriate for a solid dielectric 
cylinder in a uniform field, and a cylindrical cavity in a uniform dielectric. 

4.9 — A point charge q is located in free space a distance d from the center of a dielectric 
sphere of radius a (@ < d) and dielectric constant €/€). 

(a) Find the potential at all points in space as an expansion in spherical harmonics. 

(b) Calculate the rectangular components of the electric field near the center of 
the sphere. 

(ce) Verify that, in the limit €/e, > %, your result is the same as that for the 
conducting sphere. 

4.10 Two concentric conducting spheres of inner and outer radii a and b, respectively, 
carry charges +Q. The empty space between the spheres is half-filled by a hemi- 
spherical shell of dielectric (of dielectric constant €/e,), as shown in the figure. 

Problem 4.10 

(a) Find the electric field everywhere between the spheres. 
(b) Calculate the surface-charge distribution on the inner sphere. 

(ce) Calculate the polarization-charge density duced on the surface of the di- 
electric at r = a. 
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The following data on the variation of dielectric constant with pressure are taken 

from the Smithsonian Physical Tables, 9th ed.. p. 424: 

Air at 292 K 

Pressure (atm) ley 

20 1.0108 Relative density of air as a function of 
40 1.0218 pressure is given in AIP Handbook, 
60 1.0333 [8rd ed., McGraw-Hill, New York 
80 1.0439 (1972), p. 4-165] 
100 1.0548 

Pentane (CsH,2) at 303 K 

Pressure (atm) Density (g/cm’) ele 

1 0.613 1.82 
10° 0.701 1.96 

4xWw 0.796 2.12 
8x le 0.865 2.24 

12. 10° 0.907 2,33 

‘Test the Clausius—-Mossotti relation between diclectric constants and density 
for air and pentane in the ranges tabulated. Does it hold exactly? Approximately? 
Wf approximately, discuss fractional variations in density and (€/€ — 1). For pentane, 
compare the Clausius—Mossotti relation to the cruder relation, (€/é — 1) * density. 

Water vapor is a polar gas whose dielectric constant exhibits an appreciable tem- 
perature dependence. The following table gives experimental data on this effect, 
Assuming that water vapor obeys the ideal gas law, calculate the molecular polar- 
izability as a function of inverse temperature and plot it. From the slope of the 
curve, deduce a value for the permanent dipole moment of the H,O molecule (ex- 
press the dipole moment in coulomb-meters). 

T(K) Pressure (cm Hg) (€feg — 1) x 108 

393 56.49 400.2 
423 60.93 371.7 
453 65.34 348.8 
483 69.75 328.7 

Two tong, coaxial, cylindrical conducting surfaces of radii a@ and b are lowered 
vertically into a liquid dielectric. If the liquid rises an average height A between the 
electrodes when a potential difference V is established between them, show that 
the susceptibility of the liquid is 

(BP — &)pgh In(blay ee 
© 

where p is the density of the liquid, g is the acceleration due to gravity, and the 
susceptibility of air is neglected. 



CHAPTER 5 

Magnetostatics, Faraday’s Law, 
Quasi-Static Fields 

5.1 Introduction and Definitions 

174 

In the preceding chapters we examined various aspects of electrostatics (i.c., the 
fields and interactions of stationary charges and boundaries). We now turn to 
steady-state magnetic phenomena, Faraday's law of induction, and quasi-static 
fields. From a historical point of view, magnetic phenomena have been known 

and studied for at least as long as electric phenomena. Lodestones were known 
in ancient times: the mariner’s compass is a very old invention; Gilbert's re- 
searches on the carth as a giant magnet date from before 1600. In contrast to 
electrostatics, the basic laws of magnetic fields did not follow straightforwardly 
from man’s carlicst contact with magnetic materials. The reasons are several, but 
they all stem from the radical difference between magnetostatics and electro- 
statics: there are no free magnetic charges (even though the idea of a magnetic 
charge density may be a useful mathematical construct in some circumstances). 
This means that magnetic phenomena are quite different from electric phenom- 
ena and that for a long time no connection was established between them. The 
basic entity in magnetic studies was what we now know as a magnetic dipole. In 
the presence of magnetic materials the dipole tends to align itself in a certain 
direction. That direction is by definition the direction of the magnetic-flux den- 
sity, denoted by B, provided the dipole is sufficiently small and weak that it does 
not perturb the existing field. The magnitude of the flux density can be defined 
by the mechanical torque N exerted on the magnetic dipole: 

N=pxB (5.1) 

where p is the magnetic moment of the dipole, defined in some suitable set of 

units. 
Already, in the definition of the magnetic-flux density B (sometimes called 

the magnetic induction), we have a more complicated situation than for the elec- 

tric field. Further quantitative elucidation of magnetic phenomena did not occur 
until the connection between currents and magnetic fields was established. A 
current corresponds to charges in motion and is described by a current density 
J, measured in units of positive charge crossing unit area per unit time, the di- 
rection of motion of the charges defining the direction of J. In ST units it is 

measured in coulombs per square meter-sccond or amperes per square meter. If 

the current density is confined to wires of small cross section, we usually integrate 

over the cross-sectional area and speak of a current of so many amperes flowing 
along the wire. 
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Conservation of charge demands that the charge density at any point in space 
be related to the current density in that neighborhood by a continuity equation: 

i vi.yao (5.2) 
Oo 

This expresses the physical fact that a decrease in charge inside a small volume 
with time must correspond to a flow of charge out through the surface of the 
small volume, since the total amount of charge must be conserved. Steady-state 
magnetic phenomena are characterized by no change in the net charge density 
anywhere in space. Consequently in magnetostatics 

Vis=0 (5.3) 

We now proceed to discuss the experimental connection between current and 
magnetic-flux density and to establish the basic laws of magnetostatics, 

5.2 Biot and Savart Law 

In 1819 Oersted observed that wires carrying electric currents produced defiec- 
tions of permanent magnetic dipoles placed in their neighborhood. Thus the 
currents were sources of magnetic-flux density. Biot and Savart (1820), first, and 
Ampeére (1820-1825), in much more elaborate and thorough experiments, estab- 
lished the basic experimental laws relating the magnetic induction B to the cur- 
rents and established the law of force between one current and another. Although 
not in the form in which Ampére deduced it, the basic relation is the following. 
If dl is an element of length (pointing in the direction of current flow) of a 
filamentary wire that carries a current / and x is the coordinate vector from the 
element of length to an observation point P, as shown in Fig. 5.1, then the cle- 
mental flux density dB at the point P is given in magnitude and direction by 

_ ,, (dx x) 
dB = ki Th (5.4) 

It should be noted that (5.4) is an inverse square law, just as is Coulomb’s law 
of electrostatics. However, the vector character is very different. 

A word of caution about (5.4). There is a temptation to think of (5.4) as the 
magnetic equivalent of the electric field (1.3) of a point charge and to identify 
idl as the analog of q. Strictly speaking this is incorrect. Equation (5.4) has 
meaning only as one element of a sum over a continuous set, the sum representing 
the magnetic induction of a current loop or circuit. Obviously the continuity 
equation (5.3) is not satisfied for the current element J dl standing alone—the 

Figure 5.1 Elemental magnetic induction dB 
P due to current element / dl. 
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current comes from nowhere and disappears after traversing the length dl! One 

apparent way out of this difficulty is to realize that current is actually charge in 
motion and to replace / dl by qv where q is the charge and v its velocity. The 
flux density for such a charge in motion would be 

vxXx 

xf 
in close correspondence with (5.4). But this expression is time dependent and 
furthermore is valid only for charges whose velocities are small compared to that 
of light and whose accelerations can be neglected. Since we are considering 
steady-state magnetic fields in this chapter, we stick with (5.4) and integrate over 
circuits to obtain physical results.* 

Tn (5.4) and (5.5) the constant & depends in magnitude and dimension on the 

system of units used, as discussed in detail in the Appendix. In Gaussian units, 
in which current is measured in esu and magnetic induction in emu, the constant 

is empirically found to be k = I/c, where c is the speed of light in vacuo. The 
presence of the speed of light in the equations of magnetostatics is an initial 
puzzlement resolved within special relativity where v/c has a natural appearance. 
In Gaussian units, E and B have the same dimensions: charge divided by length 
squared or force per unit charge. 

In ST units, k = fo/47r = 107? newton per square ampere (N/A’) or henry 
per meter (H/m). Here B has the dimensions of newtons per ampere-meter 
(N/A: m) while E has dimensions of N/C. B times a speed has the same dimen- 
sions as E, Since ¢ is the natural speed in electromagnetism, it is no surprise that 
in ST units E and cB form the field-strength tensor F*” in a relativistic description 
(see Chapter 11). 

We can linearly superpose the basic magnetic-flux elements (5.4) by integra- 
tion to determine the magnetic-fiux density due to various configurations of 
current-carrying wires. For example, the magnetic induction B of the long straight 
wire shown in Fig. 5.2 carrying a current / can be seen to be directed along the 
normal to the plane containing the wire and the observation point, so that the 
lines of magnetic induction are concentric circles around the wire. The magnitude 
of B is given by 

B=kq (5.5) 

(B| = “27R i; dl yl 
4 7pt FAM ORD 5.6 = (R+ PY? aR 8) 

where R is the distance from the observation point to the wire. This is the ex- 
perimental result first found by Biot and Savart and is known as the Biot-Savart 
law. Note that the magnitude of the induction B varies with R in the same way 
as the electric field due to a long line charge of uniform linear-charge density. 

“There is an apparent inconsistency here. Currents are, after all, charges in motion. How can (5.4), 
integrated, yield exact results yet (5.5) be only approximate? The answer is that (5.5) applies to only 
one charge. If a system of many charges moves in such a way that as the unit of charge goes to zero 
and the number of charges goes to infinity it produces a steady current flow, then the sum of the 
exact relativistic fields, including acceleration effects, gives a magnetostatic field equal to the field 
obtained by integrating (5.4) over the circuit. This rather subtle result is discussed for some special 
situations in Problems 14.23 and 14.24. 
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BC{> 

dl 

R 

c{> 
Figure 5.2 

This analogy shows that in some circumstances there may be a correspondence 
between electrostatic and magnetostatic problems, even though the vector char- 

acter of the fields is different. We see more of that in later sections. 
Ampére’s experiments did not deal directly with the determination of the 

relation between currents and magnetic induction, but were concerned rather 
with the force that one current-carrying wire experiences in the presence of an- 
other, Since we have already introduced the idea that a current element produces 
a magnetic induction, we phrase the force law as the force experienced by a 
current element /, d], in the presence of a magnetic induction B. The elemental 
force is 

dF = 1, (dl, x B) (5.7) 

If the external field B is due to a closed current loop #2 with current /,, then the 

total force which a closed current loop #1 with current /, experiences is (from 
(5.4) and (5.7)}: 

_ Ho dl, X (dly X xj) 
Fo = fbb } f poll a eT (5.8) 

{xi2/ 

The line integrals are taken around the two loops; x, is the vector distance from 

line element dl, to dl,, as shown in Fig. 5.3. This is the mathematical statement 

of Ampére’s observations about forces between current-carrying loops. By ma- 
nipulating the integrand it can be put in a form that is symmetric in dl, and dl, 
and that explicitly satisfies Newton’s third law. Thus 

dl X (db X X12) x -(dl, « dh) >, + dh 
Px 

Figure 5.3. Two Ampérian current loops. 
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The second term involves a perfect differential in the integral over dl. Conse- 
quently it gives no contribution to the integral (5.8), provided the paths are closed 
or extend to infinity. Then Ampére’s law of force between current loops becomes 

(dh + dls)x12 Trak (5.10) Fa = —22 an} 

showing symmetry in the integration, apart from the necessary vectorial depen- 
dence on x). 

Each of two long, parallel, straight wires a distance d apart, carrying currents 
1, and /,, experiences a force per unit length directed perpendicularly toward the 
other wire and of magnitude, 

aF _ bo hh = 5 
di wd 6.11) 

The force is attractive (repulsive) if the currents flow in the same (opposite) 

directions. The forces that exist between current-carrying wires can be used to 
define magnetic-flux density in a way that is independent of permanent magnetic 
dipoles.* We will see later that the torque expression (5.1) and the force result 
(5.7) are intimately related. 

If a current density J(x) is in an external magnetic-flux density B(x), the 

elementary force law implies that the total force on the current distribution is 

F= | 400 x B(x) dix (5.12) 

Similarly the total torque is 

N= fx x (J x B) dx (5.13) 

These general results will be applied to localized current distributions in Sec- 
tion 5.7. 

5.3 Differential Equations of Magnetostatics and Ampére’s Law 

The basic law (5.4) for the magnetic induction can be written down in general 
form for a current density J(x): 

B(x) = be f Fo) x rad ex! (5.14) 

This expression for B(x) is the magnetic ave of electric field in terms of the 
charge density: 

1 i; x-—x' 
E(x) = —— x") ———, dx’ 5.18 0) = Foe J oe) ae 15) 

Just as this result for E was not as convenient in some situations as differential 
equations, so (5.14) is not the most useful form for magnetostatics, even though 
it contains in principle a description of all the phenomena. 

“In fact. (5.11) is the basis of the internationally accepted standard of current. See the Appendix. 
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To obtain the differential equations equivalent to (5.14), we use the relation 
just above (1.15) to transform (5.14) into the form: 

Ix’) 
Ix — x'| 

B(x) = ey x i &x' (5.16) 

From (5.16) it follows immediately that the divergence of B vanishes: 

V-B=0 (5.17) 

This is the first equation of magnetostatics and corresponds to V x E = 0 in 

electrostatics. By analogy with electrostatics we now calculate the cur] of B: 

Ix’ 
vxB=Huxyx [ O) ay (5.18) 

An |x -x'] 

With the identity V x (V x A) = V(V- A) - V°A for an arbitrary vector field 

A, expression (5.18} can be transformed into 

Ho 1 Bo 1 ve pe ty fam): #2 fae oe xB tn Ix) v5 = =) ax es Ix'V ra wey 

(5.19) 

If we use 

and 

v(—) = —478(x — x’) 
Ix — x'| 

the integrals in (5.19) can be written: 

VxXB= Hy [ae -¥ 
4a 

) @x' + p(x) (5.20) 

Integration by parts yields 

_ Hae [ Ve’) VK Baad + OV) To 

But for steady-state magnetic phenomena V- J = 0, so that we obtain 

Vx B= tod (5.22) 

ax! (5.21) 

This is the second equation of magnetostatics, corresponding to V+ E = p/e in 

electrostatics. 
In electrostatics Gauss's law (1.11) is the integral form of the equation 

V-E = ple. The integral equivalent of (5.22) is called Ampeére’s law. It is ob- 

tained by applying Stokes's theorem to the integral of the normal component of 

(5.22) over an open surface S bounded by a closed curve C, as shown in Fig. 5.4. 

Thus 

[vx Benda =n { 3-nda (5.23) 
s s 
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is transformed into 

$ p-dt= my [ t-nda (5.24) 

Since the surface integral of the current density is the total current / passing 
through the closed curve C, Ampére’s law can be written in the form: 

$ B+ dl = pol (5.25) 

Just as Gauss’s law can be used for calculation of the electric field in highly 
symmetric situations, so Ampére’s law can be employed in analogous 
circumstances. 

5.4 Vector Potential 

The basic differential laws of magnetostatics are 

Vx B= wJ 

vV-B=0 (5.26) 

The problem is how to solve them. If the current density is zero in the region of 
interest, V x B = 0 permits the expression of the vector magnetic induction B 
as the gradient of a magnetic scalar potential, B = —Vy. Then (5.26) reduces 

to the Laplace equation for ®,,, and all our techniques for handling electrostatic 
problems can be brought to bear. A large number of problems fall into this class, 
but we will defer discussion of them until later in the chapter. The reason is that 

the boundary conditions are different from those encountered in cfectrostatics, 

and the problems usually involve macroscopic media with magnetic properties 
different from free space with charges and currents. 

A general method of attack is to exploit the second equation in (5.26). If 
¥-B = 0 everywhere, B must be the curl of some vector field A{x), called the 

vector potential. 

B(x) = V x A(x) (5.27) 

We have, in fact, already written B in this form (5.16). Evidently, from (5.16), 

the general form of A is 

a et A(x) = mf xx] ax! + V¥(x) (5.28) 
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The added gradient of an arbitrary scalar function VY shows that for a given 
magnetic induction B, the vector potential can be freely transformed accord- 
ing to 

A> ATV) (5.29) 

This transformation is called a gauge transformation. Such transformations on A 
are possible because (5.27} specifies only the curl of A. The freedom of gauge 
transformations allows us to make V - A have any convenient functional form we 
wish. 

If (5.27) is substituted into the first equation in (5.26), we find 

Vx (VX A) = fod 
or . ¢ (5.30) 

ViV-A)— VA = pod 

If we now exploit the freedom implied by (5.29), we can make the convenient 
choice of gauge,* V-A = 0. Then each rectangular component of the vector 

potential satisfies the Poisson equation, 

VA = —pJ (5.31) 

From our discussions of electrostatics it is clear that the solution for A in un- 
bounded space is (5.28) with = constant: 

I(x! Hy (x) by’ 
A(x) =~ 

4aJ |x - x’| (5.32) 

The condition ¥ = constant can be understood as follows. Our choice of gauge, 
V-A = 0, reduces to ¥°¥ = 0, since the first term in (5,28) has zero divergence 

because of V' + J = 0. If ¥°¥ = 0 holds in all space, ¥ must be at most a constant 
provided there are no sources at infinity. 

5.5 Vector Potential and Magnetic Induction 
for a Circular Current Loop 

As an illustration of the calculation of magnetic fields from given current distri- 
butions, we consider the problem of a circular loop of radius a, lying in the x-y 
plane, centered at the origin, and carrying a current /, as shown in Fig. 5.5. The 
current density J has only a component in the ¢ direction, 

a) 
Ja = Tsin 6'8(cos a’) 2 7 (5.33) 

The delta functions restrict current flow to a ring of radius a. The vectorial current 
density J can be written 

J=—Jgsind'i+ J, cos 6'j (5.34) 

Since the geometry is cylindrically symmetric. we may choose the observation 
point in the x-z plane (¢ = 0) for purposes of calculation. Since the azimuthal 

"The choice is called the Coulomb gauge. for a reason that will become apparent only in Section 6.3. 
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Figure 5.5 

integration in (5.32) is symmetric about ¢' = 0, the x component of the current 

does not contribute. This icaves only the y component, which is Ay, Thus 

sin 0’ cos (cos 6’)6(r' — a) 

Ix — x" 
Hol | 2 

Agl(r, 9 = * dr’ dQ’ 5.35 lr, 6) = FO |r? dr (35) 
where |x — x’| = [r? + r'? — 2rr’(cos 8 cos 6’ + sin Asin 6! cos &’)]!”. 

We first consider the straightforward evaluation of (5.35). Integration over 
the delta functions leaves the result 

pla C cos b' dob’ 

4m Jo (a + 9 — 2ar sin 6 cos o')'? 6.36) 
Ag(r, 8) = 

This integral can be expressed in terms of the complete elliptic integrals K and E: 

_ bey dla (2 — R)K(k) — 2E(k) 
Alt ) = ae ml Ke | $37) 

where the argument k of the elliptic integrals is defined through 

7 4ar sin @ 

@ +9 + 2ar sin @ 

The components of magnetic induction, 

1a B,=— 
rsin #00 

(sin @A,,) 

(5.38) 

B,=0 

can also be expressed in terms of elliptic integrals. But the results are not partic- 
ularly illuminating (useful, however, for computation), 

For a >> r,a << r, or 6 < 1. an alternative expansion of (5.36) in powers 

of ar? sin?@{a + 1°) leads to the following approximate expression for the 
vector potential, 

(5.39) 
2p si 2y2 gin?, Ag(r, 6) = se eS | iaer* sin’é | 

4@ + PS? 8@ + ry 
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To the same accuracy, the corresponding field components are 

ve byl@ cos 6 1Sa@r? sin?@ re 

7 2a + Pp? 4@+ry (5.40) 

pola’ sine [,, , , 15a°r? sin*@(4a? — 37) ae oe P+ : f Felees 
Bo e+ [ . a@ +P 

These can casily be specialized to the three regions, near the axis (@ << 1), ncar 

the center of the loop (r << a), and far from the loop (r >> a). 
Of particular interest are the fields far [rom the loop: 

B, = #2 (mary 28 
2a r 

a (5.41) 
sin By = Fo Uma) 

Comparison with the electrostatic dipole fields (4.12) shows that the magnetic 
fields far away from a circular current loop are dipole in character. By analogy 
with electrostatics we define the magnetic dipole moment of the loop to be 

m = nla (5.42) 

We see in the next section that this is a special case of a general result—localized 
current distributions give dipole fields at large distances; the magnetic moment 
of a plane current loop is the product of the area of the loop times the current. 

Although we have obtained a complcte solution to the problem in terms of 
elliptic integrals, we now illustrate the use of a spherical harmonic expansion to 
point out similarities and differences between the magnetostatic and electrostatic 
problems. Thus we return to (5.35) and substitute the spherical expansion (3.70) 
for |x —x'[': 

_ Bol Finl8-9) [2s aor Sieh ope Ta gata a Age Red ay J 17 ae’ dO! (cos 6" )8(r' — aye ari Vil". 6°) 

(5.43) 

The presence of e’* means that only m = +1 will contribute to the sum. Hence 

& ¥,(8, 0) 7! 7 r 
Ag= 2mpola , ae) pt [v(. 0)| (5.44) 

where now r. (r..) is the smaller (larger) of a and r. The square-bracketed quan- 

tity is a number depending on /: 

[ | [2+ ne 
© Vani + 1) 

0 for / even 

=) fared [ere +3 2 (5.45) 
(aera Tas Une | for? = 2n +1 
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Then A, can be written 

ane = ees 
we TO BF Phifer) (5.46) 

where (20 — 1)!! = (2n — 1)(2n — 3)(---) X 5 X 3 X 1, and the # = 0 coefficient 
in the sum is unity by definition. To evaluate the radial component of B from 
(5.38) we need 

Ag = 

4 [V1 =x? Pi@)] = ME + DP (x) (5.47) 

Then we find 

Ja (-1)"On + 1h ee B= we : rn Pana (cos 6) (5.48) 

The @ component of B is similarly 

-(# + *) 1 (‘) 
2 = (a1) ae Li) athe 

_ bola” S (-1)"Gn + It 2n+ 1 q\@ Ph, (cos 6) (5.49) 
Been By Dns! L(y 

‘The upper line hoids for r < a, and the lower line for r > a. For r >> a, only the 
n = O term in the series is important. Then, since P}(cos 8) = —sin 6. (5.48) and 
(5.49) reduce to (5.41). For r << a, the leading term is again n = 0. The fields 
are then equivalent to a magnetic induction j1)//2a in the z direction, a result 
that can be found by elementary means. 

We note a characteristic difference between this problem and a correspond- 
ing cylindrically symmetric electrostatic problem. Associated Legendre polyno- 
mials appear, as well as ordinary Legendre polynomials. This can be traced to 
the vector character of the current and vector potential, as opposed to the scalar 
properties of charge and electrostatic potential. 

Another mode of attack on the problem of the planar loop is to employ 
an expansion in cylindrical waves. Instead of (3.70) as a representation of 
|x — x'| | we may use the cylindrical form (3.148) or (3.149) or that of Problem 
3.16b. The application of this technique to the circular loop will be left to the 
problems. 

5.6 Magnetic Fields of a Localized Current Distribution, 
Magnetic Moment 

We now consider the properties of a general current distribution that is localized 
in a small region of space, ‘small’ being relative to the scale of length of intercst 
to the observer. A complete treatment of this problem, in analogy with the clec- 
trostatic multipole expansion, can be made using vector spherical harmonics.* 

“This is not the only way. Scalar potentials can be used. Sec J. B. Bronzan, Am. J. Phys. 39, 1357 
971). 
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Figure 5.6 Localized current density 
I(x’) gives rise to a magnetic induction 
at the point P with coordinate x. 

These are presented in Chapter 9 in connection with multipole radiation. We 
will be content here with only the lowest order of approximation. Assuming 
|x| >> |x’|, we expand the denominator of (5.32) in powers of x’ measured 
relative to a suitable origin in the localized current distribution, shown schemat- 

ically in Fig. 5.6: 

1 er x-x! 
tae ccd VLE 

Ix— x] |x| [xP 
(5.50) 

Then a given component of the vector potential will have the expansion, 

Bo 
ie = BE faiwy ar + » [nee dx' +: -| (5.51) 

The fact that J is a localized, divergenceless current distribution permits simpli- 
fication and transformation of the expansion (5.51). Let f(x’) and g(x') be 
well-behaved functions of x’ to be chosen below. If J(x') is localized but not 

necessarily divergenceless, we have the identity 

fas Vig + gb- Vf + fyV'-3) dex’ = 0 (5.52) 

This can be established by an integration by parts on the second term, followed 
by expansion of fV’ -(gJ). With f = 1 and g = xj, (5.52) with V'- J = 0 estab- 
lishes that 

[ae bx =0 

The first term in (5.51), corresponding to the monopole term in the electrostatic 
expansion, is therefore absent. With f = x], g = xj and V’- J = 0, (5,52) yields 

feu, + xjJ) Bx! = 

The integral in the second term of (5.51) can therefore be written 

x: | xJ, dx! = >) x; | xjd, dx’ 
i 
i 255) xf (eth — xj) Bx! 

7 

“5S cus [wx dea 

-5 [s x Jw x 5) a 
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It is customary to define the magnetic moment density or magnetization as 

i 
M(x) = 5 [x x 100)] (5.53) 

and its integral as the magnetic moment m: 

1 
m=5 | x xX JX’) Bx! (5.54) 

Then the vector potential from the second term in (5.51) is the magnetic dipole 
vector potential, 

my Mm XX B 
AQ) = — 5.55 = (8.8) 

This is the lowest nonvanishing term in the expansion of A for a localized steady- 
state current distribution. The magnetic induction B outside the localized source 
can be calculated directly by evaluating the curl of (5.55): 

Bu) = is jee - =| 

Ix| 
Here n is a unit vector in the direction x. The magnetic induction (5.56) has 
exactly the form (4.13) of the field of a dipole. This is the generalization of the 
result found for the circular loop in the last section. Far away from any localized 
current distribution the magnetic induction is that of a magnetic dipole of dipole 
moment given by (5.54). 

If the current is confined to a plane, but otherwise arbitrary, loop, the mag- 
netic moment can be expressed in a simple form. If the current / flows in a closed 
circuit whose line element is dl, (5.54) becomes 

(5.56) 

m=i$xx dl 

For a plane loop such as that in Fig. the magnetic moment is perpendicular 
to the plane of the loop. Since }|x x dl| = da, where da is the triangular element 
of the area defined by the two ends of dl and the origin, the loop integral gives 
the total area of the loop, Hence the magnetic moment has magnitude, 

|m| = J x (Area) (5.57) 

regardless of the shape of the circuit. 

Figure 5.7 
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If the current distribution is provided by a number of charged particles with 
charges qg; and masses M; in motion with velocities v,, the magnetic moment can 

be expressed in terms of the orbital angular momentum of the particles. The 
current density is 

J = > gyv,d(x — x) 

where x, is the position of the ith particle. Then the magnetic moment (5.54) 
becomes 

m=3 Saux ¥) 
The vector product (x; X v,) is proportional to the ith particle’s orbital angular 
momentum, L; = M,(x; X v,). Thus the moment becomes 

m=S 1, (5.58) 

If all the particles in motion have the same charge-to-mass ratio (q,/M; = e/M), 
the magnetic moment can be written in terms of the total orbital angular mo- 
mentum L: 

e e 
m= 54 L, am & (5.59) 

This is the wetl-known classical connection betwecn angular momentum and 
magnetic moment, which holds for orbital motion even on the atomic scale. But 

this classical connection fails for the intrinsic moment of electrons and other 
clementary particles. For clectrons, the intrinsic moment is slightly more than 
twice as large as implied by (5.59), with the spin angular momentum S replacing 
L. Thus we speak of the electron having a g factor of 2(1.00116). The departure 
of the magnetic moment from its classical value has its origins in relativistic and 
quantum-mechanical effects which we cannot consider here. 

Before feaving the topic of the fields of a localized current distribution. we 
consider the spherical volume integral of the magnetic induction B. Just as in the 
electrostatic case discussed at the end of Section 4.1, there are two limits of 
interest, one in which the sphere of radius R contains ali of the current and the 

other where the current is completely external to the spherical volume. The vol- 

ume integral of B is 

[ 4, BOD dx = il VX Ade (5.60) 

The volume integral of the curl of A can be integrated to give a surfacc integral. 
Thus 

| Bd* =R | donxa 
rok 

where n is the outwardly directed normal. Substitution of (5.32) for A and an 
interchange of the orders of integration permits this to be written as 

| Bd’ = —# Ref as’ Ux’) x f ao 
rR 4a Ix — x'[ 
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The angular integral is the same one as occurred in the electrostatic situation. 
Making use of (4.16'), we therefore find for the integral of B over a spherical 
volume, 

[ \ Bd’x = we f (fe)e x J(x’) dex" (5.61) 

where (r.., r..) are the smaller and larger of r’ and R. If ali the current density is 
contained within the sphere, 7. = r' andr. = R. Then 

Bd*x = ke m (5.62) 

where m is the total magnetic moment (5,54). For the opposite extreme of the 
current ail cxternal to the sphere, we have, by virtue of (5.14), 

3 
i Bax = = B(0) (5.63) 

The results (5.62) and (5.63) can be compared with their electrostatic counter- 
parts (4.18) and (4.19). The difference between (5.62) and (4.18) is attributable 
to the difference in the origins of the ficlds, one from charges and the other from 
circulating currents. If we wish to include the information of (5.62) in the mag- 
netic dipole field (5.56), we must add a delta function contribution 

Boo = [set te mots (5.64) 
The delta function term enters the expression for the hyperfine structure of 
atomic s states (sce the next section). 

5.7 Force and Torque on and Energy of a Localized Current 
Distribution in an External Magnetic Induction 

If a localized distribution of current is placed in an external magnetic induction 
B(x). it experiences forces and torques according to Ampére’s laws. The general 

expressions for the total force and torque are given by (5.12) and (5.13). If the 
external magnetic induction varices slowly over the region of current, a Taylor 
series expansion can be utilized to find the dominant terms in the force and 
torque. A component of B can be expanded around a suitable origin, 

By (x) = B,(0) + x» VB, (0) + ++ (5.65) 

Then the ith component of the force (5.12) becomes 

R=> on 2.0) | Tx’) dx! + [ae VB, (0) dix! + | (5.66) 

Here €,, is the completely antisymmetric unit tensor (€,, = 1 for i = 1, j = 
k = 3, and any cyclic permutation, €,, = —1 for other permutations, and Ein = 

0 for two or more indices equal). The volume integral of J vanishes for steady 
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currents; the lowest order contribution to the force comes from the second term 

in (5.66). The result above (5.53) can be used [with x > VB, (0)] to yield 

Fo =D exlm * V)BiGo) 6.67) 
i 

After differentiation of B,(x), x is to be put to zero. This can be written vecto- 

tially as 

F = (m x V) x B = V(m- B) — m(V +B) (5.68) 

Since V-B = () generaiiy, the lowest order force on a focalized current distri- 
bution in an external magnetic field B is 

F = Vim- B) (5.69) 

This force represents the rate of change of the total mechanical momentum, 
including the “hidden mechanical momentum” associated with the presence of 
electromagnetic momentum. (Sec Problems 6.5 and 12.8, and the references cited 

at the end of Chapter 12.) The effective force in Newton’s equation of motion 
of mass times acceleration is (5.69), augmented by (1/c?)(d/dt)(E X m), where E 
is the external electric field at the position of the dipole. Apart from angular 
factors, the relative size of the two contributions is (cB/L) versus (£/X), where L 

is the length scale over which B changes significantly and 4 is the free-space 
wavelength of radiation at the typical frequencies present in a Fourier decom- 
position of the time-varying electric field. 

A localized current distribution in a nonuniform magnetic induction expe- 
riences a force proportional to its magnetic moment m and given by (5.69). One 
simple application of this result is the time-averaged force on a charged particle 
spiraling in a nonuniform magnetic field. As is well known, a charged particle in 
a uniform magnetic induction moves in a circle at right angles to the field and 
with constant velocity parallel to the field, tracing out a helical path. The circular 
motion is, on the time average, equivalent to a circular loop of current that will 
have a magnetic moment given by (5.57). If the field is not uniform but has a 
small gradient (so that in one turn around the helix the particle docs not feel 
significantly different field strengths), then the motion of the particle can be 

discussed in terms of the force on the equivalent magnetic moment. Considcra- 
tion of the signs of the moment and the force shows that charged particles tend 

to be repeiled by regions of high flux density, independent of the sign of their 

charge. This is the basis of the “magnetic mirrors,” important in the confinement 
of plasmas. 

The total torque on the localized current distribution is found in a similar 
way by inserting expansion (5.65) into (5.13). Here the zeroth-order term in the 
expansion contributes. Keeping only this leading term, we have 

N= [x x [F x B(O)] dix (5.70) 

Writing out the triple vector product, we get 

N= Jw + BJ — (x’- DB] dx! 
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The first integral has the same form as the one considered in (5.66). Hence we 
can write down its value immediately. The second integral vanishes for a localized 
steady-state current distribution, as can be seen from (5.52) with f = g =r’. The 
leading term in the torquc is therefore 

N = m X B(O) (5.71) 

This is the familiar expression for the torque on a dipole, discussed in Scction 
5.1 as one of the ways of defining the magnitude and direction of the magnetic 
induction. 

The potential energy of a permanent magnetic moment (or dipole) in an 
external magnetic field can be obtained from either the force (5.69) or the torque 
(5.71). If we interpret the force as the negative gradicnt of a potential energy U, 
we find 

U=-m-B (5.72) 
For a magnetic moment in a uniform field, the torque (5.71) can be interpreted 
as the negative derivative of U with respect to the angle between B and m. This 
weil-known result for the potential energy of a dipole shows that the dipole tends 
to orient itself parallel to the field in the position of lowest potential energy. 

We remark in passing that (5.72) is nor the total energy of the magnetic 
moment in the external field. In bringing the dipole m into its final position in 
the field, work must be done to keep the current J, which produces m, constant. 
Even though the final situation is a steady state, there is a transient period initially 
in which the relevant fields are time-dependcat. This lies outside our present 
considerations, Consequently we Icave the discussion of the energy of magnetic 
fields to Section 5.16, following Faraday’s law of induction. 

The energy expression (5.72) can be employed in the treatment of magnetic 
effects on atomic energy levels, as in the Zeeman effect or for the fine and hy- 
perfine structure. The fine structure can be viewed as coming from differences 
in energy of an electron’s intrinsic magnetic moment , in the magnetic field seen 
in its rest frame. Fine structure, with the subtle complication of Thomas preces- 
sion, is discussed briefly in Chapter 11. The hyperfine interaction is that of the 
Magnetic moment ty of the nucleus with the magnetic field produced by the 
electron. The interaction Hamiltonian is (5.72) with m = py and B equal to the 
magnetic field of the electron, evaluated at the position of the nucleus (x = 0). 
This field has two parts; one is the dipole field (5.64) and the other is the magnetic 
fieid produced by the orbital motion of the electron’s charge. The latter is given 
nonrelativistically by (5.5) and can be expressed as Borwita(O) = poeL/4amr3, 
where L = x x my is the orbital angular momentum of the clectron about the 
nucleus. The hyperfine Hamiltonian is therefore 

8a Hans = Fe {- He * Hv8() 
1 

(3.73) 

Bae le. 7 By — 3 KB): By) 7 = L- ve] } P 

The expectation values of this Hamiltonian in the various atomic (and nuclear 
spin) states yield the hyperfine energy shifts. For spherically symmetric s states 
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the second term in (5.73) gives a zero expectation value. The hyperfine energy 

comes solely from the first term: 

_ _ Boda 2 
AE - a |wWe(O))? (he * poy) (5.74) 

3. 

For / # 0, the hyperfine energy comes entirely from the second term in (5.73) 
because the wave functions for / # 0 vanish at the origin. These expressions are 
due to Fermi, who obtained them from the Dirac equation (1930). In applying 
(5.73) and (5.74) it should be remembered that the charge ¢ is negative and that 
#, points in the opposite direction to the electron’s spin. The energy difference 
(5.74) between the singlet and triplet states of the 1s state of atomic hydrogen is 
the source of the famous 21 cm line in astrophysics. 

The difference of the “contact” term in (5.73) from the electric dipole form 
(4.20) allows us to draw a conclusion concerning the nature of intrinsic magnetic 

moments. While orbital magnetic moments are obviously caused by circulating 

currents, it is a priori possible that the insrinsic magnetic moments of elementary 

particles such as the electron, positron, muon, proton, and neutron are caused 

by magnetic charges, arranged in magnetically neutral configurations (no net 
magnetic charge). If the electron and proton magnetic moments were caused by 
groups of magnetic charges, the coefficient 87/3 in (5.74) would be replaced by 
47/3! The astrophysical hyperfine line of atomic hydrogen would be at 42 cm 
wavelength, and the singlet and triplet states would be reversed. The experimen- 
tal results on positronium and muonium, as well as the magnetic scattering of 
neutrons, give strong additional support to the conclusion that intrinsic magnetic 
moments of particles can be attributed to electric currents, not magnetic charges.* 

5.8 Macroscopic Equations, Boundary Conditions on B and H 

So far we have dealt with the basic laws (5.26) of steady-state magnetic fields as 
microscopic equations in the sense of the Introduction and Chapter 4, We have 
assumed that the current density J was a completely known function of position. 
In macroscopic problems this is often not true. The atoms in matter have elec- 
trons that give rise to effective atomic currents, the current density of which is a 
rapidly fluctuating quantity. Only its average over a macroscopic volume is 
known or pertinent. Furthermore, the atomic electrons contribute intrinsic mag- 
netic moments in addition to those from their orbital motion. All these moments 
can give rise to dipole fields that vary appreciably on the atomic scale of 

dimensions, 
The process of averaging the microscopic equations to obtain a macroscopic 

description of magnetic fields in ponderable media is discussed in detail in Chap- 
ter 6. Here, just as in Chapter 4, we give only a sketch of the elementary 

*There is a caveat that all particles must have the same origin for their moments. For a pedagogical 
discussion of the experiments, sce J. D. Jackson, The nature of intrinsic magnetic dipole moments, 
CERN Report No. 77-17, CERN. Geneva (1977), reprinted in The International Community of Phys- 
icists: Essays on Physics and Society in Honor of Victor Frederick Weisskopf, cd. V. Stefan, AIP Press! 
Springer-Verlag, New York (1997). 
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derivation. The first step is to observe that the averaging of the equation, 
V+ Buicro = 0, leads to the same equation 

v-B=0 (5.75) 
for the macroscopic magnetic induction. Thus we can still use the concept of a 
vector potential A(x) whose curl gives B. The large number of moiccules or atoms 
per unit volume, each with its molecular magnetic moment m,, gives rise to an 

average macroscopic magnetization or magnetic moment density, 

M(x) = 5 Niim,) (5.76) 

where N; is the average number per unit volume of molecules of type i and (m,) 
is the average molecular moment in a small volume at the point x. In addition 

to the buik magnetization, we suppose that there is a macroscopic current density 
J(x) from the flow of free charge in the medium. Then the vector potential from 
a small volume AV at the point x’ will be 

J(x') AV 4 M@) x =) ay 

Ix—x'] Ix — x"| 
AA(x) = al 

This is the magnetic analog of (4.30). The second term is the dipole vector po- 
tential (5.55). Letting AV become the macroscopically infinitesimal d*x’, the total 
vector potential at x can be written as the integral over all space, 

- He te 4 MDX (Kaw) 

The magnetization term can be rewritten as follows: 

Now an integration by parts casts the gradicnt operator over onto the magneti- 
zation and also gives a surface integral. If M(x') is well behaved and localized, 
the surface integral vanishes. The vector potential (5.77) then becomes 

Age) = Ho [ WO) + x Mew) 
an Ix — x‘| 

ax’ (5.78) 

The magnetization is seen to contribute an effective current density, 

Jy=VxXM (5.79) 

The macroscopic equivalent of the microscopic equation, VX Bmicro = 
HoJmicro, Can be read off from (5.78). If the equations (5.26) have (5.32) as a 

solution, then (5.78) implies that J + Jy, plays the role of the current in the 
macroscopic equivalent. that is: 

Vv x B= w[J + V x MJ (5.80) 

The V x M term can be combined with B to define a new macroscopic field H. 
called the magnetic field, 

n-=13-M (5.81) 
Ho 
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Then the macroscopic equations, repiacing (5.26), are 

VxH=J 

Vv-B=0 68) 

The introduction of H as a macroscopic field is completely analogous to the 
introduction of D for the electrostatic field. The macroscopic equations (5.82) 

have their electrostatic counterparts, 

V-D=p 
5.83 

VxE=0 (89), 

We emphasize that the fundamental fields are E and B. They satisfy the homo- 
geneous equations in (5.82) and (5.83). The derived fields, D and H, are intro- 

duced as a matter of convenience, to permit us to take into account in an average 
way the contributions to p and J of the atomic charges and currents. 

To complete the description of macroscopic magnetostalics, there must be a 
constitutive relation between H and B. As discussed in the Introduction, for 

isotropic diamagnetic and paramagnetic substances the simple linear relation 

B= uH (5.84) 

holds, y. being a parameter characteristic of the medium and called the magnetic 
permeability. Typically j/j) differs from unity by only a few parts in 10° (4 > wy 
for paramagnetic substances and y. < ju, for diamagnetic). For the ferromagnetic 

substances, (5.84) must be replaced by a nonlinear functional relationship, 

B = F(H) (5.85) 

The phenomenon of hysteresis, shown schematically in Fig. 5.8, implies that B is 
not a single-valued function of H. In fact, the function F(H) depends on the 
history of preparation of the material. The incremental permeability 4(H) is 
defined as the derivative of B with respect to H, assuming that B and H are 
parallel. For high-permeability substances, 4(H)/j can be as high as 10°. Most 
untreated ferromagnetic materials have a linear relation (5.84) between B and 
H for very small fields. Typical values of initial relative permeability range from 

10 to 104. 

Figure 5.8. Hysteresis loop giving B in a 
ferromagnetic maicrial as a function of H. 
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Ay >> Me Hy 

Figure 5.9 

The complicated relationship between B and H in ferromagnetic materials 
makes analysis of magnetic boundary-value problems inherently more difficult 
than that of similar electrostatic problems. But the very large values of rela- 
tive permeability sometimes allow simplifying assumptions on the boundary 
conditions. 

The boundary conditions for B and H at an interface between two media are 
derived in Section 1.5. There it is shown that the normal components of B and 
the tangential components of H on either side of the boundary are related ac- 
cording to 

(B, — B,)-n=0 (5.86) 

n x (H, — H,) = K (5.87) 

where n is a unit normal pointing from region 1 into region 2 and K is the ide- 
alized surface current density. For media satisfying linear relations of the form 
(5.84) the boundary conditions can be expressed alternatively as 

B,-n = By +n, B,xn=“B, xn (5.88) 
Daal 

or 

Hoon = Hon, H,xn=H, xn (5.89) 
2 

If 4) >> fo, the normal component of H, is much larger than the normal com- 
ponent of Hi), as shown in Fig. 5.9. In the limit (j1/u2) > ©, the magnetic field 
H, is normal to the boundary surface, independent of the direction of H, (barring 
the exceptional case of H, exactly parallel to the interface). The boundary con- 
dition on H at the surface of a material of very high permeability is thus the same 
as for the electric field at the surface of a conductor. We may therefore use 
electrostatic potential theory for the magnetic field. The surfaces of the high- 
permeability material are approximately “equipotentials,” and the lines of H are 
normal to these equipotentials. This analogy is exploited in many magnet-design 
problems. The type of field is decided upon, and the pole faces are shaped to be 
equipotential surfaces. Sec Section 5.14 for further discussion. 

5.9 Methods of Solving Boundary- Value Problems 
in Magnetostatics 

The basic equations of magnetostatics are 

V-B=0. VxH=J (5.90) 
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with some constitutive relation between B and H. The variety of situations that 
can occur in practice is such that a survey of different techniques for solving 
boundary-value problems in magnetostatics is worthwhile. 

A. Generally Applicable Method of the Vector Potential 

Because of the first equation in (5.90) we can always introduce a vector 
potential A(x) such that 

B=VxA 

If we have an explicit constitutive relation, H = H[B], then the second equation 

in (5.90) can be written 

Vx HIV x A] =J 
This is, in general, a very complicated differential equation, even if the current 
distribution is simple, unless H and B are simply related. For linear media with 

B = uwH, the equation becomes 

vx(lvxa)=s (5.91) 
H 

If wv is constant over a finite region of space, then in that region (5.91) can be 
written 

V(V- A) — WA = pd (5.92) 

With the choice of the Coulomb gauge (V- A = 0), this becomes (5.31) with a 
modified current density, (j2/)J. The situation closcly parallels the treatment 
of uniform isotropic diclectric media where the effective charge density in the 
Poisson equation is €op/e. Solutions of (5.92) in different lincar media must be 
matched across the boundary surfaces using the boundary conditions (5.88) 
or (5.89). 

B. J = 0; Magnetic Scalar Potential 

If the current density vanishes in some finite region of space, the second 

equation in (5.90) becomes V x H = 0. This implies that we can introduce a 
magnetic scalar potential Py, such that 

H = -Vo, (5.93) 

just as E = — V9 in electrostatics. With an explicit constitutive relation, this time 

of B = B/H], the V- B = 0 equation can be written 

V-B[-V,] = 0 

Again, this is a very complicated differential equation unless the medium is linear, 

in which case the equation becomes 

V-(u¥by) =0 (5.94) 

Lf yw is at least piecewise constant, in each region the magnetic scalar potential 

satisfies the Laplace equation. 

Vby =0 
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The solutions in the different regions are connected via the boundary conditions 
(5.89). Note that in this last circumstance of piecewise constancy of u, we can 

also write B = —VW,, with V’W,, = 0. With this alternative scalar potential the 

boundary conditions (5.88) are appropriate. 

The concept of a magnetic scalar potential can be used fruitfully for closed 
loops of current. It can be shown that ®,, is proportional to the solid angle 
subtended by the boundary of the loop at the observation point. See Problem 
5.1. Such a potential is evidentiy multiple-vaiued. 

C. Hard Ferromagnets (M given and J = 0) 

A common practical situation concerns “hard” ferromagnets, having a mag- 
nelization that is essentially independent of applied fields for moderate field 

strengths. Such materials can be treated as if they had a fixed, specified magne- 
tization M(x). 

(a) Scalar Potential 

Since J = 0, the magnetic scalar potential ®,, can be employed. The first 
equation in (5.90) is written as 

V-B=.V-(H+M)=0 

Then with (5.93) it becomes a magnetostatic Poisson equation, 

Vby = —py (5.95) 
with the effective magnetic-charge density, 

pu = -V-M (5.96) 

The solution for the potential ®,, if there are no boundary surfaces is 

oy = - 2 [ (6.97) 
If M is well behaved and localized, an integration by parts may be performed to 
yield 

(x) = es ‘i M(x’) - v( ) ax! 
4n |x — x’| 

Then 

(isa) 
) 

x'| 

may be used to give 

Mi 
ix ax’ (5.98) ®,(x) = -zv.-f 

In passing we observe that far from the region of nonvanishing magnetization 
the potential may be approximated by 

Ps(x) = -zr(3) : | M(x’) d*x' 

m-x 

4a 
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where m = {M d°x is the total magnetic moment. This is the scalar potential of 
a dipole, as can be seen from the electrostatic (4.10). Thus an arbitrary localized 

distribution of magnetization asymptotically has a dipole field with strength given 
by the total magnetic moment of the distribution. 

While physical distributions of magnetization are mathematically well be- 
haved and without discontinuities, it is sometimes convenient to idealize the re- 

ality and treat M(x) as if it were discontinuous. Thus, if a “hard” ferromagnet 
has a volume V and surface S$, we specify M(x) inside V and assume that it falls 
suddenly to zero at the surface S. Application of the divergence theorem to py 
(5.96) in a Gaussian pillbox straddling the surface shows that there is an effective 
magnetic surface-charge density, 

oy =n M (5.99) 
where n is the outwardly directed normal. Then instead of (5.97) the potential is 

given by 

by6) +5 1 WMO) aes 4 Pera! xem +MGQ' ie 
5.100) 

4adv [x —x’| ( ) Ix 
An important special case is that of uniform magnetization ee the vol- 
ume V. Then the first term vanishes; only the surface integral over 04, contributes. 

It is important to note that (5.98) is generally applicable, even for the limit 
of discontinuous distributions of M, because we can introduce a limiting proce- 
dure after transforming (5.97) into (5.98) in order to discuss discontinuities in M. 
Never combine the surface integral of oy, with (5.98)! 

(b) Vector Potential 

If we choose to write B = V x A to satisfy V+ B = 0 automatically, then we 
write the second equation of (5.90) as 

Vv x H = V x (B/yy — M) = 0 

This leads to the Poisson equation for A in the Coulomb gauge, 

VA = Loa (5.101) 

where Jy, is the effective magnetic current density (5.79). The solution for the 
vector potential in the absence of boundary surfaces is 

Bo [ VX Mix’) 
4a |x-x A(x) = dx’ (5.102) 

as was already shown in (5.78). An alternative form is given by the magnetization 
term in (5.77). 

If the distribution of magnetization is discontinuous, it is necessary to add a 
surface integral to (5.102). Starting from (5.77) it can be shown that for M dis- 
continuously falling to zero at the surface S bounding the volume Y, the gener- 
alization of (5.102) is 

alae vx MOY pet + 1, Bo gf MQ’) xn! 
A(x) = x Gals. x =5'| da’ (5.103) 

The effective surface current (M X n) can also be understood by expressing the 
boundary condition (5.87) for tangential H in terms of B and M. Again, if M is 
constant throughout the volume, only the surface integral survives. 



198 Chapter 5 Magnetostatics, Faraday’s Law, Quasi-Static Fietds—SI 

5.10 Uniformly Magnetized Sphere 

To illustrate the different methods possibie for the solution of a boundary-value 
problem in magnetostatics, we consider in Fig. 5.10 the simple problem of a 
sphere of radius a, with a uniform permanent magnetization M of magnitude M, 
and parallel to the z axis, cmbedded in a nonpermeabte medium. 

The simplest method of solution is that of part C(a) of the preceding section, 
via the magnetic scalar potential in spherical coordinates and a surface magnetic- 

charge density o4,(@). With M = M,e, and o,, = n-M = M, cos 6, the solution 
(5.100) for the potential is 

®,(r, 8) = Moe" | , cos 8 

Ix — x"| 
With the expansion (3.38) or (3.70) for the inverse distance, only the / = | term 
survives, The potential is 

Py(r, 0) = Mya? = ay 3 08 8 (5.104) i 
3 

where (r,., 7.) are smaller and larger of (r, a). [nside the sphere, r.. = r and 

r., = a Then @y = (1/3)Mor cos @ = (1/3)Myz. The magnetic field and magnetic 
induction inside the sphere are therefore 

2a 5M (5.105) =--=M, B,= 

We note that B,, is parallel to M, while H,, is antiparaile!. Outside the sphere, 

r. =aandr, = r. The potential is thus 

4 cos # 
by = 5 Mod =e (5.106) 

This is the potential of a dipole with dipole moment, 

dass 
m= - M (5.107) 

For the sphere with uniform magnetization, the fields are not only dipole in char- 
acter asymptotically, but also close to the sphere. For this special geometry (and 
this only) there are no higher multipoles. 

The lines of B and H are shown in Fig. 5.11. The lines of B are continuous 
closed paths, but those of H terminate on the surface because there is an effective 
surface-charge density oy). 

M = Mots aa, 

Figure 5.10 
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B H 

Figure 5.14 Lincs of B and lincs of H for a uniformly magnetized sphere. The lines of 
B arc closed curves, bul the lines of H originate on the surface of the sphere where the 
cffective surface magnetic “charge,” oy, resides. 

Brief mention should be made of employing (5.98) instead of (5.100). With 
M = Mpe; inside the sphere, (5.98) gives 

1 a f ae | f 
DP 6) = -— = u 3 —— F Dyy(r, 0) in My eel” dr’ | dO ik xl (5.108) 

Now only the / = 0 term in expansion of the inverse separation survives the 
angular integration and the integral is a function only of r. With dr/dz = cos 6, 
the potential is 

Aas 
®,(r, 8) = —M, cosa [ near 

ardor, 

Integration over r’ leads directly to the expression (5.104) for Dy. 
An alternative solution can be accomplished by means of the vector potential 

and (5.103). Because M is uniform inside the sphere the volume current density 
Jy, vanishes, but there is a surface contribution. With M = Mye,, we have 

M Xa’ = Msind’e, 

= Mg sin 6'(—sin d’€, + cos b’€) 

Because of the azimuthal symmetry of the problem we can choose the observa- 
tion point in the x-z plane (¢ = 0), just as in Section 5.5. Then only the y com- 

ponent of M x na’ survives integration over the azimuth, giving an azimuthal 
component of the vector potential, 

Ag(x) = re Mya { agy Sn cos d (5.109) 
[x x'| 

where x’ has coordinates (a, @’, 6’). The angular factor can be written 

ae ; Bar nods 
sin 8 cos! = “Ws Re[¥.,(0, o’)] (5.110) 
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Thus with expansion (3.70) for |x — x'| only the / = 1, # = 1 term will survive, 
Consequently 

Ags) = “ ue sin 6 (5.111) 

where r.. (r,,} is the smaller (larger) of r and a. With only a ¢ component of A, 
the components of the magnetic induction B are given by (5.38). Equation (5.11 ab) 
evidently gives the uniform B inside and the dipole ficld outside, as found before, 

5.11 Magnetized Sphere in an External Field; Permanent Magnets 

In Section 5.10 we discussed the fields of a uniformly magnetized sphere. Because 
of the linearity of the field equations we can superpose a uniform magnetic in- 
duction By = “oH throughout all space, Then we have the problem of a uni- 
formly magnetized sphere in an external field. From (5.105) we find that the 
magnetic induction and ficld inside the sphere are now 

B,, = By + 2H0 M 
t 1 (5.112) 

Hj, = ee 3M 

We now imagine that the sphere is not a permanently magnetized object, but 
rather a paramagnetic or diamagnetic substance of permeability 4. Then the 
magnetization M is a result of the application of the external ficld. To find the 
magnitude of M we use (5.84): 

B,, = #Hi, (5.113) 

‘Thus 

By + Mt = (2 B, - + m) (5.114) 
3 iy 3 

This gives a magnetization, 

3 fue fs.) F M = — (~—~" Ja, 5.115 
Bo (2 + 2po}° Gas) 

We note that this is completely analogous to the polarization P of a dielectric 
sphere in a uniform electric field (4.57). 

For a ferromagnetic substance, the arguments of the preceding paragraph 
fail. Equation (5.115) implies that the magnetization vanishes when the external 
ficld vanishes. The existence of permanent magnets contradicts this result. The 
nonlinear relation (5.85) and the phenomenon of hysteresis allow the creation of 
permanent magnets. We can solve equations (5.112) for onc relation between 
Hi, and B;,, by eliminating M: 

B,, + 2H, = 3By (5.116) 
The hysteresis curve provides the other relation between B,, and Hj, so that 
specific values can be found for any external field. Equation (5.116) corresponds 
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Figure 5.12 

toa line with slope —2 on the hysteresis diagram with intercept 3B, on the y axis, 
as in Fig. 5.12. Suppose, for example, that the external field is increased until the 
ferromagnetic sphere becomes saturated and then decreased to zero. The internal 
Band H will then be given by the point marked P in Fig. 5.12. The magnetization 

can be found from (5.112) with By, = 0. 

The relation (5.116) between B,, and Hj, is specific to the sphere, For other 
geometries other relations pertain. The problem of the ellipsoid can be solved 
exactly and shows that the slope of the lines (5.116) range from zero for a flat 
disc to — % for a long needle-like object. Thus a larger internal magnetic induction 
can be obtained with a rod geometry than with sphcrical or oblate spheroidal 
shapes. 

5.12 Magnetic Shielding, Spherical Shell 
of Permeable Material in a Uniform Field 

Suppose that a certain magnetic induction By = 29H) cxists in a region of empty 
space initially. A permeable body is now placed in the region. The lines of mag- 
netic induction are modificd. From our remarks at the end of Section 5.8 con- 
cerning media of very high permeability. we would expect the field lines to tend 
to be normal to the surface of the body. Carrying the analogy with conductors 

further, if the body is hollow, we would expect the ficid in the cavity to be smaller 

than the external ficld, vanishing in the limit » > ~. Such a reduction in field is 
said to be due to the magnetic shielding provided by the permeable material. It 

is of considerable practical importance, since essentially ficid-free regions arc 
often necessary or desirable for experimental purposes or for the reHable working 

of electronic devices. 
As an example of the phenomenon of magnetic shiclding we consider a 

spherical shell of inner (outer) radius a (b), made of material of permeability p. 

and placed in a formerly uniform constant magnetic induction By, as shown in 
Fig. 5.13. We wish to find the fields B and H everywhere in space, but most 

particularly in the cavity (r < a). as functions of 2. Since there are no currents 
present, the magnetic field H is derivable from a scalar potential, H = —V®,. 

Furthermore, since B = pH, the divergence equation V-B = 0 becomes 
V-H = 0 in the various regions. Thus the potential @,; satisfies the Laplace 
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BE 2) ae 
Figure 5.13 

equation everywhere. The problem reduces to finding the proper solutions in the 
different regions to satisfy the boundary conditions (5.89) at r = a andr = b, 

For r > 5, the potential must be of the form, 

Py = —Hyr cos@ + >» a Pi(cos 6) (5.117) 

to give the uniform ficld, H = Hy, at large distances. For the inner regions, the 
potential must be 

a<r<b o,=> (46 + y Fa) Pkeos 0) 
=0 
2 (5,118) 

r<a &y = Dd &r'Pi(cos 6) 
ian 

The boundary conditions at r = a and r = b are that H, and B, be continuous. 
In terms of the potential ®,, these conditions become 

an an, a, an. 
og 8-) = Gib) Spr (ae) = Sy (a-) 

: 08 (5.119) 
an, a, a, an, . 

Bo GE b= eS) WE as) = bo (a) 

The notation 6. means the limit r > b approached from r 2 6, and similarly for 
a.. These four conditions, which hold for all angles 4, are sufficient to determine 

the unknown constants in (5.117) and (5.118). All coefficients with / # 1 vanish. 
The ¢ = 1 coefficients satisfy the four simultaneous equations 

a- PBR- 7H = BH 

2ay + p'b*B, — 2n'y = by 
ap, + n -@5, = 0 

Hw’ B, — 2w'y —@8, = 0 

(5.120) 

Here we have uscd the notation »’ = y/j, to simplify the equations. The solu- 
tions for a and 6, are 

Qu! + Dw’ -v a = = — |e - aH, 
Qu’ + Iu +2)-25 ' - 1 Qn Mu Y= 255 (we y (5.121) 

Si 
3 = - aa Ay 

Qu" + Ie’ + 2) — 25 (w' — 1P B 
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Figure 5.14 Shielding effect of a shell of highly permeable material. 

The potential outside the spherical shell corresponds to a uniform ficld H, plus 
a dipole field (5.41) with dipole moment a, oricnted parallel to Hy. Inside the 

cavity, there is a uniform magnetic field paralic] to Hy and cqual in magnitude 
to — 4). For 4 >> pio, the dipole moment a, and the inner ficld — 6, become 

a, > BH, 

-8 > Ho Hy 
a 

zu - =) 

We sce that the inner field is proportional to «~'. Consequently a shield made 
of high-permeability material with y/o ~ 10° to 10° causes a great reduction in 
the field inside it, even with a relatively thin sheil. Figure 5.14 shows the behavior 
of the lines of B. The lines tend to pass through the permeable medium if possible. 

(5.122) 

5.13 Effect of a Circular Hole in a Perfectly Conducting Plane 
with an Asymptotically Uniform Tangential Magnetic Field 
on One Side 

Section 3.13 discussed the electrostatic problem of a circular hole in a conducting 
planc with an asymptotically uniform normal electric field. Its magnetic counter- 
part has a uniform tangential magnetic ficld asymptotically. The two examples 
are useful in the treatment of small holes in wave guides and resonant cavities 

(see Section 9.5). 
Before sketching the solution of the magnetostatic boundary-value problem, 

we must discuss what we mean by a perfect conductor. Static magnetic ficlds 
penetrate conductors, even excciient ones. The conductor modifies the fields only 
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because of its magnetic properties, not its conductivity, unless of course there is 
current flow inside. With time-varying fields it is often otherwise. ft is shown in 
Section 5.18 that at the interface between conductor and nonconductor, fields 
with harmonic time dependence penetrate only a distance of the order of 
5 = (2/zwo)"”? into the conductor, where w is the frequency and @ the conduc- 
tivity. For any nonvanishing «, therefore, the skin depth 6 > 0 as o > ». Os- 
cillating electric and magnetic fields do not exist inside a perfect conductor. We 
define magnetostatic problems with perfect conductors as the limit of harmoni- 
cally varying fields as w — 0. provided at the same time that wo > ~. Then the 
magnctic field can exist outside and up to the surface of the conductor, but not 
inside. The boundary conditions (5.86) and (5.87) show that B-n = 0,0 x H= 
K at the surface. These boundary conditions are the magnctostatic counterparts 
of the clectrostatic boundary conditions, E,,, = 0, D+n = a, at the surface of a 
conductor, where in this last relation @ is the surface-charge density, not the 
conductivity! 

We consider a perfectly conducting plane at z = 0 with a hole of radius a 
centered at the origin, as shown in Fig. 5.15. For simplicity we assume that the 
medium surrounding the plane is uniform, isotropic, and lincar and that there is 
a uniform tangential magnetic field Hy in the y direction in the region z > 0 far 
from the hole, and zero field asymptotically for z < 0. Other possibilities can be 
obtained by lincar superposition. Because there are no currents present except 
on the surface z = 0, we can use H = —Vo,,, with the magnetic scalar potential 
s(x) satisfying the Laplace equation with suitable mixed boundary conditions. 
Then we can parallel the solution of Section 3.13. 

The potential is written as 

—Hyy +o forz > 0 

Pale) = ee forz <0 

The reversal of sign for the added potential &" below the plane is a consequence 
of the symmetry propcrties of the added fields—//{” and H{’) are odd in z, while 
Hi® and &” are even in z. This can be inferred from (5.14) with the realization 
that the effective current is only on the surface z = 0, as is the effective magnetic- 
charge density that determines the scalar potential &”, 

From (3.106) the added potential can be written in cylindrical coordinates as 

(5.123) 

OMY (x) = i& dk A(kye ** (kp) sin & (5.124) 

a 
Figure 5.15 
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Only m = 1 enters because the hole is cylindrically symmetric and the asymptotic 
ficld varics as y = p sin @. From the boundary conditions on normal B and tan- 
gential H we find that the boundary conditions on the full potential By, arc 

@y, continuous across z = 0 ford<p<a 

IDy 
—— =Oatz=0 fe <p<x% dz atz ora<p 

These requirements imply the dual integral equations, 

i dk A(k)i (kp) = Hyp/2 forO=p<a 
0 

: (5.125) 
| dk kA(k)Jy(kp) = 0 fora< p<» 
0 

These are closely related to, but different from, the electrostatic set (3.178) or 
(3.179), The necessary pair here are 

i] dy g(y)J,(yx) = x" forOsx<] 

- (5.126) 
f dy yely)J,(yx) = 0 forl<x<% 

with solution, 

win + 1) 
Val(n + 4) 

In (5,125) we have g = 2A(k)/Hya®, n = 1.x = pla, and y = ka. Hence 

wv 

gy) = jig) = TED (2) Inu) (5.127) 
T(n + 3) \y 

2 

A(k) = Plat (ka) (5.128) 

The added potential is therefore 

2 fe 
D(x) = tae” [ dk j,(kaje **,(kp) sin & (5.129) 

a do 

By methods similar to those of Section 3.13 it can be shown that far from the 
opening the added potential has the asymptotic form 

ye y 
B%%) > aa oS (5.130) 

This is the potential of a dipole aligned in the y direction, the direction of Hy. 

Because of the signs in (5.123), the circular hole is equivalent at large distances 
to a magnetic dipole with moment 

H,  forz 20 (5.131) 

where Hy, is the tangential magnetic ficld on the z = 0” side of the plane in 
the absence of the hole. Later (Fig. 9.4) we show qualitatively how the magnetic 
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ficld lines distort to give rise to the dipole field. In the opening itself (z = 0, 
0 = p < a) the tangential and normal components of the magnetic field are 

(5.132) 

Comparison with the corresponding electrostatic problem in Section 3.13 
shows similaritics and differences. Roughly speaking, the roles of tangential and 
normal components of fields have been interchanged. The effective dipoles point 
in the directions of the asymptotic ficlds, but the magnetic moment (5.131) is a 
factor of 2 larger than the electrostatic moment (3.183) for the same field 
strengths. For arbitrarily shaped holes the far ficld in the electrostatic case is still 
that of a dipole normal to the plane, while the magnetic case has its effective 
dipole in the plane, but now the direction of the magnetic dipole depends on 
both the field direction and the orientation of the hole (the hole has an aniso- 

tropic magnetic susceptibility). 

5.14 Numerical Methods for Two-Dimensional Magnetic Fields 

Magnetic fields in the presence of iron or other highly permeable materials can 
be evaluated numerically in two dimensions by the relaxation method described 
in Section 1.13 or. more generally, by the method of finite element analysis of 
Section 2.12. The problems can be classed as “interior” or “exterior.” depending 
whether the current flow and/or magnetized material and desired field are within 
the same region. 

First consider the boundary conditions for the field components at the 
smooth interface of a highly permeable medium and a nonpermeable one. Lo- 
cally, the interface can be approximated by a plane. The boundary conditions 
are that the tangential component of H and the normal component of B are 
continuous across the interface, if there are no surface currents. Figure 5.16 is a 

HOP Ho He uo 

HoH, By HoH = BO 

Holt ¥\ Ho 
(0) _ pidd B=no9H HoH = BY Ho) 

By B 

Figure 5.16 Illustration of the effect of large permeability on the components of the 
magnetic induction and magnetic field on either side of an interface. The sketch has 

ft © Sty, not a very high permeability! 
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sketch of the behavior of the ficld components. similar to Fig. 5.9 but showing 

both B and H components. For a given “external” ficld B® in the nonpermeable 
region, the components of B (and H) in the highly permeable medium are more 

closely parallel to the interface. The magnitude of the magnetic induction just 

inside the highly permeable medium is 

| 
2 

Bo 4 & Ben 
Ho 

while the energy per unit volume (sce Section 5.16) there is 

J, |BP = oh BOP 4 ae Be 
Qu Qu 2u5 

These two relations are immediately uscful in learning the appropriate boundary 

conditions of “exterior” and “interior” problems in the limit p/jg > %. 

The most familiar static magnetic fields are thosc around a permanent mag- 
net of high permeability or an iron core excited by remote current-carrying wind- 

ings. The region of interest is the nonpermeable region bounded by the highly 
permeable pole face or faces—the archetypal “exterior” problem. [f we suppose 
that the stored energy within the highly permeable medium is finite, the encrgy 
relation shows that, as y/4) > %, the parallel component of the magnctic ficld 
outside must vanish: the “external” magnetic ficld at the surface is perpendicular 
to the interface. These are just the boundary conditions for the electrostatic ficld 
at the surface of a conducting boundary, as mentioned at the end of Section 
5.8. If there are no currents within the nonpermceable region of interest, then 
Vv x H = 0 there and we can write H = —¥,,. The magnetic scalar potential 
satisfies the Laplace cquation, V’®,, = 0, with the “pole pieces,” surfaces of 
constant potential; the analogy with electrostatics is complete. 

For simplicity we restrict our discussion of “interior” problems to two di- 
mensions, with steady current flow only in the third direction in a uniform, highly 
permeable conducting medium. We are interested in the magnctic induction 
within the medium—for example, a long iron third rail of a subway system. The 
current flow produces a magnetic induction both inside and outside the medium. 
Whatever the magnitudes of the parallel and perpendicular components just out- 

side, the boundary conditions assure that B is parallel to the surface of the me- 
dium just inside as p/p > 2. 

If the current density has only a z component, J.(x, y), the vector potential 
A has only a z component, A,(x, y), which satisfies the Poisson cquation, 
WA, = —pJ,. The ficld components are B, = 4A,/ay, B, = —0A,/ox, B, = 0. 

If the internal ficld B is tangential to the boundary C of the region R sketched 
in Fig. 5.17, we have n+ (V, X A) = (nx V,)- A =OonC. The gradient operator 
in the x-y plane can be resolved into components parallel to and perpendicular 

ton. The boundary condition thus becomes 

where di is an element of arc length along C. The vector potential is constant 

along the boundary curve C. Furthermore. we can infer that in the interior region 

R the magnetic field lines are paraile] to the contours of constant A,. Because B 
= V x A, the density of lines of force is given by the derivative of A, perpen- 
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Figure 5.17 Cross section of a long, highly permeable 
cylindrical conductor with current flow along its length, 

dicular to the surfaces of constant value; the spacing of contours of constant A, 
with equal increments in A, will show the intensity of the ficld as well as its 
direction. 

In implementing numerical methods of solution of the Poisson equation, 
WA, = -pJ,, boundary conditions must be specified. That seems to mean the 
constant value of A, on the contour C. But the vector potential is arbitrary 
to within addition of the gradient of a scalar function y. With the choice, 
X = —Ag-z, Where Ay is the yet undetermined value of A. on C, we define 
Al = Ax, y) — Ay. The Poisson equation problem to be solved then becomes 
VA! = wJ. within R with the homogeneous boundary condition A/ = 0 on the 
boundary C. The value of A, on C is not physically meaningful and is not 
needed, With J.(x, y) specified, the solution by the relaxation technique procceds 
as in Section 1.13. 

Powerful numerical codes exist to solve more realistic magnetic field prob- 
lems where, for example, the different permeable materials have large, but not 
infinite, values of y/j. References are given at the end of the chapter. 

5.15 Faraday’s Law of Induction 

The first quantitative observations relating time-dependent clectric and magnetic 
ficlds were made by Faraday (1831) in experiments on the behavior of currents 
in circuits placed in time-varying magnetic fields. Faraday observed that a tran- 
sient current is induced in a circuit if (a) the steady current flowing in an adjacent 
circuit is turned on or off, (b) the adjacent circuit with a steady current flowing 
is moved relative to the first circuit, (c) a permanent magnct is thrust into or out 
of the circuit, No current flows unless either the adjacent current changes or there 
is relative motion. Faraday attributed the transient current flow to a changing 
magnctic flux linked by the circuit. The changing flux induces an electric field 
around the circuit, the line integral of which is called the electromotive force. €. 
The ciectromotive force causes a current flow, according to Ohm’s law. 

We now express Faraday’s observations in quantitative mathematical terms. 
Let the circuit C be bounded by an open surface S with unit normal n, as in Fig. 
5.18. The magnetic induction in the ncighborhood of the circuit is B. The mag- 
netic flux linking the circuit is defined by 

P= | Benda (5.133) 
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Figure 5.18 

The clectromotive force around the circuit is 

$= f E’-dl (5.134) 
¢ 

where E' is the electric ficld at the element dt of the circuit C. Faraday’s obser- 

vations are summed up in the mathematical law, 

dF 

dt 
(5.135) 

The induced clectromotive force around the circuit is proportional to the time 

rate of change of magnctic flux linking the circuit. The sign is specified by Lenz’s 

law, which states that the induced current (and accompanying magnetic flux) is 

in such a direction as to oppose the change of flux through the circuit. 
The constant of proportionality & depends on the choice of units for the 

clectric and magnetic ficld quantitics, It is not, as might at first be supposed, an 

independent empirical constant to be determined from experiment. As we will 

sec immediately. once the units and dimensions in Ampére’s law have been cho- 

sen, the magnitude and dimensions of k follow from the assumption of Galilean 

invariance for Faraday’s law. For SI units, k = 1; for Gaussian units, k = ¢ ', 

where c is the velocity of light. 
Before the development of special relativity (and even afterward, when in- 

vestigators were dealing with relative speeds that were small compared with the 

velocity of light), it was understood, although not often explicitly stated, by all 

physicists that physical laws should be invariant under Galilean transformations. 

That is. physical phcnomena are the same when viewed by two observers moving 

with a constant velocity v relative to one another, provided the coordinates in 

space and time are related by the Galilean transformation, x’ = x — vif = 1. 

In particular, consider Faraday’s observations. It is expected and experimentally 

verified that the same current is induced in a secondary circuit whether it is moved 

while the primary circuit through which current is flowing is stationary or it is 

held fixed while the primary circuit is moved in the same relative manner. 
Let us now consider Faraday’s law for a moving circuit and see the conse- 

quences of Galilean invariance. Expressing (5.135) in terms of the integrals over 

E' and B, we have 

a ‘.dl=-k—=| B- 5.13 pe a= -k7 | Benda (5.136) 
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v. 

<\_/ Figure 5.19 

The induced electromotive force is proportional to the total time derivative of 
the flux—the flux can be changed by changing the magnetic induction or by 
changing the shape or orientation or position of the circuit. In form (5.136) we 
have a far-reaching generalization of Faraday’s law. The circuit C can be thought 
of as any closed geometrical path in space, not necessarily coincident with an 
electric circuit. Then (5,136) becomes a relation between the fields themselves. 
It is important to note, however, that the electric field, E’ is the electric field at 
alin the coordinate system or medium in which dl is at rest, since it is that ficld 
that causes current to flow if a circuit is actually present. 

If the circuit C is moving with a velocity v in some direction, as shown in Fig. 
5.19, the total time derivative in (5.136) must take into account this motion. The 
flux through the circuit may change because (a) the flux changes with time at a 
point, or (b) the translation of the circuit changes the location of the boundary. 
It is casy to show that the result for the total time derivative of flux through the 
moving circuit is* 

a L,Bonae= [Goma f re 3 nda = so at > (BX v) dl (5.137) 

Equation (5.136) can now be written in the form, 

' aes f. [E' — k(y x B)]- dt = -k i af da (5.138) 

This is an equivalent statement of Faraday’s law applicd to the moving circuit C. 
But we can choose to interpret it differently. We can think of the circuit C and 
surface S as instantancously at a certain position in space in the laboratory. Ap- 
plying Faraday’s law (5.136) to that fixed circuit, we find 

OB 
E-dt=— i ie i ¢ dt k Beers nda {5.139) 

*For a general vector field there is an added term, j.(¥- B)v-n da, which gives the contribution of 
the sources of the vector field swept over by the moving circuit. The gencral result follows most casily 
from the use of the convective derivative. 

feftayiy 
ade 

Thus 

BB yy sp = B iv mx (V+ B) 

where v is treated as a fixed vector in the differentiation. Use of Stokes's theorem on the second term 
yields (5.137). 
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where E is now the clectric field in the laboratory. The assumption of Galilean 

invariance implies that the left-hand sides of (5.138) and (5.139) must be equal. 

This means that the clcctric field E’ in the moving coordinate system of the circuit 

is 

E’ = E+ ky x B) (5.140) 

To determine the constant k we mercly observe the significance of E’. A charged 

particle (e.g., one of the conduction clectrons) essentially at rest in a moving 

circuit will experience a force gE’. When viewed from the laboratory. the charge 

represents a current J = qv8(x — Xp). From the magnetic force law (5.7) or (5.12) 

it is evident that this current experiences a force in agreement with (5.140) pro- 

vided the constant k is equal to unity (SI) or I/c (Gaussian). 
Thus we see that, with our choice of units for charge and current, Galilean 

covariance requires that the present constant x be equal to the constant appearing 

in the definition of the magnetic field (5.4). Faraday’s law (5.136) therefore reads 

' --4f 2 fet -al= < [Be mda (5.141) 

where E’ is the electric field at dl in its rest frame of coordinates. The time 

derivative on the right is a toral time derivative (5.137). As a by-product we have 

found that the electric field E' in a coordinate frame moving with a velocity v 

relative to the laboratory is 

E’=E+vxB (5.142) 

Because we considered a Galilean transformation, the result (5.142) is an ap- 

proximation valid only for specds small compared to the speed of light. (The 

relativistic expressions are derived in Section 11.10.) Faraday’s law is no approx- 

imation, however. The Galilean transformation was used merely to evaluate the 

constant & in (5.135), a task for which it was completely adequate. 
Faraday’s law (5.141) can be put in differential form by use of Stokes's the- 

orem, provided the circuit is held fixed in the chosen reference frame {to have E 

and B defined in the same frame). The transformation of the clectromotive force 

integral into a surface integral leads to 

[(vxe+®) na =o 
s a 

Since the circuit C and bounding surface S are arbitrary, the integrand must 

vanish at all points in space. 
Thus the differential form of Faraday’s law is 

6B 
VxE+ 5.143 w 9 (5.143) 

We note that this is the time-dependent generalization of the statement, 

V x E = 0, for electrostatic fields. 
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5.16 Energy in the Magnetic Field 

In discussing steady-state magnctic fields in the first 14 sections of this chapter 
we avoided the question of ficid energy and encrgy density. The reason was that 
the creation of a steady-state configuration of currents and associated magnetic 
fields involves an initial transicnt period during which the currents and fields are 
brought from zcro to the final values. For such time-varying ficlds there are 
induced electromotive forces that cause the sources of current to do work, Since 
the energy in the field is by definition the total work done to establish it, we must 
consider these contributions. 

Suppose for a moment that we have only a single circuit with a constant 
current / flowing in it. If the flux through the circuit changes. an electromotive 
force is induced around it. To kcep the current constant, the sources of current 
must do work. To determine the rate, we note that the time rate of change of 
energy of a particle with velocity v acted on by a force F is dE/d: = v- F. With 
a changing flux, the added field E’ on each conduction electron of charge g and 
mean velocity v gives rise to a change in energy per unit time of gv-E' per 
electron. Summing over all the electrons in the circuit, we find that the sources 
do work to maintain the current at the rate 

dW dF 
aes eS 

the negative sign following from Lenz’s law. This is in addition to ohmic losses 
in the circuit, which are not to be included in the magnctic-energy content. Thus, 
if the flux change through a circuit carrying a current / is 6F, the work done by 
the sources is 

OW = 1 OF 

Now we consider the problem of the work done in establishing a gencral 
steady-state distribution of currents and fields. We may imagine that the buildup 
process occurs at an infinitesimal rate so that V - J = Oholds to any desired degree 
of accuracy. Then the current distribution can be broken up into a network of 
clementary current loops, the typical one of which is an elemental tube of current 
of cross-sectional arca Ag following a closed path C and spanned by a surface § 
with normal n. as shown in Fig. 5.20, 

We can express the increment of work done against the induced emf in terms 
of the change in magnetic induction through the loop: 

A(8W) = J Ao I n- 8B da 

Figure 5.20 Distribution of current 
density broken up into elemental current 
loops. 
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where the extra A appears because we are considcring only one elemental circuit. 
If we express B in terms of the vector potential A, then we have 

AW) = J ae | (¥ x dA) + nda 

With application of Stokes’s theorem this can be written 

A(6éW) = J acd bA+ dl 
é 

but J Ag dis equal to J d*x, by definition, since d} is paralicl to J. Evidently the 
sum over all such elemental leops will be the volume integral. Hence the total 
increment of work done by the external sources duc to a change 5A(x) in the 

vector potential is 

6W = { 5A -S dx (5.144) 

An expression involving the magnetic fields rather than J and 8A can be 
obtained by using Ampére’s law: 

VxH=J 

Then 

bW = | 6A +(V x H) d’x (5.145) 

The vector identity, 

V-(P x Q)=Q-(V x P)—-P-(V x Q) 

can be used to transform (5.145): 

ow = | (H. (V x 8A) + V- (HX 6A)] dx (5.146) 

If the field distribution is assumed to be localized. the sccond integral vanishes. 

With the definition of B in terms of A, the energy increment can be written: 

bW = ie H- 8B d?x (5.147) 

This relation is the magnetic equivalent of the electrostatic cquation (4.86). In 
its present form it is applicable to all magnetic media, including ferromagnetic 
substances. If we assume that the medium is para- or diamagnetic, so that a linear 
relation exists between H and B, then 

H- 6B = 36(H- B) 

Tf we now bring the fields up from zero to their final values, the total magnetic 

energy will be 

We al H-Bdx (5.148) 
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This is the magnetic analog of (4.89). 
The magnetic equivalent of (4.83) where the electrostatic energy is expressed 

in terms of charge density and potential, can be obtained from (5.144) by assum- 
ing a lincar relation between J and A. Then we find the magnetic encrgy to be 

w=s[s-ade (5.149) 

The magnetic problem of the change in energy when an object of perme- 
ability 2, is placed in a magnetic field whose current sources are fixed can be 
treated in close analogy with the electrostatic discussion of Section 4.7. The role 
of E is taken by B, that of D by H. The original medium has permeability jzy and 
existing magnetic induction By. After the object is in place the fields are B and 
H. It is Icft as an exercise for the reader to verify that for fixed sources of the 
ficld the change in energy is 

1 
well (B- Hy) — H+ B,) dx 24, 

where the integration is over the volume of the object. This can be written in the 
alternative forms: 

weil uo -momemyae=tf (1-1 )p og, a 2dy er Fo oe 2d Np * 
Both 2, and jy can be functions of position, but they are assumed independent 
of field strength. 

If the object is in otherwise free space, the change in energy can be expressed 
in terms of the magnetization as 

We= ; Mf M-B, dx (5.150) 

It should be noted that (5.150) is equivalent to the electrostatic result (4.93), 
except for sign. This sign change arises because the energy W consists of the total 
energy change occurring when the permeable body is introduced in the ficld, 
including the work donc by the sources against the induced electromotive forces. 
In this respect the magnetic problem with fixed currents is analogous to the elec- 
trostatic probiem with fixed potentials on the surfaces that determine the fields. 
By an analysis cquivalent to that at the end of Section 4.7 we can show that for 
a small displacement the work donc against the induced emf’s is twice as large 
as, and of the opposite sign to, the potential-energy change of the body. Thus, 
to find the force acting on the body, we consider a generalized displacement ¢ 
and calculate the positive derivative of W with respect to the displacement: 

Fyp= (=) (5.151) 

The subscript / implies fixed source currents. 
The difference between (5.150) and the potential energy (5.72) for a per- 

manent magnetic moment in an external ficld (apart from the factor 4, which is 
traced to the lincar relation assumed between M and B) comes from the fact that 
(5.150) is the total energy required to produce the configuration, whereas (5.72) 
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includes only the work donc in establishing the permanent magnetic moment in 

the ficld, not the work done in creating the magnetic moment and keeping it 

permanent. 

5.17 Energy and Self- and Mutual Inductances 

A. Coefficients of Self- and Mutual Inductance 

Just as the concept of cocfficients of capacitance for a system of conductors 

held at different electrostatic potential is uscful (Section 1.11), the concept of 

sclf- and mutual inductances are useful for systems of current-carrying circuits, 

Imagine a system of N distinct current-carrying circuits, the ith one with total 

current /,, in otherwise empty space. The circuits are not necessarily thin wires 

(they can be bus bars, etc.} but are assumcd for the present to be nonpermeable, 

The total energy (5.149) in terms of an integral of J+ A/2 can be expressed as 

ts Ldj + > S Mil, (5.152) 
2m 1 pt 

where L, is the self-inductance of the ith circuit and M, is the mutual inductance 

between the ith and jth circuits. To establish this result, we first use (5.32) for the 

vector potential to convert (5.149) to 

ea to f a x f ave Apne (5.153) 

The integrals can now be broken up into sums of separate integrals over cach 

circuit: 

wa BS [ard farrit Hed Hed 
: x) x; 

In the sums there are terms with i = j and terms with i # j. The former define 

the first sum in (5.152), the latter, the second. Evidently, the coefficients L; and 

Mj, are given by 

Hey 3 ay, UX) + Ix) = By 5.15 me mark g fee! ix, — xi] oe) 
and 

= tof as, {ae DD . M, ans Je fal (6.155) 

Note that the coefficients of mutual inductance M,, are symmetric in i and j, 
These gencral expressions for self and mutual inductance are the rigorous 

versions of the more clementary definitions in terms of flux linkage. To establish 

the connection, consider the expression for mutual inductance (for which the 

ambiguitics in the definition of flux linkage for self-inductance are absent). The 

integral over d'x' times j1o/477is just the expression (5.32) for the vector potential 

A(x) at position x, in the ith circuit caused by the current J; flowing in the jth 

circuit. If the ith circuit is imagined to be negligible in cross section compared to 
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the overall scale of both circuits, we can write the integrand J(x,) d*x for the 
integration over the volume of the ith circuit as J d°x = Jj da dl, where da is a 
locally defined clement of cross-sectional area and dl is a directed longitudinat 
differential in the sensc of current flow, With the vector potential sensibly con- 
stant in the cross-sectional integral at a fixed position along the circuit, the mutual 
inductance becomes 

eho $ =if Mam ah YA ab= 7 J (0 x Aya da 

where A, is the vector potentiat caused by the jth circuit at the integration point 
on the ith and the factor J, comes from the integral over the cross section. Stokes’s 
theorem has been used to obtain the second form. Since the curl of A is the 
magnetic induction B, the arca integral is just the magnetic-flux linkage (5.133). 
Thus the mutual inductance is finally 

a= : (5.156) 

where F; is the magnetic flux from circuit j linked within circuit é. For self-induc- 
tance, the physical argument is the same, but the ambiguity in the meaning of 
the self-flux linkage F;, requires a return to the rigorous expression (5.154) based 
on the magnetic energy. 

For both mutual and self-inductance the energy definitions arc fundamental. 
If either the conductors carrying the current are permeable or the medium be- 
tween the conductors is (44 # jo), (5.152) is valid, but (5.153) is not, It is then 
best to use the expression (5.148) for the magnetic energy in terms of the ficlds 
on the left-hand side of (5.152) in computation of the coefficients of induction. 

The presence of terms such as L di/dt or M)2 db/dt in the voltage balance in 
lumped circuit equations follows immediately from relating the time derivative 
of the linked flux (dF/dr) to the induced emf € through (5.135). 

B. Estimation of Self-Inductance for Simple Circuits 

‘The self-inductance of simple current-carrying clements can be estimated by 
consideration of the magnetic energy. Suppose a circular wire of cross-sectional 
radius a carrying a stcady current J forms a loop of circumference C and “area” 
A (the quotation marks remind us that, since the loop may not be planar, A may 
stand for a projected area). We imagine that the loop. though relatively arbitrary 
in shape, does not have kinks in it with radii of curvature as smail as the wire 
size. An cxample is sketched in Fig. 5.21. There arc three length scales here— 
the wire radius, the dimensions of the loop. represented by C/27 or A’, and the 
outside region, r >> C/27. From (5.152). the relation betwecn the self-inductance 
and the magnetic energy, we find that 

1/B-B L=n ax (5.157) 

Estimation of the magnetic induction will lead to an estimate of the inductance. 
On the length scale of the wire radius, we may ignore the curvature and consider 
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Diameter = 20 

"Area" =A 
Circumference = C 

Figure 5.21 Closed current-carrying 
circuit made of a wire of radius a, length 

C, and (projected) area A. 

the field inside and outside the wire as if it were straight and infinitcly long. If 

the current density is uniform throughout the interior, from symmetry and 

Ampére’s law (5.25) the magnetic induction is azimuthal and equal to 

Hol pe 
+ na p.. 

where p. (p..) is the smaller (larger) of a and p. We have assumed that the wire 

and the medium surrounding it are nonpermeable. The contributions to the in- 

ductance per unit length from inside the wire and outside the wire, out to a radius 

Penaxs AFC 

dLin Bo, ALoun(Pmx) _ Ho in( 22) 
dl 8x dl 4x a 

The radial integral outside the wire is limited to p< pmax because the expression 

for B,, fails to represent the magnetic induction at distances of the order of the 

middle length scale. If we look to the intcrior of the loop, it is clear that for 

p = O(C/27) = O(A'”) the isolated straight wire is a very poor representation 

of the current pattern. Thus we expect* pmax = O(A"”). There is, of course, a 

contribution to the inductance from the outside region at distances beyond pmax. 

There, at distances large compared to A‘, the slow falloff of the magnetic in- 

duction as I/pis replaced by a dipofe field pattern with |B] = O(pemnl4ar?), where 

m = O(IA) is the magnetic moment of the loop of wire. Because of the rapid 

decrease of the ficld beyond pn, the contribution per unit iength to the induc- 

tance from large distances (i.e.. p = A‘) can be estimated to be 

dLaipote 4m [* 
Heaipste — O{ —2 i Pl Adar? dr} = O(noA74mphaC) 

dl Bol C SF orpox 

If we sct pmax = (€’A)!?, where é’ is a number of order unity (containing our 

ignorance), 

dLaipote 
dl 

= O(poA'/4xC} 

*if the circuit shape is such that A << C2. as for an elongated loop. a different estimate of pmax may 
be appropriate [2.8 pax = O(A/O)] 
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a contribution of order unity compared to the logarithm above. Upon combining 
the diffcrent contributions, the inductance of the loop is estimated to be 

L~ i e{in( 4) + :] (5.158) 

Here we have exhibited the interior contribution explicitly and indicated the 
uncertainty in the proper valuc Of pm, and the size of the exterior contribution 
through the number , of order unity. 

Four comments: First, if the wire has a magnetic permeability y, the interior 
contribution becomes } > p/2429. Second, for a thin wire bent in a circle of radius 
large compared to the wire radius, a precise calculation (sec Problem 5.32) shows 
that € = 64/me* ~ 0.373. Third, at frequencics high enough to ensure that the 
skin depth of the wire is small compared to its radius, the interior contribution 
is absent because the current is confined to near the surface of the wire (sce next 
section). Fourth, if the single turn of wire is replaced by a tight coil of N turns, 
with the effective cross-sectional radius of the bundle being a, the self-inductance 
is N? times the expression above. 

Exercise 

Consider a circuit made up of two long, parallel, nonpermeable, circular wires of 
radii a, and a2, separated by a distance d large compared to the largest radius, 
Current flows up one wire and back along the other. [gnore the ends. Use the 
method above to show that the self-inductance per unit length is approximately 

dL py éd 1 Se we Of yf = 
dn [m( +4 

where éis of order unity. Can you find a reliable value of & within the approxi- 
mations stated? 

5.18 Quasi-Static Magnetic Fields in Conductors; 
Eddy Currents; Magnetic Diffusion 

The magnetostatics of the first 14 sections of this chapter are based on Ampére’s 
law and the absence of magnetic charges. As we saw in Section 5,15, if the mag- 
netic induction varics in time. an electric field is created, according to Faraday’s 
law, the situation is no longer purely magnetic in character. Nevertheless, if the 
time variation is not too rapid, the magnetic ficlds dominate and the behavior 
can be called quasi-static. ““Quasi-static” refers to the regime for which the finite 
speed of light can be neglected and fields treated as if they propagated instan- 
tancously. Said in other, equivalent words, it is the regime where the system is 
small compared with the electromagnetic wavelength associated with the domi- 
nant time scale of the probiem. As we learn in subsequent chapters, such a regime 
permits neglect of the contribution of the Maxwell displacement current to 
Ampérc’s law. We consider such ficids in conducting media, where Ohm’s law 
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relates the electric ficid to the current density and so back to the magnetic field 
via the Ampére cquation. The relevant equations are 

0B 
VxH=J. V-B=0, VX Es = 0 J= cE (5.159) 

With B = ¥ x A, Faraday’s law shows that the curl of E + aA/ot vanishes. As a 
result, we can write E = —@A/at — V . With the assumption of negligible free 

charge and the time-varying B as the sole source of the electric ficld, we may set 

the scalar potential ® = 0 and have E = —éA/ar. Note that we have the subsidiary 
conditions, ¥- E = 0 and V- A = 0. For media of uniform, frequcncy-indepen- 
dent permeability 4, Ampére’s law can be written V x B = wJ = xo. Elimi- 
nation of B and E in favor of A and use of the vector identity, V x V x A = 

WV-+A) — VA. yields the diffusion equation for the vector potential, 

aA VA = po (5.160) 

This equation, which obviously also holds for the electric ficld E, is valid for 
spatially varying, but frequency-independent a. If the conductivity is constant in 
space, it follows that the magnetic induction B and the current “density J also 
satisfy the same diffusion equation. 

The structure of (5.160) allows us to estimate the time 7 for decay of an initial 
configuration of fields with typical spatial variation defined by the length L. We 
put V-A = O(A/L?) and dA/at = O(A/z). Then 

7 = O(nol?) (5.161) 

Alternatively, (5.161) can be used to estimate the distance 1 over which fields 
exist in a conductor subjected externally to fields with harmonic variation at 
frequency v = 1/7, 

L= of 7) (5.162) 
V por, 

For a copper sphere of radius 1 em, the decay time of some initial B ficld inside 
is of the order of 5-10 milliseconds; for the molten iron core of the carth it is of 
the order of 10° years. This last number is consistent with paleomagnetic 
data—the last polarity reversal of the earth’s field occurred about 10° years ago: 
there is some evidence for a decline to near zero about 5 x 10° years ago and a 

rise back to its present valuc. 

A, Skin Depth, Eddy Currents, Induction Heating 

Asimple quantitative illustration of the fields described by (5.160) is afforded 
by the situation shown in Fig. 5.22: A semi-infinite conductor of uniform con- 
ductivity « and permeability 4 occupies the space z > 0, with empty space for 

z <0. The surface at z = 0° is subjected to a spatially constant, but time-varying. 

magnetic field in the x direction. H,(¢) = Hy cos wt. We seek a sicady-state so- 
lution of (5.160) for z > 0, subject to appropriate boundary conditions at z = 
and finiteness at z > +20. Continuity of the tangential componcnt of H and the 
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H, = Ho cos wt Mo 

oie 

z 
Figure 5.22. At the surface of a semi-infinite conducting permeable medium, a spatially 
constant magnetic ficld, //,(4) = Hy cos wt, is applied parallel to the surface at z = 0°. 
A localized magnetic field and current flow exists within the medium in the region 
1< O(8). 

normal component of B across z = 0 requires that at z = 0', the magnetic field 
have only an x component, H,(t} = Hy cos wt. The lincarity of (5.160) implies 
that there is only an x component throughout the half-space, z > 0 and it is a 
function of z and 4, H,(z, 1). 

Because the diffusion equation is sccond order in the spatial derivatives and 
first order in the time. it is convenient to use complex notation, with the under- 
standing that the physicai fields arc found by taking the real parts of the solutions. 
Thus, the boundary value on H, is H, = Hye ‘", where taking the real part is 
understood, The steady-state solution for H,(z. f) can be written 

Hz, 1) = A(z 

where, from (5.160), A(z) satisfies 

(Ss + inc J) =0 (5.163) 
de 

A trial solution of the form, A(z) = e“** leads to the condition 

i R=inow or k= ++ ie (5.164) 

The square root has the dimensions of an inverse length characteristic of the 
medium and the frequency |sce (5.162)}. The length is called the skin depth 8: 

s= [2 
\ now 

For copper_at room temperature (@ ' = 1.68 x 107% O-m). 6 = 6.52 x 
10-7/V'r(Hz) m, where v = w/27. For scawater, 8 ~ 240/\/v(Hz) m {see Fig. 7.9 
and accompanying text). 

The solution for H, is the real part of 

H(z, 0) = Ae 2 9) 4 Bere Haron 

(5.165) 

with A and B complex numbers. We must choose B = 0 to avoid exponentially 
large ficlds as z > o. Comparison of the solution to the boundary value, 
HAO", 1) = Hye “shows that A = Hp and the solution for z > 0 is 

HAZ, 0) = Hye ** cos(z/8 — wt) (5.166) 

The magnetic field fails off exponentially in z. with a spatial oscillation of the 
same scalc, being confined mainly to a depth less than the skin depth 6 
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Since the fieid varies in time, there is an accompanying small electric field. 

From Ampére’s and Ohm's laws, together with the existence of only //,(z, 1), we 
find that there is only a y component of E, given by 

dH, _-1+i 
a dz 0 

Hyon 

Taking the real part and writing 1/05 = dw/2, we have 

5 F, = 2 Hye?" cos(z/5 — wt + 37/4) (5.167) 
v2 

To compare the magnitude of the electric field and the magnetic induction, we 
form the dimensionless ratio, 

E,leul, = O(wile) << 1 

by the quasi-static assumption. The fields are predominantly magnetic, with a 
small tangential electric field. The field is associated with a localized current 

density (for z > 0), 

ME aly 
J, = 0E, = > Hoe™*"* cos(z/5 — wt + 32/4) (5.168) 

whose integral in z is an effective surface current, 

K,(i) =[ Jz, 1) dz = —Hg cos wt 

For very small skin depth, the volume current flow in the region within O(5) of 
the surface acts as a surface current whose magnitude and direction is such as to 
reduce the magnetic ficld to zero for z >> 8. See Section 8.1 for more discussion 
relevant to waveguides and cavities. 

There is resistive heating in the conductor. The time-averaged power input 
per unit volume is Prosistive = (J+ E) (recall P = 1V = VR in a simple lumped 

resistor circuit). With (5.167) and (5.168), we find 

Presune = 5 Hollie (5.169) 
The heating of the conducting medium to a depth of the order of the skin depth 
is the basis of induction furnaces in steel mills and of microwave cookers in 
kitchens (where the conductivity of water, or more correctly, the dissipative part 
of its dielectric susceptibility, causes the losses—see Fig. 7.9). References to more 

elaborate treatments of eddy currents and induction heating are found at the end 

of the chapter. 

B. Diffusion of Magnetic Fields in Conducting Media 

Diffusion of magnetic ficids in conducting media can be illustrated with the 
simple example of two infinite uniform current sheets, parallel to each other and 
jocated a distance 2a apart, al z = —@ and z = +a, within an infinite conducting 
medium of permeability 4 and conductivity . The currents are such that in the 
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region, 0 < |z| < a, there is a constant magnetic field //, in the x direction and 
zero field outside. Explicitly, the current density J is in the y direction, and 

J, = Mf6(z + a) — Hz — a] 

At time f = 0, the current is suddenly turned off. The vector potential and mag- 
netic field decay according to (5.160), with variation only in z and 4. We use a 
Laplace transform technique: Separate the space and time dependences by 
writing 

A(z, 1) = ie e"h(p, 2) dp 

Substitution into the diffusion equation (5.160) for H, leads to the wave equation, 
(@idz? + k’yh(p, z) = 0, where k? = pop. Since the situation is symmetric about 
z = 0, the appropriate solution ish = cos(kz). With a change of variable from p 
to k in the transform integral, //,(z, 1) becomes 

Hz, 0) = | e *"™"h(k) cos(kz) dk (5.170) 

‘The coefficient function h(k) is determined by the initial conditions. At r= 0", 
the magnetic field is 

H(z, 0*) = [ hk) cos(kz) dk = Ho[O{z + a) — O(z - a] (5.171) 

where @(x) is the unit step function, O(x) = 0 for x <0 and @(x) = 1 for x > 0. 
Exploiting the symmetry in z, we can express the cosine in terms of exponentials 
and write 

if (ke dk = HfO(z + a) — O(z - a)] (5.172) 

where h(-k) = A(k). Inversion of the Fourier integral yields h(k), 

h(k) = ts Ie edz = a sin(ka) (5.173) 

The solution for the magnetic ficld at all times, ¢ > 0, is therefore 

Hz, 1) = 2 | ene SID ox (5) de (5.174) 7 lo 

where » = (40a°)"' is a characteristic decay rate [see (5.161 )]. The integral in 
(5.174) can be expressed as the sum of two terms, each identified with a repre- 
sentation of the error function, 

€ a 2 
2 sin x 2 ete =~ 2 [ way 2 PE) = J, & dx = 
Tio x 

dx (5.175) 

‘The result is 

Hy 1+ |zi|la 1—|z\/a 
FAAz, 1) = ® = + 3. 
1) 2 | ( 2v ut a 2 OMe) 
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Figure $.23 Magnetic field distributions given by (5.172) for wf < 0, and (5.176) for 
vt = 0.05, 1, 4 as a function of z/a. The outward diffusion with time for ¢ > 0 is 
manifest; the rise and fall of the ficld in time at a fixed position can be noted for 
1<|zlfa <2. 

To understand qualitatively the meaning of the solution we note first that 
&(—8 = —(8), second that P(€) > 1 - (AV m)[1 — 1/28? + ++ -Jexp(- 2) for 
é—> ©, and third that &(é) ~ (eV a1 — €/3 +--+) for |g] K< 1. For > 0, 

the arguments in (5.176) are large in magnitude; the solution obviously reduces 
to the right-hand_side of (5.172), as required. For long times (|g| << 1), 
H(z, 1) -> Hy/V vt, independent of |z|/a to leading order in an expansion in 
1/Vvt. This result is misleading, however, because the coefficients of the higher 
terms in 1/vt are z-dependent. A more revealing result is obtained by expanding 
the error functions in Taylor series in 1/2\V/ vt to the third order. The result is 

Viavt 

i 1 
H(z, t) = Ho icc + Typ (lela? - 1) ++] 6.177) 

Note that the approximate expression vanishes as yt — 0, as it should for any 
|z| > a, and goes to H, ~ Hy/V avi for vt >> |z|/2a. For |zj/a < 5, it is within 
a few percent for any vt > 1. At a given position, the field as a function of time 
has a maximum at vt ~ |z|?/2a* [exact for the approximation (5.177)], followed 
by the very slow decrease as ~'*. Figure 5.23 shows the spatial distributions of 
the magnetic field at different fixed times. 
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Starting with the differential expression 

x x 
ae = 2! ay x 

4a fx — x'| 

for the magnetic induction at the point P with coordinate x produced by an incre- 
ment of current / dl’ at x’, show explicitly that for a closed loop carrying a current 

/ the magnetic induction at P is 

Bol 
B= ae vO 

where {2 is the solid angle subtended by the loop at the point P. This corresponds. 
to a magnetic scalar potential, Py = —po/{2/4z. The sign convention for the solid 

angle is that Q is positive if the point P views the “inncr" side of the surface span- 
ning the loop, that is, if a unit normal n to the surface is defined by the direction 

of current flow via the right-hand rule, 42 is positive if m points away from the point 

P, and negative otherwise. This is the same convention as in Scction 1.6 for the 

electric dipole layer. 

A long, right cylindrical, ideal solenoid of arbitrary cross section is created by stack- 
ing a large number of identical current-carrying loops one above the other. with NV 
coils per unit length and each loop carrying a current /. [In practice such a solenoid 
could be wound on a mandrel machined to the arbitrary cross section. After the 
coil was made rigid (e.g., with epoxy), the mandrel would be withdrawn.] 

(a) In the approximation that the solenoidal coil is an ideal current sheet and 
infinitely long, use Problem 5.1 to establish that at any point inside the coil 
the magnetic field is axial and equal to 

= NI 

and that /7 = 0 for any point outside the coil. 

(b) For a realistic solenoid of circular cross section of radius a (Na >> J), but still 

infinite in length, show that the “smoothed” magnetic field just outside the 
solenoid (averaged axially over several turns) is not zero, but is the same in 
magnitude and direction as that of a single wire on the axis carrying a current 
J, even if Na > &, Compare fields inside and out. 

A tight-circular solenoid of finite length 1 and radius @ has N turns per unit length 
and carries a current /. Show that the magnetic induction on the cylinder axis in 

the limit NL > @ is 

BoNT B, = ES (cos. + cos 63) 

where the angles are defined in the figure. 

iE es ee 
me aL | 

t 
Liev eeecececnsceneccceccusorcenel Problem 5.3 

A magnetic induction B in a current-free region in a uniform medium is cylindrically 
syminetric with components B.(p, z) and B,(p, z) and with a known B.{0, z) on the 
axis of symmetry. The magnitude of the axial field varies slowly in z. 
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55 

5.6 

5.7 

{a) Show that near the axis the axial and radial components of magnetic induction 
are approximately 

| oe 
Bp, 2) = BAO, z) — (2)[ 

nin (9222) (282) - 
(bh) What are the magnitudes of the neglected terms, or equivalently what is the 

criterion defining “near” the axis? 

{a) Use the results of Problems 5.4 and 5.3 to find the axial and radial components 

of magnetic induction in the central region (\z| < 1/2) of a long uniform 
solenoid of radius @ and ends al z = +L/2, including the value of B, just inside 
the coil (vy =a ). 

{b) Use Ampére’s law to show that the longitudinal magnetic induction just out- 
side the coil is approximately 

Nie 2 2 
Bip =a", ym (2H), BE _ 98.) 

For L >> a, the ficld outside is negligible compared to inside. How does this 
axial component compare in size to the azimuthal component of Problem 
5.2b? 

{c) Show that at the end of the solenoid the magnetic induction near the axis has 
components 

rar 
Bye 4 (e 

A cylindrical conductor of radius a has a hole of radius b bored parallel to, and 
centered a distance d from, the cylinder axis (d + b < a). The current density is 
uniform throughout the remaining metal of the cylinder and is parallel (o the axis. 
Use Ampére’s law and principle of linear superposition to find the magnitude and 
the direction of the magnetic-flux density in the hole. 

A compact circular coil of radius a, carrying a current / (perhaps N turns, each with 
current J/N), lies in the x-y plane with its center at the origin. 

(a) By elementary means [Eq (5.4)] find the magnetic induction at any point on 
the z axis. 

(b) An identical coil with the same magnitude and sense of the current is located 
on the same axis, parallel to, and a distance above, the first coil. With the 
coordinate origin relocated at the point midway between the centers of the 
two coils, determine the magnetic induction on the axis near the origin as an 
expansion in powers of z, up to z* inclusive: 

_ {pole 307 = Ce? 1S? = 6b + DaNct 
B -( e dp: or 16d" * 

where d? = a> + b7/4, 

(c} Show that, off-axis near the origin. the axial and radial components, correct 
to second order in the coordinates, take the form 

B.= oy +o ‘G - 2), B, = —ocp 
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(d) For the two coils in part b show that the magnetic induction on the z axis for 

large |z| is given by the expansion in inverse odd powers of |z| obtained from 
the small z expansion of part b by the formal substitution, d > |z|. 

(e) If b = a, the two coils are known as a pair of Helmholtz coils. For this choice 

of geometry the second terms in the expansions of parts b and d are absent 
(o) = 0 in part c). The field near the origin is then very uniform. What is the 
maximum permitted value of |z|/a if the axial field is to be uniform to one 
part in 10%, one part in 10°? 

A localized cylindrically symmetric current distribution is such that the current flows 
only in the azinuthal direction; the current density is a function only of r and 0 (or 

pand z): J = od(r, @). The distribution is “hollow” in the sense that there is a 
current-free region near the origin, as well as outside. 

(a) Show that the magnetic field can be derived from the azimuthal component 

of the vector potential, with a multipole expansion 

Aglr, #) = - SD mir! Pi (cos 0) 
7 

in the interior and 

Aglr. 8) = ~'Pi (cos @) 

outside the current distribution. 

(b) Show that the internal and external multipole moments are 

m= Tos aol r*1P) (cos 0) J(r, 8) 

and 

= 1 By | te Pileos 948 

The two circular coils of radius @ and separation 6 of Problem 5.7 can be described 
in cylindrical coordinates by the current density 

I= h15(p — a)[6(z — B/2) + 8(z + b/2)) 

(a) Using the formalism of Problem 5.8, calculate the internal and external mul- 
tipole moments for L = 1,..., 5. 

(b) Using the internal multipole expansion of Problem 5.8, write down explicitly 
an expression for B. on the z axis and relate it to the answer of Problem $.7b. 

A circular current loop of radius a carrying a current / lies in the x-y plane with its 
center at the origin. 

(a) Show that the only nonvanishing component of the vector potential is 

pola [~ 
Aale 2) = | dk coskehi(kp.)K tke.) 

where p. {p..) is the smaller (larger) of a and p. 

(b) Show that an alternative expression for A, is 

Aste. 2) = PP dic oH eaystko) 
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5.11 

5.12 

5.13 

5.14 

5.15 

{c) Write down integral expressions for the components of magnetic induction, 
using the expressions of parts a and b. Evaluate explicitly the components of 
B on the z axis by performing the necessary integrations. 

A circular loop of wire carrying a current / is located with its center at the origin 

of coordinates and the normal to its plane having spherical angles 4), ¢o. There is 
an applied magnetic ficld, B, = By(l + By) and B, = Bull + Bx). 

{a) Calculate the force acting on the loop without making any approximations, 
Compare your result with the approximate result (5.69). Comment. 

(b) Calculate the torque in lowest order. Can you deduce anything about the 

higher order contributions? Do they vanish for the circular loop? What about 
for other shapes? 

Two concentric circular loops of radii a, b and currents J, J’, respectively (6 < a), 
have an angle a between their planes. Show that the torque on one of the loops is 
about the line of intersection of the two planes containing the loops and has the 
magnitude, 

y = Hott’? S (nt 1) [ r+ l¢ : 
ma pl “ 

Qa 2) On +1) [Mn + OPO ) Pana i(cos a) a 

where P}(cos @) is an associated Legendre polynomial. Determine the sense of the 
torque for a an acute angle and the currents in the same (opposite) directions. 

A sphere of radius a carries a uniform surface-charge distribution o. The sphere is 
rotated about a diameter with constant angular velocity w. Find the vector potential 
and magnetic-flux density both inside and outside the sphere. 

A long, hollow, right circular cylinder of inner (outer) radius @ (b), and of relative 
permeability 4,, is placed in a region of initially uniform magnetic-flux density By 
at right angles to the field. Find the fux density at all points in space, and sketch 
the logarithm of the ratio of the magnitudes of B on the cylinder axis to By as a 
function of logyy 4, for a’/b? = 0.5, 0.). Neglect end effects. 

Consider two long, straight wires, parallel to the z axis, spaced a distance d apart 
and carrying currents / in opposite directions. Describe the magnetic field Hin 
terms of a magnetic scalar potential ,,, with H — —Vd,,, 

(a) If the wires are parallel to the z axis with positions, x = +d/2, y = 0, show 
that in the limit of small spacing, the potential is approximately that of a two- 
dimensional dipole, 

by = - é 
2ap 

where p and ¢ are the usual polar coordinates. 

{b} The closely spaced wires are now centered in a hollow right circular cylinder 

of steel, of inner (outer) radius @ (6) and magnetic permeability 42 = ji,p00 
Determine the magnetic scalar potential in the three regions, 0 < p < a, 
4a <p <b.and p> b. Show that the field outside the steel cylinder is a tw 

dimensional dipoie field, as in part a, but with a strength reduced by the factor 

| rs cokes 
© (Hy + PEP = (ue = VP? 

Relate your result to Problem 5.14. 

(c) Assuming that », >> 1. and b = a + ¢, where the thickness ¢ << bh, write down 

an approximate expression for F and determine its numerical value for 
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#, = 200 (typical of steel at 26 G), b = 1.25 cm, # = 3. mm. The shielding effect 
is relevant for reduction of stray fields in residential and commercial 60 Hz, 

110 or 220 V wiring. The figure illustrates the shiclding effect for a/b = 0.9, 

be = 100. 

Problem 5.15 

A circular loop of wire of radius a and negligible thickness carries a current /. The 
loop is centered in a spherical cavity of radius b > a in a large block of soft iron. 
Assume that the relative permeability of the iron is effectively infinite and that of 
the medium in the cavity, unity. 

(a) In the approximation of 6 >> a, show that the magnetic field at the center of 
the loop is augmented by a factor (1 + «'/2b*) by the presence of the iron. 

(b) What is the radius of the “image” current loop (carrying the same current) 
that simulates the effect of the iron for r < b? 

A current distribution J(x) exists in a medium of unit relative permeability adjacent 
to a semi-infinite slab of material having relative permeability 4, and filling the half- 

space, z <0. 

(a) Show that for z > 0 the magnetic induction can be calculated by replacing the 
medium of permeability 4, by an image current distribution, J*, with 
components, 

tpn (Bethun-a -(Estpen-s 
(b) Show that for z < 0 the magnetic induction appears to be due to a current 

distribution [2y,,/(u, + 1)]J in a medium of unit relative permeability. 

A circular loop of wire having a radius @ and carrying a current / is located in 
vacuum with its center a distance ¢ away from a semi-infinite slab of permeability 
#. Find the force acting on the loop when 

(a) the plane of the loop is parallel to the face of the slab, 

{b) the plane of the loop is perpendicular to the face of the slab. 

{c) Determine the limiting form of your answer to parts a and b when d >> a. 
Can you obtain these limiting values in some simple and direct way? 
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5.19 

5.28 

5.22 

A magnetically “hard” material is in the shape of a right circular cylinder of length 
L and radius a. The cylinder has a permanent magnetization Mo, uniform through- 
out its volume and parallel to its axis. 

(a) Determine the magnetic field H and magnetic induction B at all points on the 
axis of the cylinder, both inside and ouside. 

(b) Plot the ratios B/yyMy and H/M, on the axis as functions of z for Lia = 5, 

(a) Starting from the force equation (5.12) and the fact that a magnetization M 

inside a volume V bounded by a surface S is equivalent to a volume current 

density J,, = (V x M) and a surface current density (M x n), show that in 
the absence of macroscopic conduction currents the total magnetic force on 
the body can be written 

F= -{ (Vs MDB, dx 1 [on ay, da 

where B. is the applied magnetic induction (not including that of the body in 

question), The force is now expressed in terms of the effective charge densities 
py and oy, If the distribution of magnetization is not discontinuous, the sur- 

face can be at infinity and the force given by just the volume integral. 

(b)_ A sphere of radius R with uniform magnetization has its center at the origin 
of coordinates and its direction of magnetization making spherical angles 6, 
by. Tf the external magnetic ficld is the same as in Problem 5.11, use the 
expression of part a to evaluate the components of the force acting on the 
sphere. 

A magnetostatic field is due entirely to a localized distribution of permanent 
magnetization. 

(a) Show that 

/ B-Hd’x =0 

provided the integral is taken over all space. 

{b) From the potential energy (5.72) of a dipole in an external field, show that for 
a continuous distribution of permanent magnetization the magnetostatic en- 
ergy can be written 

w= [nende= | Mena'y 

apart from an additive constant, which is independent of the oricntation or 
position of the various constituent magnetized bodies. 

Show that in general a long. straight bar of uniform cross-sectional area A with 
uniform lengthwise magnetization M, when placed with its flat end against an infi- 

nitely permeable flat surface, adheres with a force given approximately by 

Ho 2 = ane > M 

Relate your discussion to the clectrostatic considerations in Section 1.11. 

A right circular cylinder of length £ and cadius a has a uniform lengthwise mag- 
netization M. 
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(a) Show that, when it is placed with its flat end against an infinitely permeable 

plane surface, it adheres with a force 

P= 2a] = 2 _ Kad ed) 

where 

k= 2 
Var + 12" 

(b) Find the limiting form for the force if L >> a. 

(a) For the perfectly conducting plane of Section 5.13 with the circular hole in it 
and the asymptotically uniform tangential magnetic field Hy on one side, cal- 
culate the added tangential magnetic field H'” on the side of the plane with 
Hp. Show that its components for p > a are 

+ fle 
7 lpy 

(b) Sketch the lines of surface current flow in the neighborhood of the hole on 
both sides of the plane. 

A flat right rectangular loop carrying a constant current /, is placed near a long 
straight wire carrying a current /;. The loop is oriented so that its center is a per- 
pendicular distance d from the wire; the sides of length a are parallel to the wire 
and the sides of length 6 make an angle a with the plane containing the wire and 
the loop’s center. The direction of the current /, is the same as (hat of /, in the side 
of the rectangle nearest the wire. 

(a) Show that the interaction magnetic energy 

w, fara =F 

(where F; is the magnetic flux from /, linking the rectangular circuit carrying 

hy). is 

Bol ha 
an 

(b} Calculate the force between the loop and the wire for fixed currents, 

{c) Repeat the calculation for a circular loop of radius @, whose plane is parallel 
to the wire and makes an angle @ with respect to the plane containing the 
center of the loop and the wire. Show that the interaction energy is 

Wis — auld: Re le -— Ve" ai} 

Find the force. 

(a) For both loops, show that when d >> a,b the interaction cnergy reduces to 
Wy. ~ m+ B, where m is the magnetic moment of the loop. Explain the sign. 

A two-wire transmission line consists of a pair of nonpermeable parallel wires of 
radii a and separated by a distance d > @ + 6. A current flows down one wire 
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$.29 

5.30 

and back the other. It is uniformly distributed over the cross section of cach wire, 
Show that the self-inductance per unit length is 

feel) 
A circuit consists of a long thin conducting shell of radius a and a parallel return 
wire of radius 6 on axis inside. If the current is assumed distributed uniformly 
throughout the cross section of the wire. calculate the self-inductance per unit 
length. What is the self-inductance if the inner conductor is a thin hollow tube? 

Show that the mutual inductance of two circular coaxial loops in a homogencous 

medium of permeability y« is 

Me = wvas| (2 - «Kw -= ol 

where 

4ab 

PGF TE 

and a, b are the radii of the loops, d is the distance between their centers. and K 
and £ are the complete elliptic integrals. 

Find the limiting value when d < a, b and u = b. 

The figure represents a transmission line consisting of two, parallel perfect conduc- 
tors of arbitrary, but constant, cross section. Current flows down one conductor and 
returns via the other. 

Problem 5.29 

Show that the product of the inductance per unit length L and the capacitance 
per unit length C is 

LC = pe 

where w and € are the permeability and the permittivity of the medium surrounding 
the conductors. (Sce the discussion about magnetic ficlds near perfect conductors 
at the beginning of Section 5.13.) 

(a) Show that a surface current density K(¢) = J cos /2R flowing in the axial 
direction on a right circular cylindrical surface of radius R produces inside the 
cylinder a uniform magnetic induction By = jin//4R in a direction perpendic- 
ular to the cylinder axis. Show that the ficld outside is that of a two-dimen- 
sional dipole. 

(b) Calculate the total magnetostatic ficld energy per unit length. How is it divided 
inside and outside the cylinder? 

(©) What is the inductance per unit length of the system, viewed as a long circuit 
with current flowing up one side of the cylinder and back the other? 

Answer: L = mpy/8. 
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An accelerator bending magnet consists of N turns of superconducting cable whose 
current configuration can be described approximately by the axial current density 

Jp. 6) = (eos Xp ~ R) 

The right circular current cylinder is centered on the axis of a hollow iron cylinder 

of inner radius R‘ (R' > R). The relative dimensions (R, R’ a few centimeters and 
a magnet length of several meters) permit the use of a two-dimensional approxi- 
mation, at least away from the ends of the magnet. Assume that the relative per- 
meability of the iron can be taken as infinite. [Then the outer radius of the iron is 
irrelevant] 

(a) Show that the magnetic field inside the current sheath is perpendicular to the 
axis of the cylinder in the direction defined by 6 = +7/2 and has the 
magnitude 

HoNE 3 =(—)li+— 
By ( 4R Ip x| 

(b) Show that the magnetic energy inside r = R is augmented (and that outside 

diminished) relative to the values in the absence of the iron. (Compare part b 
of Problem 5.30.) 

(¢} Show that the inductance per unit length is 

A circular loop of mean radius a is made of wire having a circular cross section of 
radius b, with b << a, The sketch shows the relevant dimensions and coordinates 

for this problem. 

Problem 5.32 

(a) Using (5.37), the expression for the vector potential of a filamentary circular 
loop. and appropriate approximations for the clliptic integrals, show that the 
vector potential at (he point P near the wire is approximately 

Ag = (olf27[InBaip) ~ 2] 

where p is the transverse coordinate shown in the figure and corrections are 

of order (pla)cos @ and (p/a)*. 

(b) Since the vector potential of part a is, apart from a constant, just that outside 
a straight circular wire carrying a current /, determine the vector potential 
inside the wire (p < 8) in the same approximation by requiring continuity of 
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5.34 

Ag and its radial derivative at p = 5, assuming that the current is uniform in 
density inside the wire: 

Ag = Giolla — pb?) | (uoll2a)[In(Balb) — 2]. p< b 

{e) Use (5.149) to find the magnetic energy, hence the self-inductance, 

L = poelin(8alb) - 7/4] 

Are the corrections of order b/a or (b/a)"? What is the change in L if the 
current is assumed to flow only on the surface of the wire (as occurs at high 
frequencies when the skin depth is small compared to 6)? 

Consider two current loops (as in Fig. 5.3) whose oricntation in space is fixed, but 
whose relative separation can be changed. Let O, and O, be origins in the two 
loops, fixed relative to each loop, and x; and x, be coordinates of elements dl and 
dk, respectively, of the loops referred to the respective origins. Let R be the relative 
coordinate of the origins, directed from loop 2 to loop L. 

(a) Starting from (5.10), the expression for the force between the loops 
it can be written 

Fry = AhVeM(R) 

where Mf). is the mutual inductance of the loops, 

and it is assumed that the orientation of the loops does not change with R, 

(b) Show that the mutual inductance. viewed as a function of R, is a solution of 
the Laplace equation, 

VRM,(R) = 0 

The importance of this result is that the uniqueness of solutions of the Laplace 
equation allows the exploitation of the properties of such solutions, provided 
a solution can be found for a particular value of R. 

Two identical circular loops of radius a are initially located a distance & apart on 
a common axis perpendicular to their planes. 

(a) From the expression Wiz = f d'x J, + A, and the result for Ay from Problem 
5.10b, show that the mutual inductance of the loops is 

My = some? [ dke *Fi{ka) a 

(b) Show that for R > 2a, M,, has the expansion, 

el) o@) FQ] 
(©) Use the techniques of Section 3.3 for solutions of the Laplace equation to 

show that the mutual inductance for two coplanar identical circular loops of 

radius a whose centers are separated by a distance R > 2a is 

wa= A [(8) +3) RG) +] 
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(d} Calculate the forces between the loops in the common axis and coplanar con- 
figurations. Relate the answers to those of Problem 5.18. 

An insulated coil is wound on the surface of a sphere of radius a in such a way as 
to produce a uniform magnetic induction Bg in the z direction inside the sphere 
and dipole field outside the sphere. The medium inside and outside the sphere has 

a uniform conductivity o and permeability 2. 

(a) Find the necessary surface current density K and show that the vector poten- 
tial describing the magnetic field has only an azimuthal component, given by 

where r.. (r.,) is the smaller (larger) of r and a. 
(b) Ate =0 the current in the coil is cut off. [The coil’s presence may be ignored 

from now on.] With the neglect of Maxwell's displacement current, the decay 
of the magnetic field is described by the diffusion equation, (5.160). Using a 
Laplace transform and a spherical Bessel function expansion (3.113), show 
that the vector potential at times ¢ > O is given by 

Ay = sin [ e ~*ja0i(®) dk 

where » = I/you’ is a characteristic decay rate and j,(x) is the spherical Bessel 
function of order one. Show that the magnetic field at the center of the sphere 
can be written explicitly in terms of the error function P(x) as 

1 i 1 
BAO, 1) = alo( 4) = on en(-2)] 

(ec) Show that the total magnetic energy at time ¢ > 0 can be written 

OBRat 
Wy = SEY 6 2 NP ate 

Show that at long times {v1 >> 1) the magnetic energy decays asymptotically 

as 

ViaBia* 

=" 2ay(ory” 

(a) Find a corresponding expression for the asymptotic form of the vector poten- 
tial (al fixed r, @ and vt > %) and show that it decays as (vt)"*? as well. Since 
the energy is quadratic in the field strength, there seems to be a puzzle here. 

Show by numerical or analytic means that the behavior of the magnetic field 

at time ¢ is such that, for distances small compared to R = a(vt)'? >> a, the 
field is uniform with strength (By/67') (v)~*?, and for distances large com- 
pared to R, the field is essentially the original dipole field. Explain physically. 

The time-varying magnetic field for t > 0 in Probiem 5.35 induces an electric field 

and causes current to flow. 

(a) What components of clectric field exist? Determine integral expressions for 
the components of the electric field and find a simpie explicit form of the 

current density J = oE at = 0’. Compare your result with the current density 
of Problem 5.35a. Find the asymptotic behavior of the electric ficlds im time. 
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(b} With Ohm’s law and the electric fields found in part a, show that the total 

{c) 

power dissipated in the resistive medium can be written 

ee wo 

Note that the power is the negative time derivative of the magnetic energy, 
Wa 

Because of Ohm's law, the total electric energy is W. = €)P/20. The total 
energy is the sum of W, and W,,; its time derivative should be the negative of 
the power dissipation. Show that the neglect of the energy in the electric ficld 
is the same order of approximation as neglect of the displacement current in 
the equations governing the magnetic field. 



CHAPTER 6 

Maxwell Equations, 
Macroscopic Electromagnetism, 
Conservation Laws 

Tn the preceding chapters we dealt mostly with steady-state problems in clectric- 
ity and in magnetism, Similar mathematical techniques were employed, but elec- 

tric and magnetic phenomena were treated as independent. The only link 
between them was that the currents that produce magnetic fields are basically 
electrical in character, being charges in motion. The almost independent nature 
of clectric and magnetic phenomena disappears when we consider time- 
dependent problems. Faraday’s discovery of induction (Section 5.15) destroyed 
the independence. Time-varying magnetic fields give rise to electric fields and 
vice versa. We then must speak of electromagnetic fields, rather than clectric or 
magnetic fields. The full import of the interconnection between electric and mag- 
netic ficlds and their essential sameness becomes clear only within the framework 
of special relativity (Chapter 11). For the present we content ourselves with cx- 
amining the basic phenomena and deducing the sct of equations known as the 
Maxwell equations, which describe the behavior of electromagnetic fields. Vector 
and scalar potentials, gauge transformations, and Green functions for the wave 
equation are next discussed, including retarded solutions for the ficlds, as well as 
the potentials. There follows a derivation of the macroscopic equations of clec- 
tromagnetism. Conservation laws for energy and momentum and transformation 
properties of electromagnetic quantities are treated. as well as the interesting 
topic of magnetic monopoles. 

6.1 Maxwell’s Displacement Current; Maxwell Equations 

The basic laws of electricity and magnetism we have discussed so far can be 
summarized in differential form by these four (not yet Maxwell) equations: 

COULOMB'S LAW V-D=p 

AMPERE'’S LAW (V+ J = 0) VxH=J5 

aB 6.1 
FARADAY'S LAW VxEt+ oa: =0 6) 

j 

ABSENCE. OF FREE MAGNETIC POLES V-B=0 

Let us recail that all but Faraday’s law were derived from steady-state observa- 
tions. Consequently, from a logical point of view there is no a priori reason to 

237 
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expect that the static equations wiil hold unchanged for time-dependent fields, 
In fact. the equations in sct (6.1) arc inconsistent as they stand. 

It required the genius of J. C. Maxwell. spurred on by Faraday’s observations, 
to see the inconsistency in equations (6.1} and to modify them into a consistent 

t that implied new physical phenomena, at the time unknown but subsequently 
rificd in all details by experiment. For this brilliant stroke in 1865, the modified 

set of equations is justly known he Maxwell equations. 

The faulty equation is Ampére’s law. It was derived for steady-state current 

phenomena with V+ J = 0. This requirement on the divergence of J is contained 
right in Ampére’s law, as can be scen by taking the divergence of both sides: 

V-J=V-(V x H)=0 (6.2) 
While V-J = 0 is valid for steady-state problems, the general relation is given 
by the continuity equation for charge and current: 

vea+ 2g (63) 
on 

What Maxwell saw was that the continuity equation could be converted into a 
vanishing divergence by using Coulomb’s law (6.1). Thus 

viss2-v.(s+2)—o (64) 

‘Then Maxwell replaced J in Ampére’s law by its generalization 

or 

for time-dependent ficlds. Thus Ampére’s law became 

VxH=J+ ap (6.5) 
a 

still the same, experimentally verified, law for steady-state phenomena, but now 
mathematically consistent with the continuity equation (6.3) for time-dependent 
ficlds. Maxwell called the added term in (6.5) the displacement current. Its pres- 

ence means that a changing electric ficld causes a magnetic field, even without a 
current—the converse of Faraday’s law. This necessary addition to Ampére’s law 
is of crucial importance for rapidly fluctuating fields. Without it there would be 
no clectromagnetic radiation, and the greatest part of the remainder of this book 
would have to be omitted. It was Maxwell’s prediction that light was an clectro- 
magnetic wave phenomenon. and that clectromagnetic waves of all frequencies 
could be produced, that drew the attention of all physicists and stimulated so 
much theoretical and experimental research into electromagnetism during the 
last part of the nineteenth century. 

‘The set of four equations, 

V-D=p vxn=s+ 2 

(6.6) 
v-B=0 vxE+ 

OF 
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known as the Maxwell equations, forms the basis of all classical electromagnetic 
phenomena. When combined with the Lorentz force equation and Newton’s s 
ond law of motion, these equations provide a complete description of the cla: 
dynamics of interacting charged particles and electromagnetic fields (sce Section 

6.7 and Chapters 12 and 16). The range of validity of the Maxwell equations is 
discussed in the Introduction, as are questions of boundary conditions for the 
normal and tangential components of ficlds at interfaces between different me- 
dia. Constitutive relations connecting E and B with D and H were touched on 
in the Introduction and treated for static phenomena in Chapters 4 and 5. More 
is said later in this chapter and in Chapter 7. 

‘The units employed in writing the Maxwell cquations (6.6) are those of the 

preceding chapicrs, namely, SE. For the reader more at home in other units, such 
as Gaussian, Table 2 of the Appendix summarizes essential cquations in the 
commoner sysicms. Table 3 of the Appendix allows the conversion of any equa- 
tion from Gaussian to SI units or vice versa, while Table 4 gives the corresponding 
conversions for given amounts of any variable. 

6.2 Vector and Scalar Potentials 

‘The Maxwell equations consist of a set of coupled first-order partial differential 
equations relating the various components of clectric and magnetic fields. ‘They 
can be solved as they stand in simple situations. But it is often convenient to 
introduce potentials, obtaining a smaller number of second-order equations, 
while satisfying some of the Maxwell equations identically. We are already fa- 
miliar with this concept in electrostatics and magnctostatics, where we used the 

scalar potential © and the vector potential A. 
Since V+ B = 0 still holds, we can define B in terms of a vector potential: 

B=UxA (6.7) 

Then the other homogencous equation in (6.6), Faraday’s law, can be written 

x (e + *) =0 (6.8) 
oO 

This means that the quantity with vanishing curl in (6.8) can be written as the 
gradient of some scalar function, namely, a scalar potential ®: 

E+ 4-_vo 
ot 

or (6.9) 

E = -vo — 2A 
at 

‘The definition of B and E in terms of the potentials A and ® according to (6.7) 

and (6.9) satisfics identically the two homogencous Maxweil equations. The dy- 
namic behavior of A and © will be determined by the two inhomogencous equa- 
tions in (6.6). 

At this slage il is convenient to restrict our considerations to the vacuum 
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form of the Maxwell equations. Then the inkomogencous cquations in (6.6) can 
be wriiten in terms of the potentials as 

Woh + Paul - A} = —pley (6.10) 

Lea 1 a® 
VA - aR v(v- Ats 4%) = pod (6.11) 

We have now reduced the set of four Maxwell equations to two equations. But 

they are still coupled equations. The uncoupling can be accomplished by exploit- 
ing the arbitrariness involved in the definition of the potentials. Since B is defined 
through (6.7) in terms of A. the vector potential is arbitrary to the extent that 

the gradient of some scalar function A can be added. Thus B is left unchanged 
by the transformation, 

A>A'=A+VA (6.12) 
For the electric field (6.9) to be unchanged as well, the scalar poicntial must be 
simultaneously transformed, 

bo =d-— (6.13) 

The freedom implied by (6.12) and (6.13) means that we can choose a set of 
potentials (A, ®) to satisfy the Lorenz condition (1867),* 

V-At+>5—=0 (6.14) ¢ 

This will uncouple the pair of equations (6.10) and (6.11) and leave two inho- 
mogencous wave cquations, one for ® and one for A: 

1 PO 
ear 

Vp — —pley (6.15) 

— pod (6.16) 

Equations (6.15) and (6.16), plus (6.14). form a set of equations cquivalent in all 

respects to the Maxwell cquations in vacuum, as observed by Lorenz and others. 

6.3 Gauge Transformations, Lorenz Gauge, Coulomb Gauge 

The transformation (6.12) and (6.13) is called a gauge transformation, and the 

invariance of the fields under such transformations is called gauge invariance. To 
sce that potentials can always be found to satisfy the Lorenz condition, suppose 

that the potentials A, ® that satisfy (6.10) and (6.11) do not satisfy (6.14). Then 

Ict us make a gauge transformation to potentials A‘, ®’ and demand that A’, 

satisfy the Lorenz condition: 

ag’ i 1#A 
via te cgay at tm yy 17 

* 2a? a 2 at Yee Cat (617) 

*L. V. Lorenz, Phil. Mag. Ser. 3, 34, 287 (1867). See aise p. 294. 
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Thus, provided a gauge function A can be found to salisfy 

a i ab va 4 d us - -(¥ eA i) (6.18) 2 

the new potentials A’, @ will satisfy the Lorenz condition and the wave cquations 

(6.15) and (6.16). 
Even for potentials that satisfy the Lorenz condition (6.14) there is arbitrar- 

iness. Evidently the restricted gauge transformation, 

A>A+VA 
Poth os (6.19) 

at 

where 

1A 
VA 5 zx =0 (6.20) 

preserves the Lorenz condition, provided A, ® satisfy it initially. All potentials 
in this restricted class arc said to belong to the Lorenz gauge. The Lorenz gauge 
is commonly used, first because it leads to the wave equations (6.15) and (6.16), 
which treat ® and A on cquivalent footings, and sccond because it is a concept 
independent of the coordinate system chosen and so fits naturally into the con- 
siderations of special relativity (sec Section 11.9). 

Another useful gauge for the potentials is the so-called Coulomb, radiation, 
or transverse gauge. This is the gauge in which 

V-A=0 (6.21) 

From (6.10) we sec that the scalar potential satisfics the Poisson equation, 

Vb = —pley (6.22) 

with solution, 

o(x,) = | OD py (6.23) 
4me,J |x — x 

The scalar potential is just the éstantaneous Coulomb potential duc to the charge 
density p(x, ¢). This is the origin of the name “Coulomb gauge.” 

The vector potential satisfies the inhomogeneous wave equation, 

1%, ab 

ea at 
VA (6.24) 

The term invoiving the scalar potential can, in principle, be calculated from 
(6.23). Since it involves the gradient operator, it is a term that is irrotational, that 

is, has vanishing curt. This suggests that it may cancel a corresponding picce of 
the current density. The current density (or any vector field) can be written as 

the sum of two terms, 

J=h+5, (6.25) 
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where J, is called the longitudinal or irrotational current and-has ¥ x J, = 0. 
while J, is called the transverse or solenoidal current and has ¥ - 0. Starting 
from the vector identity, 

Vx (Vx J = 0-3) - WE (6.26) 

together with ¥°(1/|x — x"|) = —476(x — x"), it can be shown that J, and J, can 
be constructed explicitly from J as follows: 

(6.27) 

(6.28) 

(6.29) 

Therefore the source for the wave equation for A can be expressed entirely in 
terms of the transverse current (6.28): 

Leva 

? or 
VA = — pod (6.30) 

‘This, of course, is the origin of the name “transverse gauge."* The name “radia- 
tion gauge” stems from the fact that transverse radiation ficlds are given by the 
vector potential alone, the instantaneous Coulomb potential contributing only to 
the near ficlds, This gauge is particularly useful in quantum clectrodynamics, A 
quantum-mechanical description of photons necessitates quantization of only the 
vector potential. 

‘The Coulomb or transverse gauge is often used when no sources are present. 
Then & = 0, and A satisfies the homogencous wave cquation. The fields are 
given by 

ot (6.31) 
B=VxA 

In passing we note a peculiarity of the Coulomb gauge. It is well known that 
clectromagnetic disturbances propagate with finite speed. Yet (6.23) indicates 
that the scalar potential “propagates” instantancously everywhere in space. The 
vector potential, on the other hand, satisfies the wave equation (6.30). with its 
implied finite speed of propagation c. At first glance it is puzzling to see how 
obviously unphysical behavior is avoided. A preliminary remark is that it is the 
fields. not the potentials, that concern us. A further observation is that the trans- 
verse current (6.28) extends over all space, even if J is localized.* 

*See Q. L. Brill and B, Goodman, Am. J. Phys. 35, 832 (1967) for a detailed discussion of causality 
in the Coulomb gauge. Sce also Problem 6.20. 
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6.4 Green Functions for the Wave Equation 

The wave equations (6.15), (6.16), and (6.30) aif have the basic structure 

1° 
vy — a= —Aaf(x. 1) (6.32) 

where f(x, f) is a known source distribution. The factor c is the velocity of prop- 
agation in the medium, assumed here to be without dispersion, 

To solve (6.32) it eful to find a Green function, just as in clectrostatics. 

We consider the simple situation of no boundary surfaces and proceed to remove 

the explicit time dependence by introducing a Fourier transform with respect to 
frequency. We suppose that V(x, f) and f(x. 4) have the Fourier integral 

representations, 

VR d= x | Wx, we" dw 
wd x 
Be (6.33) 

F(x. = a3 : f(x. we dw 

with the inverse transformations, 

W(x. w) = | W(x. Ne dt 

i (6.34) 
f(x. @) = is F(x. De™ dt 

When the representations (6.33) are inserted into (6.32) it is found that the 
Fouricr transform W(x, «) satisfies the inhomogeneous Helmholtz wave equation 

(V+ KY (x, w) = —4arf(x. w) (6.35) 

for each value of w. Here k = wie is the wave number associated with frequency 
«. In this form, the restriction of no dispersion is unnecessary. A priori, any 
connection between k and @ is allowed. although causality imposes some restric- 
lions (sec Section 7.10). 

Equation (6.35) is an elliptic partial differential cquation similar to the 
Poisson equation to which it reduces for k = 0. The Green function G(x, x') 
appropriate to (6.35) satisfies the inhomogencous cquation 

(VF + RIG (x, x!) = —4778(x — x’) (6.36) 

If there are no boundary surfaces, the Green function can depend only on R = 
x — x’, and must in fact be spherically symmetric. that is. depend only on 
R = |R|. From the form of the Laplacian operator in spherical coordinates [sec 
(3.1)]. it is evident that G,(R) satisfies 

1@ 
ta (RG,) + RG, = —478(R) (6.37) 
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Everywhere except R = 0, RG,{R) satisties the homogeneous equation 

ate (RG) + R(RG,) = 0 
dR* 

with solution, 

RG,(R) = Ae“? + Be" *# 

Furthermore, the delta function in (6.37) has influence only at R > 0. In that 

limit the equation reduces to the Poisson equation, since KR << 1. We therefore 
know from electrostatics that the correct normalization is 

1 
lim G,(R) = (6.38) kR=0 R 

The general solution for the Green function is thus 

G(R) = AGO(R) + BGO”(R) (6.39) 

where 

GER) = (6.40) 

with A + B = 1. With the convention of (6.33) for the time dependence, the first 
term in (6.39) represents a diverging spherical wave propagating from the origin, 
while the second represents a converging spherical wave. 

The choice of A and B in (6,39) depends on the boundary conditions in time 
that specify the physical problem. It is intuitively obvious that, if a source is 
quicscent until some time ¢ = 0 and then begins to function. the appropriate 
Green function is the first term in (6.39), corresponding to waves radiated out- 
ward from the source after it begins to work. Such a description is certainly 
correct and also convenient, but is not unique or necessary. By suitable specifi- 
cation of the wave amplitude at boundary times, it is possible to employ the 
second term in (6.39). not the first, to describe the action of the source. 

To understand the different time behaviors associated with G{'? and Gi? 
we need to construct the corresponding time-dependent Green functions that 
satisfy 

(: - SE Jorn Ex’) = -478(x — x’)O- 1) 6.41) 

Using (6.34) we see that the source term for (6.35) is 

—4778(x — x'Je"" 

The solutions are therefore G{R)e". From (6.33) the time-dependent Green 
functions are 

erkR 
GOR, 7) = xl en" das (6.42) 

where 7 = ¢ — ¢’ is the relative time appearing in (6.41). The infinite-space Green 
function is thus a function of only the relative distance R and the relative time 
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7 between source and observation point. For a nondispersive medium where 
k = oc, the integral in (6.42) is a defta function. The Green functions are 

GOR, 1) = ; af = *) (6.43) 

(t=) 
Ix — x'] 

or, more explicitly, 

GOE, 5x’, ’) = (6.44) 

The Green function G is called the retarded Green function because it exhibits 
the causal behavior associated with a wave disturbance. The argument of the 
delta function shows that an effect observed at the point x at time ¢ is caused by 
the action of a source a distance R away at an carlicr or retarded time, i = 

t — Ric. The time difference Ric is just the time of propagation of the disturbance 

from one point to the other. Similarly, G~ is called the advanced Green function. 
Particular integrals of the inhomogencous wave equation (6.32) are 

Wx, = | { GO, tx’, UF, 0) Ax! de’ 

To specify a definite physical problem, solutions of the homogencous equation 
may be added to cither of these. We consider a source distribution f(x’, t’) that 
is localized in time and space. It is different from zero only for a finite interval 
of time around /' = 0. Two limiting situations are envisioned. In the first it is 
assumed that at time > —© there exists a wave ¥,,(x, ) that satisfics the 
homogencous wave equation. This wave propagates in time and space; the source 
turns on and generates waves of its own. The complete svlution for this situation 

at all limes is evidently 

W(x, ) = Vinx, + J | GO(x, tx’ FO", 1) Ax! de! (6.45) 

The presence of G“? guarantees that at remotely carly times, t, before the source 
has been activated, there is no contribution from the integral. Only the specified 
wave Wj, exists. The second situation is that at remotely late times (¢ > +) the 

wave is given as Wou(X, 2), a known solution of the homogencous wave equation. 
Then the compicte solution for all times is 

W(x, 2) = Woodx, 9 + I] GOD, 6 x OFX, 1) ax! dt’ (6.46) 

Now the advanced Green function assures that no signal from the source shall 
exist explicitly after the source shuts off {ail such signals are by assumption in- 

cluded in Vaud) 
The commonest physical situation is described by (6.45) with ¥,, = 0. It is 

somctimes written with the Green function (6.44) inserted explicitly: 

. ae a 
V(x. = Ue Oh Px (6.47) 
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The square bracket ( _J,.: means that the time ¢’ is to be evaluated at the retarded 
time. = 2 — |x — x’ |/e. 

The initial or final value problem at finite timcs has been extensively studied 
in onc, two, and three dimensions, The reader may refer to Morse and Feshbach 
(pp. 843-847) and also to the more mathematical treatment of Hadamard. 

Retarded Solutions for the Fields: Jefimenko’s Generalizations 
of the Coulomb and Biot-Savart Laws; Heaviside~Feynman 
Expressions for Fields of Point Charge 

Use of the retarded solution (6.47) for the wave equations (6.15) and (6.16) yietds 

1 1 0.0 = [ate Eipe. he tea 
1 

A(x, 0) = al Bx BO Ye 

where we have defined R = x — x’, with R = |x — x’| and (below) R = R/R. 
‘These solutions were first given by Lorenz (op. cit.). In principle, from these two 
equations the clectric and magnetic ficlds can be computed. but it is often useful 
to have retarded integral solutions for the fields in terms of the sources. 

Either directly from the Maxwell equations or by usc of the wave equations 
for ® and A, (6.15) and (6.16), and the definitions of the ficlds in terms of the 
potentials, (6.7) and (6.9). we can arrive at wave equations for the fietds in free 
space with given charge and current densities, 

VE - (6.49) 

and 

VB-=—>=-pVxJ (6.50) 

The wave equation for cach of the Cartesian ficld components is in the form 
(6.32), The retarded solutions (6.47) for the ficlds can immediately be written in 
the preliminary forms 

1 i oll 1 ag 
=—] dx s}-vp- 55 51 Fa.) = ee | a él Ve-s a) (651) 

and 

1 : B(x, ) = Bs | ay gilt x Sle: (6.52) 

These preliminary expressions can be cast into forms showing explicitly the static 
limits and the corrections to them by extracting the spatial partial derivatives 
from the retarded integrands. There is a subticty here because V’[ f]rer # [V’ flee: 
The meaning of ¥’ under the retarded brackct is a spatial gradicnt in x‘, with ¢' 
fixed; the meaning outside the retarded bracket is a spatial gradient with respect 
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to x’, with x and ¢ fixed. Since [f(x', }]rer = f(x’, ¢ — Ric), it is necessary to 
correct for the x’ dependence introduced through R when the gradient operator 

is taken outside. Explicitly, we have 

[ole = V'[lee - [2] Vie — Rio) = Vole - = [2] 653) 
ar at 

and 

Vx [ee + [21 x V(r — Ric) 

a. mt 

Vv’ x Tle + 2] xR 
ci ar ii. 

If these expressions are substituted into the preliminary forms of the solutions 
and an integration by parts is performed on the first (gradient or curl) term in 

each case, we arrive at 

[VX Fret 
(6.54) 

I 

[2 a) Be.) = tof ate {% Loa’ le + & [200% ‘ne me 
Ae, 

oe AIG, 0) vy 

OR fee 

Bo, 9 = Hf ae’ {ise Ye X as + [aet) a x al (6.56) 

and 

If the charge and current densities are time independent, the expressions reduce 
to the famitiar static expressions (1.5) and (5.14). The terms involving the time 

derivatives and the retardation provide the gencralizations to time-dependent 
sources. These two results, sometimes known as Jefimenko’s generalizations of 
the Coulomb and Biot-Savart laws, were popularized in this author’s text, 
(Jefimenke). 

In passing, we note that because the integrands are to be viewed as functions 

of x, x", and ¢, with ” = ¢ — |x — x’ |/c, the time derivatives in the integrands have 
the property 

[eal = 2 1F6, 1h 657) 
ott 

This retation facilitates the specialization of the Jefimenko formulas to the Heay- 
iside-Feynman expressions for the ficlds of a point charge. With p(x’, 1") = 

g(x! — ro(t’)] and I(x’, ') = pv(#’), (6.55) and (6.56) specialize to 

_ 4 R af~R] aly 

- Ame, {[ael., * ea FA eat EB On 

wog {Tv xR af[vxR _ Hot sy VER 59 
Be ae {| KR? |. #: z| KR tee (Om?) 

and 
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Here R is the distance from the position of the charge to the observation point: 
R is a unit vector from the charge toward the observation point; v is the charge’s 
velocity: « = 1 — v- Ric is a retardation factor. [See Problem 6.2.] It is important 
to note that now there is a difference between a[- --e/d¢ and [a ---/4t] 44 because 
x’ > r(z’), where rp is the position of the charge. The fields are functions of x 
and ¢, with ¢’ = ¢ — [x — ro(t’)|/c. Feynman's expression for the electric field is 

4g R [Rhee a PR F E= + = + i . Fae, {{2I. coat LRA, * cag Rhee (6.60) 
while Heaviside’s expression for the magnetic field is 

bog FL ¥ x R 1 afvxR 
B= + = 6. a Uae yaaa : wen 

The equivalence of the two scts of expressions for the fietds follows from some 
careful algebra. 

6.6 Derivation of the Equations of Macroscopic Electromagnetism 

The discussion of electromagnetism in the preceding chapters has been based on 
the macroscopic Maxwell equations, 

vV-B=0 VxE+— =0 

(6.62) 
V-D=p VxH-—=J 

where E and B are the macroscopic electric and magnetic ficld quantities, D and 
H arc corresponding derived fields, related to E and B through the polarization 
P and the magnetization M of the material medium by 

D= «E+ P, H=—B-M (6.63) 
Bo 

Similarly, p and J are the macroscopic (free) charge density and current density, 
respectively. Although these equations arc familiar and totally acceptable, we 
have yet to present a scrious derivation of them from a microscopic starting point. 
This deficiency is remedied in the present section. The derivation remains within 
a classical framework even though atoms must be described quantum mechani- 
cally. ‘fhe excuse for this apparent inadequacy is that the quantum-mechanical 
discussion closely parallels the classicat one, with quantum-mechanicat expecta- 
tion vatues replacing the classical quantities in the formulas given below. The 
reader can cxamine the statistical mechanical treatments in the litcrature cited 
at the end of the chapter. 

We consider a microscopic world made up of electrons and nuctei. For di- 
mensions large compared to 107“ m, the nucici can be treated as point systems, 
as can the clectrons. We assume that the cquations governing electromagnetic 
phenomena for these point charges are the microscopic Maxwell equations, 

V-b=0, vxer Po 
es (6.64) 

E 
Vee = ne, vVxb 2a 
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where e and b are the microscopic electric and magnetic ficlds and y and j are 

the microscopic charge and current densities. There are no corresponding ficlds 
d and h because all the charges are included in 7 and j. A macroscopic amount 

of matter at rest contains of the order of 10?*"* electrons and auclei, ail in in- 
cessant motion because of thermal agitation, zero point vibration, or orbital mo- 
tion. The microscopic electromagnetic ficlds produced by these charges vary 
extremely rapidly in space and in time. The spatial variations occur over distances 
of the order of 10 " m or less, and the temporal fluctuations occur with periods 

ranging from 10. '*s for nuclear vibrations to 107 "’ s for electronic orbital motion. 
Macroscopic measuring devices generally average over intervals in space and 
time much larger than these. All the microscopic fluctuations are therefore av- 
craged out, giving rclatively smooth and slowly varying macroscopic quantities. 
such as appear in the macroscopic Maxwell equations. 

The question of what type of averaging is appropriate must be examined 
with some care. At first glance one might think that averages over both space 
and time are necessary. But this is not true. Only a spatial averaging is necessary. 
(Parenthetically, we note that a time averaging alone would certainly not be 

sufficient, as can be seen by considering an ionic crystal whose ions have small 
zero point vibrations around well-defined and separated lattice sites.) To delimit 
the domain where we expect a macroscopic description of electromagnetic phe- 
nomena to work, we observe that the reflection and refraction of visible light are 
adequately described by the Maxwell equations with a continuous diclectric con- 
stant, whereas x-ray diffraction clearly exposes the atomistic nature of matter. It 
is plausible therefore to take the length Ly = 10 * m = 10* A as the absolute 
lower limit to the macroscopic domain. The period of oscillation associated with 
light of this wavelength is La/e = 3 X 10° '7s. Ina volume of Lj = 10 *'m* there 
are, in ordinary matter, still of the order of 10" nuclei and electrons. Thus in any 
region of macroscopic interest with L >> Ly there are so many nuclei and clec- 
trons that the fluctuations will be completely washed out by a spatial averaging. 
On the other hand, because the time scale associated with /. is actually in the 
range of atomic and molecular motions, a time-averaging would not be appro- 
priate. There is, nevertheless, no evidence after the spatial averaging of the mi- 
croscopic time fluctuations of the medium. This is so because, in the absence of 
special preparation and the establishment of ordering over macroscopic dis- 
tances, the time variations of the microscopic fields are uncorrelated over dis- 
tances of order L. All that survive are the frequency components corresponding 
to oscillators driven at the external, applicd frequencies. 

The spatial average of a function F(x. 1) with respect to a test function f(x) 

is defined as 

(F(x, 9) = Jar F(x')F(x — x) (6.65) 

where f(x) is real. nonzero in some neighborhood of x = 0. and normalized to 
unity over all space. It is simplest. though not necessary. to imagine f(x) to be 
nonnegative. To preserve without bias directional characteristics of averaged 

physical propertics, we make f(x) isotropic in space. Two cxampies are 

3. reR 
FO = 4 4aR™ 

0. r>R (6.66) 

F(x) = (aR?) Me 
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o 

Figure 6.1 Schematic diagram of test function f(x) used in the spatial averaging 
procedure. The extent L of the plateau region, and also the extent AZ. of the region 
where f falls to zero, are both large compared to the molecular dimension a. 

‘The first example, a spherical averaging volume of radius R, is a common one in 
the literature. It has the advantage of conceptual simplicity, but the disadvantage 
of an abrupt discontinuity at r= R. This leads to a fine-scale jitter on the averaged 
quantitics as a single molecule or group of molecules moves in or out of the 
averaging volume. A smooth test function, exemplified by the Gaussian, climi- 
nates such difficulties provided its scale is large compared to atomic dimensions, 
Fortunately, the test function f(x) docs not need to be specified in detail; all that 
are needed are gencral continuity and smoothness properties that permit a rap- 
idly converging ‘Taylor series expansion of f(x) over distances of atomic dimen- 
sions, as indicated schematically in Fig. 6.1. This is a great virtue.* 

Since space and time derivatives enter the Maxwell equations, we must con- 
sider these operations with respect to averaging according to (6.65). Evidently, 
we have 

a Ne : aF 
Za = [a's f00) Fw - x.y = (F ) 

AX; 

and (6.67) 

a oF 
5, FOO) = (2) 

The operations of space and time differentiation thus commute with the aver- 
aging operation. 

We can now consider the averaging of the microscopic Maxwell equations 
(6.64), The macroscopic electric and magnetic field quantities E and B are defined 
as the averages of the microscopic ficlds e and b: 

E(x, 1) = (e(x, 9) (6.68) 
B(x, 1) = (b(x. 9) 

Then the averages of the two homogencous equations in (6.64) become the cor- 
responding macroscopic equations, 

(Web) =030-B=0 (6.69) 
ab 

(veer) -0svxE+ 

*We are here following the development of G. Russakoff, Am. J. Physics 38. 1188 (1970). 
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The averaged inhomogencous equations from (6.64) become 

eV + E = (nfx. 1) (6.70) 

Comparison with the inhomogencous pair of macroscopic cquations in (6.62) 
indicates the already known fact that the derived fields D and H arc introduced 
by the extraction from (y) and (j) of certain contributions that can be identified 
with the bulk propertics of the medium. The examination of (y) and (j) is there- 

fore the next task. 
We consider a medium made up of moiecuics composed of nuclei and ¢lec- 

trons and, in addition, “free” charges that are not localized around any particular 

molecule. The microscopic charge density can be written as 

nlx.) = > glx — HO] (6.71) 
7 

where x,(/) is the position of the point charge q,. To distinguish the bound charges 
from the free ones, we decompose 7 as 

= Niece + Mound (6.72) 

and write 

Nee = > q AX — X) ate) 
Trout = DMX. 1) 

” 
(molecu ) 

where 9, is the charge density of the nth molecule, 

TX = > qj AX — x) (6.73) 
@ 

In these and subsequent equations we suppress the explicit time dependence, 
since the averaging is done at one instant of time. We proceed by averaging the 
charge density of the nth molecule and then summing up the contributions of all 
molecules. It is appropriate to express the coordinates of the charges in the ath 
molecule with respect to an origin at rest in the molecule. Let the coordinate of 
that fixed point in the molecule {usually chosen as the center of mass) be x,(¢), 
and the coordinate of the jth charge in the molecule be x,,(f) relative to that 

origin, as indicated in Fig. 6.2. The average of the charge density of the ath 

molecule is 

[ ate fo) nite = 9,0 
Sa | ax! f0) 8 ~ x — xy — 4) (6.74) 
Hay 

=D Gf - x, — %) 
7) 

(nlx, £)) 

Since x;, is of order atomic dimensions, the terms in the sum have arguments 

differing only slightly from (x — x,) on the scale over which f(x) changes appre- 
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Figure 6.2 Coordinates for the nth molecule. The origin O’ is fixed in the molecule 
(usually it is chosen at the center of mass). The jth charge has coordinate X;, Telative to 
O', while the molecule is located relative to the fixed (laboratory) axes by the 
coordinate x,, 

ciably. It is therefore appropriate to make a Taylor series expansion around 
{x — x,,) for cach term. This gives 

(n,(x.) = > a fe — X,) — Xj, + V(x — x,) 
Any 

+3 © (ana se ge £0 — 4) + | 
Xq AX 

The various sums over the charges in the molecule are just molecular multipole 
moments: 

MOLECULAR CHARGE 

Mn = D4 (6.75) 
in), 

MOLECULAR DIPOLE MOMENT 

Pu = > 4 Xn (6.76) 
Hany 

MOLECULAR QUADRUPOLE. MOMENT 

(Qras = 3 > GX alXide (6.77) 
dan 
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In terms of these multipole moments the averaged charge density of the nth 

molecule is 

(IX )) = Gaf& — Xn) — Par VCE — X,) (6.78) 
1 » Pf x, 

+ é x (Qiap A 2, Op 

If we attempt to view this equation as the direct result of the definition (6.65) of 

the spatial averaging, we sce that the first term can be thought of as the averaging 
of a point charge density at x = x,, the second as the divergence of the average 
of a point dipole density at x = x,,, and so on. Explicitly, 

(nlx. 9) = as = — V- (p,5(x — x,)) (6.79) 

7 ty (Qi \apd(X ~ X,)) +00 
0B OX, OXg 

We thus find that, as far as the result of the averaging process is concerned, we 
can view the molecule as a collection of point multipoles located at one fixed point 

in the molecule. The detailed extent of the molecular charge distribution is im- 
portant at the microscopic level, of course, but is replaced in its effect by a sum 
of multipoles for macroscopic phenomena. 

An alternative approach to the spatial averaging of (6.65) via Fourier trans- 
forms gives a valuable different perspective. With the spatial Fourier transforms 
defined by 

g(x, 1) = fa Kk gk, e™™ and 8(k, 1) = | dx g(x, e*™ 

(6.80) 

straightforward substitution into (6.65) leads to the expression for the average of 
F(x, 1), 

Qn 

(F(X. 9) = ais | ae F(k, Fk, De** (6.81) 
Qa 

an illustration of the “faitung theorem” of Fouricr transforms. The convolution 
of (6.65) has a Fourier transform that is the product of the transforms of the 
separate functions in the convolution. Thus 

FT (F(x, 9) = FOQFIk, 2) (6.82) 

The notation FT is introduced to stand for the kernel multiplying the exponential 
in the first integral above [FT g(x. #) = g(k. 1)] to avoid a clumsy and confusing 

use of the tilde. 
A crucial aspect of f(k) is that f(0) = 1, as can be seen from its definition 

and from the fact that f(x) is normalized to unity. For the Gaussian test function, 

the Fouricr transform is 

FT f(x) = fk) = 8" (6.83) 
Evidently the Fourier transform (6.82) of the averaged quantity contains only 
low wave numbers, up to but not significantly beyond k,,, = O(I/R), the inverse 

of the length scaic of the averaging volume. But because f(k) > | for wave 
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numbers small compared to the cutoff, the FI (F(x, £)) gives a true representation 
of the long-wavelength aspects of F(x. 1). Only the smali-scale (large wave num. 
ber) aspects are removed, as expected for the averaging. 

Consider the averaging of the charge density of the nth molecule shown in 
Fig. 6.2, The Fouricr transform of the averaged quantity is 

FT (n(x, 9) = foe) A(, 1) (6.84) 
where 

auth.) = fbx’ naa’ nee 20 
Here we have taken the spatial Fourier transform relative to x,- The qualitative 
behaviors of the two factors in (6.84) are sketched in Fig, 6.3. Since the support 
for the product is confined to comparatively small wave numbers, itis appropriate 
to make a Taylor scries expansion of the Fourier transform Fk, 2) for 
small |kj. 

Falk, 0) ~ H(0. 0) + K+ VA (0.0) Fo 

Explicitly, we have 

ilk.) = | ax’ Hx’ OL — ik + (x — x,) +] 

or 

Ak. 0) * q, — ik +p, + quadrupole and higher (6.85) 

in terms of the molecule’s multipole moments. The averaged molecular charge 
density can therefore be written as 

(aul, 1) = aap | ae eM FRG, — ik + py to] 

= Af(% — Xu) — Pre VFO — xy) + 
We have arrived at (6.78) by a different and perhaps longer route, but one with 
the advantage of giving a complementary view of the averaging as a cutoff in 
wave number space, a point of view stressed by Robinson. 

The total microscopic charge density (6.72) consists of the free and bound 

(6.86) 

Figure 6.3 Qualitative bchavior of the Fourier transforms in (6.84) for the transform 
of the averaged molecular charge density (7,(x. £)). 
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charges. Summing up over all the molecules (which may be of different specics) 
and combining with the free charges. we find the averaged microscopic charge 

density to be 

(a0) = pls. 0 — Ve POD + YS Qed) + (6.87) 
Ch WXq AXg 

where p is the macroscopic charge density, 

lx. 0) ={ Y gdix—-x)+ LD Gd - 3) (6.88) 
idee) 

(molecules) 

P is the macroscopic polarization, 

P(x, 1) = ( S p.d(x - «)) (6.89) 
{mnelecules) 

and Qjiq is the macroscopic quadrupole density, 

Qiglk. D) = { J (r)5(% — x) ») (6.90) 
{inolecules) 

When (6.87) is inserted in the first equation of (6.70), it gives 

a 
32 [ae.+ P,- > 

aw OX B OX 
Qin + | =p (6.91) 

From (6.62) this means that the macroscopic displacement vector D is declined to 

have components, 

= ek, +P,-> 7a toe (6.92) 
B OX 

De 

The first two terms ure the familiar result (6.63). The third and higher terms are 
present in principle, but are almost invariably negligible. 

To complete the discussion we must consider (j). Because of its vector nature 
and the presence of velocities the derivation is considerably more complicated 

than the carlier treatment of (4), even though no new principles are involved. 

We present only the results, leaving the gory details to a problem for those read- 
crs who enjoy such challenges. We begin with the microscopic current density, 

Gx, 0 = X ame — x) (6.93) 

where y, = dx,dr is the velocity of the jth charge. Again the sum is divided into 

one over the free charges and one over the molecules. The current density of the 

wth molecule can be averaged just as in (6.74) to give 

(inl. 0) =D ai¥in + VodFO ~ By — Bid) (6.94) 
i) 

Here we have assumed nonrclativistic motion by writing the velocity of the jth 

charge as the sum of an internal relative velocity v,, and the velocity v,, = dx,/dt 

of the origin O' in the molccule. From this poiat on the development entails 
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Taylor serics expansions and vector manipulations. A portion of the current in- 
volves the molecular magnetic moment, 

m,= > 2 (Xin X Vind (6.95) 

The final result for a component of the averaged microscopic current density is 

al. D) = Jul) +2 [D080 — Fale. 0) +S. €npy Mx) 
a ey AX g 

+ye ( J [dans — WoC ald(x — )) 
B&B OXG ” 

(molecules) 
2 
( DX [MQadas(¥udy ~ (Qa Wn)ulOO = )) Na 

1 e 

6 By IXy AX, 
Ganotecules) 

(6.96} 

The so-far undefined quantitics in this rather formidable equation are the mac- 
roscopic current density 

I(x.) = ( X gyvSx—x%) + Dd quv.d(x - «)) (6.97) 
ree) (iootescieg 

and the macroscopic magnetization 

M(x. 1) = ( Sd m,a(x - x, ) (6.98) 

(mmlccutes) 

If the free “charges” also possess intrinsic magnetic moments, these can be in- 
cluded in the definition of M in an obvious way. The last terms in (6.96) involve 
the clectric molecular moments and molecular yelocitics and cannot be given an 
casy interpretation. except in special ca: 2¢ below). 

When (j) is inserted in the second cquation of (6.70), there results the mac- 
roscopic Amptre-Maxwell equation of (6.62) with the derived magnetic field 
quantity H given in terms of B and the properties of the medium as 

+p-H =M,+ DS Pn X Wa OK — x, ra ae ) ba 
(molecules) (6.99) 

ES cwae( Z Widwlayste — a9) + 
By Xs ” 

(molecules) 

The first term of the right-hand side of (6.99) is the familiar result, (6.63). The 
other terms are generally extremely small; first, bccause the molecular velocities 
y,, are small, typically thermal velocities in a gas or lattice vibrational velocities 
in a solid and, second, because the velocities fluctuate and tend to average to 
zero macroscopically. An exception occurs when the medium undergoes bulk 
motion. For simplicity, suppose that the medium as a whole has a translational 
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velocity v. Neglecting any other motion of the molecules, we put v, = v for all 

n. Then (6.99) becomes, after a little manipulation. 

+t g-H-=M+(D- 6k) xv (6.100) 
Bo 

where D is given by (6.92). This shows that for a medium in motion the clectric 
polarization P (and quadrupole density Q,,} enter the effective magnetization. 
Equation (6.100) is the nonrelativistic limit of one of the equations of 

Minkowski’s electrodynamics of moving media (see Pauli, p. 105). 
The reader may consult the book by de Groot for a discussion of the relativ- 

istic corrections, as well as for a statistical-mechanical treatment of the averaging. 
From the standpoint of logic and consistency there remains one loose end. In 
defining the molecular quadrupole moment (Q))4g by (6.77) we departed from 

our convention of Chapter 4, Eq. (4.9), and left (Q,,),,. with a nonvanishing trace. 

Since we made a point in Chapter 4 of relating the five independent components 
of the traceless quadrupole moment tensor to the (2/ + 1) spherical harmonics 

for / = 2, we need to explain why six components enter the macroscopic Maxwell 
equations. If we define a rraceless molecular quadrupole moment (Q,)ap by 

means of (4.9), then we have 

(Qidag = (Qnuas + > GXinY Bap (6.101) 
im 

Introducing a mean square charge radius r;, of the molecular charge distribution 

by 

or =X GSP 
Kay 

where ¢ is some convenient unit of charge, for example, that of a proton, we can 

write (6.101) as 

(Qndap = (Quan + eriSup 

The macroscopic quadrupole density (6.90) thus becomes 

Qin = Qu + i( YL er8b,,808 - ~)) 
malcules) 

where Q4g is defined in terms of (Q,,).4 just as in (6.90). The net result is that in 

the averaged microscopic charge density (6.87) the traceless quadrupole density 
Q., replaces the density Q/,, and the charge density p is augmenicd by an ad- 

ditional term, 

P > Pores + SY 45x - ~)) + 1°( SS er6(x - «)) (6.102) 

(molec) (motecies) 

The trace of the tensor Q/, is exhibited with the charge density because it is an 
7 = 0 contribution in terms of the multipole expansion. The molecular charge 
and mean square radius terms together actually represent the first two terms in 
an expansion of the / = 0 molecular multipole as we go beyond the static limit. 
In the Fourier-iransformed wave number space. they correspond to the first two 
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terms in the expansion of the charge form factor in powers of k*. This can be 
seen from the definition of the form factor F{k*} for a charge density p(x): 

Fk?) = if Ax px). pact 

= i x p(x) wee 

= | mts — 22 [Pode t 

With the correspondence k <> —i¥, the general equivalence of the form factor 
expansion and (6.142) is established. 

In an interesting monograph alluded to above, Robinson gives a discussion 
of the connection between the microscopic equations and the macroscopic equa- 
tions similar to ours. However, he makes a distinction between the spatial ay- 
craging (6.65) with the test function f(x), called “truncation” (of the wave 
number spectrum) by him, and the statistical-mechanical averaging over various 
sorts of cnscmbles. Robinson holds that cach macroscopic problem has its own 
appropriate lower limit of relevant lengths and that this sets the size of the test 
function to be used, before any considerations of statistical averaging are made. 

6.7 Poynting’s Theorem and Conservation of Energy 
and Momentum for a System of Charged Particles 
and Electromagnetic Fields 

The forms of the laws of conservation of energy and momentum are important 
results to establish for the electromagnetic field. We begin by considering con- 
servation of energy. often called Poynting’s theorem (1884). For a single charge 
q the rate of doing work by external electromagnetic fields E and B is qv- E, 
where v is the velocity of the charge. ‘he magnetic ficld docs no work, since the 
magnetic force is perpendicular to the velocity. If there exists a continuous dis- 
tribution of charge and current, the total rate of doing work by the fields in a 
finite volume V is 

J J-Ed’ (6.103) 

This power represents a conversion of electromagnetic cnergy into mechanical 
or thermal energy. It must be balanced by a corresponding rate of decrease of 
energy in the clectromagnetic ficld within the volume V. To exhibit this conser- 
vation law explicitly, we use the Maxwell equations to express (6.103) in other 
terms. Thus we use the Ampére—Maxwell law io climinate J: 

face -[,[ewxm-e-2| dx (6.104) 

If we now employ the vector identity, 

V-(Ex H) =H-(V x E)—E-(¥ x BH) 
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and use Faraday’s law, the right-hand side of (6.104) becomes 

I J-E@x = a [vce x H) + p.@. a] dx (6.105) 
v v a or 

To proceed further we make two assumptions: (1) the macroscopic medium is 
linear in its clectric and magnetic properties, with negligible dispersion or losses, 

and (2) the sum of (4.89) and (5.148) represents the total electromagnetic energy 

density, even for time-varying ficlds. With these two assumptions and the total 

energy density denoted by 

w= FE-D+ BH (6.106) 

(6,105) can be written 

Ou 3 
a J-Ed’x= if [™ +V-(EX »| d°x (6.107) 

v v 

Since the volume V is arbitrary, this can be cast into the form of a differential 

continuity equation or conservation law. 

=-I-E (6.108) 

‘The vector S$, representing energy flow. is called the Poynting vector. 1 is given 

by 
S=EXH (6.109) 

and has the dimensions of (energy/area X time). Since only its divergence appears 

in the conservation law, the Poynting vector seems arbitrary to the extent that 
the curl of any vector field can be added to it. Such an added term can, however, 
have no physical consequences. Relativistic considerations (Section 12.10) show 
that (6.109) is unique. 

The physical meaning of the integral or differential form (6.107) or (6.108) 
is that the time rate of change of electromagnetic energy within a certain volume, 
plus the energy flowing out through the boundary surfaces of the volume per 
unit time, is cqual to the negative of the total work donc by the fields on the 
sources within the volume. This is the statement of conservation of energy. The 
assumptions that follow (6.105) really restrict the applicability of the simple ver- 
sion of Poynting’s theorem to vacuum macroscopic or microscopic fields. Even 
for linear media, there is always dispersion (with accompanying losses). Then the 

right-hand side of (6.105) docs not have the simple interpretation exhibited in 
(6.107). The morc realistic situation of lincar dispersive media is discussed in the 

next section. 
‘The emphasis so far has been on the energy of the electromagnetic fields. 

‘The work done per unit time per unit volume by the fields (J « E) is a conversion 
of electromagnetic energy into mechanical or heat encrgy. Since matter is ulti- 
mately composed of charged particles (electrons and atomic nuclei), we can thiak 
of this rate of conversion as a rate of increase of energy of the charged particles 

per unit volume. Then we can interpret Poynting’s theorem for the microscopic 

fields (E. B) as a statement of conservation of energy of the combined system of 
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particles and ficlds. If we denote the total energy of the particles within the 
volume V as Eyy.c, and assume that no particles move out of the volume, we have 

dE meets _ if ‘ ie PEde (6.110) 

Then Poynting’s theorem expresses the conservation of cnergy for the combined 
system as 

dE od . 
Te 7 ay (Emeen + Evers) = -$ n-S da (6.111) 

where the total ficld energy within V is 

Enoa = i udx = 2 (E? + 2B) déx (6.112) 
v 2 Jv 

The conservation of linear momentum can be similarly considered. The total 
electromagnetic force on a charged particle is 

F = q(E + v x B) (6.113) 
If the sum of all the momenta of all the particles in the volume V is denoted by 
Panceny We Can write, from Newton’s second law, 

APascy _ 
dt 

where we have converted the sum over particles to an integral over charge and 
current densities for convenience in manipulation. In the same manner as for 
Poynting’s theorem, we use the Maxwell cquations to eliminate pand J from 
(6.114): 

y (pE + 3 x B) d*x (6.114) 

1 aE =6V-E. =— ag Se 115 p=eV-k, J mV * Boas (6.115) 

With (6.115) substituted into (6.114) the integrand becomes 

wet se w= oft e ox Een xivxo)| 

Then writing 

dE a a 
ax El fey penx B 

or a a 

and adding R(V - B) = 0 to the square bracket, we obtain 

pE + J x B= ¢fE(V-E) + CB(¥ - B) 

a ~ EX (Wx B) ~ CB x (WX B)] ~ 5 (E XB) a 
The rate of change of mechanical momentum (6.114) can now be written 

AP rccn | z i“ ent Sj, Ex By dr (6.116) 

= 6 {1600+ B) — Bx (Fx B) + ARV B) — 2B x ( x BY ar 
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We may tentatively identify the volume integra! on the Icft as the total electro- 

magnetic momentum Py in the volume V: 

Preia = € if E X B d’x = Boks [ EX Hdx (6.117) 

The intcgrand can be interpreted as a density of electromagnetic momentum. 

We note that this momentum density is proportional to the cnergy-flux density 

S, with proportionality constant c7?. 
To complete the identification of the volume integral of 

g=3 (Ex H) (6.118) C 

as clectromagnetic momentum, and to establish (6.116) as the conservation law 

for momentum, we must convert the volume integral on the right into a surface 

integral of the normal component of something that can be identified as mo- 

mentum flow. Let the Cartesian coordinates be denoted by x,, @ = 1, 2,3. The 

a = 1 component of the clectric part of the integrand in (6.116) is given explicitly 

by 

- Be a f 2% “ ) 
ax, AX, dX AK, 

(E(V+E)- Ex (Vx Eh 

a (ED + a OD Sp Ty (FA) ~ ag, (EE + E+ BD) 

E 2, a (2+ 4 2) - 
Ox, oe Ax3 

This means that we can write the ath component as 

(E(V-E) — Ex (Vx E), = yee (FE, g — $E+ ES.) (6.119) 
aks 

and have the form of a divergence of a ce rank tensor on the right-hand 

side, With the definition of the Maxwell stress tensor Ty aS 

Twp = €olEoEg + CB,By — (E+E + cB - BYS, | (6.120) 

we can therefore write (6.116) in component form as 

d . 
Fi Pamcen + Protsda = 2 2 ry dx (6.121) 

2 Sv Axy 

Application of the divergence theorem to the volume intcgrat gives 

Prrcen + Prete = $ D Teun da (6.122) 
z 

where n is the outward normal to the closed surface S. Evidently, if (6.122) rep- 

resents a statement of conservation of momentum, X47 ,y7, is the ath component 

of the flow per unit area of momentum across the surface S into the volume V. 

In other words. it is the force per unit arca transmitted across the surface S and 

acting oa the combined system of particles and ficlds inside V. Equation (6.122) 

can therefore be used to calculate the forces acting on material objects in clec- 

tromagnetic ficlds by enclosing the objects with a boundary surface S and adding 

up the total electromagnetic force according to the right-hand side of (6.122). 
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The conservation of angular momentum of the combined system of particles 
and fields can be treated in the same way as we have handicd energy and linear 
momentum. This is left as a probicm for the student (sce Problem 6.10). 

The discussion of clectromagnetic momentum and the stress tensor in fluids 
and solids entails analysis of interplay of mechanical, thermodynamic, and elec. 
tromagactic properties (¢.g.. de/#T and de/ap). We refer the reader to Landay 
and Lifshitz, Electrodynamics of Continuous Media (Sections 10, 15, 16, 31, 35), 
Stratton (Chapter 2), and, for a statistical mechanical approach, to de Groot (Sec- 
tion 13). We note only that. although a treatment using the macroscopic Maxwell 
equations leads to an apparent clectromagnetic momentum, g = D x B (Min- 

kowski, 1908), the generally accepted expression for a medium at rest is 

1 1 B= GEXH= mak xH=58 (6.123) 

We note that g is the electromagnetic momentum associated with the ficlds. 
There is an additional co-traveling momentum within the medium from the me- 
chanical momentum of the electrons in the molecular dipoles in response to the 
incident traveling wave.* The Minkowski momentum of a plane wave is the 
“pscudomomentum” of the wave vector (k = nw/e or hk = n(fiw)/c for a photon). 

6.8 Poynting’s Theorem in Linear Dispersive Media with Losses 

In the preceding section Poynting’s theorem (6.108) was derived with the restric- 
tion to linear media with no dispersion or losses {i.c., D = €E and B = 4H), with 
eand y real and (requency independent. Actual materials exhibit dispersion and 
losses. To discuss dispersion it is necessary to make a Fourier decomposition in 
time of both E and D (and B and H). Thus, with 

E(x, ) = E dw E(x, we 

D(x, 1) = i dw D(x, we 

the assumption of linearity (and, for simplicity, isotropy) implics that D(x, w) = 
e(w)E(x, w), where e(w) is the complex and frequency-dependent susceptibility. 
Similarly, B(x, w) = x(w)H(x, ). The reality of the fields implies that E(x, -o) 
= E*(x, @), D(x, —w) = D*(x, @), and e(—w) = €*{w). The presence of dispersion 
carries with it a temporally nonloca! connection between D(x, 1) and E(x, ¢). 
discussed in detail in Section 7.10. As a consequence, the term E+ (@D/ar) in 
(6.105) is not simply the time derivative of (E+ D/2). 

We write out E - (#D/ar) in terms of the Fouricr integrals, with the spatial 
dependence implicit. 

E 2 = | de | da EX(c')[-ioe(o)] « E(w)e er" 

“See R. EF. Peierls, Proc. R. Soc. London 347. 475 (1976) for a very accessible discussion. of which 
Problem 6.25 is a simplified version. See also R. Loudon, L. Allen, and D. F. Nelson, Phys. Rev. E 
55, 1071 (1997) 
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Split the integrand into two equal parts and in onc make the substitutions. 
> —o', w' — — w, and use the reality constraints to obtain 

E- 2. : $f dof a’ E*(o')[—iwe(@) + io’e*(w')]  E(w)e (6.124) 

We now suppose that the electric ficld is dominated by frequency components 
in a relatively narrow range compared to the characteristic frequency interval 

over which €(w) changes appreciably. We may then expand the factor iw’ e*(w") 

in the square brackets around w' = @ to get 

[1 = 20 Im €(w) ~ (o ~ 0) & (wero) + 
Insertion of this approximation into (6.124) leads to 

E- aD: do | do! E*(w") + E(w)@ Im e(w)e . 
a (6.125) 

+ at | do | dor E*(a’) + Eo) 7 = [oe*(ale Heaney 

There is a corresponding expression for H - éB/ar with E > H and € > »2 on the 
right-hand side. 

First of all note that if €and 4: are real and frequency independent we recover 

the simple connection between the time derivative terms in (6.105) and du/dt, 
with u given by (6.106). Second, the first term in (6.125) evidently represents the 
conversion of electrical energy into heat (or more generally into different forms 
of radiation”), while the sccond term must be an effective energy density. A more 
transparent expression, consistent with our assumption of the dominance of E 

and H by a relatively narrow range of {requencies can be obtained by supposing 
that E = E() cos(aot + a), H = Ais) cos(wot + B), where E(?) and A) 
are slowly varying relative to both t/a) and the inverse of the frequency range 
over which €(@) changes appreciably. [f we substitute for the Fourier transforms 

E(w) and H{w) and average both sides of the sum of (6.125) and its magnetic 
counterpart over a period of the “carrier” frequency @, we find (after some 
straightforward manipulation), 

(e aD, +H- 7) = wy Im €(@y){E(x. t) + E(x. f)) 
at ot (6.126a) 

+ ay Im po A(R, 2) Hox, 9) + St 
where the effective clectromagnetic energy densi 

ten = 4 Re See (a ft 1) + E(x. 9) 
(6.126b) 

1 Hop) 
+7Re [~ do °°) (H(x, 1)» H{x. 1) 

*For example, if the dominant frequencies are near an atomic resonance of the medium where ab- 
sorption is important (Im € + 0), the re-emission of the radiation absorbed at w may be at @, where 
wo = w, 
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The presence of the factors d(we)/dw and d(e)/d@ was first noted by Brillouin 
(see Brillouin, pp. 88-93). Our treatment is similar to Landau and Lifshitz, Elec. 
trodynamics of Continuous Media (Section 80). 

Poynting’s theorem in these circumstances reads 

Btese 
Pa +¥-S = -J-E — @ Im e(a E(x, t) + E(x. 1) (6.127) 

— ey Im jo(ay)H(x. 9 - A(x, 9) 

The first term on the right describes the explicit ohmic losses, if any, while the 
next terms represent the absorptive dissipation in the medium, not counting con- 
duction loss. If the conduction current contribution is viewed as part of the di- 
clectric response (see Section 7.5), the —J+E term is absent. Equation (6.127) 
exhibits the local conservation of clectromagnetic energy in realistic situations 
where, as well as cnergy flow out of the locality (V-$ # 0). there may be losses 
from heating of the medium (Im € # 0, Im y # 0), leading to a (presumed) slow 
decay of the energy in the fields. 

6.9 Poynting’s Theorem for Harmonic Fields; 
Field Definitions of Impedance and Admittance* 

Lumped circuit concepts such as the resistance and reactance of a two-terminal 
linear network occur in many applications, even in circumstances where the size 
of the system is comparable to the free-space wavelength, for cxample, for a 
resonant antenna. It is uscful therefore to have a gencral definition based on field 
concepts. This follows from consideration of Poynting’s theorem for harmonic 
time variation of the ficlds. We assume that all ficlds and sources have a time 
dependence e~‘*", so that we write 

E(x. 1) = Re[E(x)e"'] = Y[E(x)e ("+ E*(x)e] (6.128) 

The field E(x) is in general complex, with a magnitude and phase that change 
with position. For product forms, such as J(x, f) + E(x, 9), we have 

Few, 0) + EGR, 1) = AFomde™ + S*(x)e"™] « [EQe™ + E*(xe] 129) 
= ¥ Re[J*(x) + E(x) + I(x) + E(xje*™] 

For time averages of products, the convention is therefore to take one-half of 

the real part of the product of one complex quantity with the complex conjugate 
of the other. 

For harmonic ficlds the Maxwell equations become 

vV-B=0, Vx E — ioB = 
5 (6.130) 

V-D=p VxXH+ioD=5 

*The trcatment of this section paraliels that of Fano, Chu, and Adier (Sections 82. and 8.3). The 
reader can find in this hook considerable further discussion of the connection between lumped circuit 
and field concepts, examples of stray capacitances in inductors, ete. See also the first two chapters of 
Adier, Chu, and Fano. 
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where all the quantities arc complex functions of x, according to the right-hand 
side of (6.128). Instead of (6.103) we consider the volume integral 

ai +.B d? 5], Fed's 

whose real part gives the time-averaged rate of work done by the fields in the 

volume V. In a development strictly paralleling the steps from (6.103) to (6.107), 

we have 

iJ 2dv 
Edy =4[ B.[v x He - ied} a'r 

(6.131) 

= ak [-V + (E x H*) - io(E- D* — B- H*)] dx 

We now define the complex Poynting vector 

= 5(E x H*) (6.132) 

and the harmonic electric magnetic energy densities, 

w. = (E+D*), — w,, = (B+ H*) (6.133) 

Then (6,131) can be written as 

sh Jee E Bx + 2iw i (w. — Wy) Bx + ¢ S+nda=0 (6.134) 

This is the analog of (6.107) for harmonic ficlds. It is a complex cquation whose 
real part gives the conservation of energy for the time-averaged quantitics and 
whose imaginary part relates to the reactive or stored energy and its alternating 
flow. If the energy densities w, and w,, have real volume integrals, as occurs 
for systems with lossless diclectrics and perfect conductors, the real part of 
(6.134) is 

a 3 Re(J* + E) dx + $ Re($ +n) da = 0 

showing that the steady-state, time-averaged rate of doing work on the sources 
in V by the ficlds is cqual to the average flow of power into the volume V through 
the boundary surface S, as calculated from the normal component of Re S. This 
is just what would be calculated from the carlicr form of Poynting’s theorem 
(6.107) if we assume that the energy density u has a steady part and a harmoni- 
cally fluctuating part. With losses in the components of the system, the sccond 

term in (6.134) has a real part that accounts for this dissipation. 
The complex Poynting theorem (6.134) can be used to define the input im- 

pedance of a general, two-terminal, linear. passive clectromagnetic system. We 

imagine the system in the volume V surrounded by the boundary surface S, with 

only its input terminals protruding, as shown in Fig. 6.4. If the complex harmonic 

input current and voltage are /, and V;, the complex power input is 3/7V,. This 
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Figure 6.4 Schematic diagrams of arbitrary, two-terminal, linear, passive 
electromagnetic systems. The surface § compictcly surrounds the system; only the input 
terminals protrude. At these terminals. the harmonic input current and voltage are /; 
and V,, with the input impedance Z defined by V, = Z4,. The upper diagram applics at 
low frequencies where radiation losses are negligible, while the lower one with its 
coaxial-line input permits discussion of radiation resistance. 

can be written in terms of the Poynting vector by using (6.134) applied to all of 
space on the outside of S as 

-f S-nda (6.135) 

where the unit normal n is outwardly directed, as shown in Fig. 6.4, and we have 
assumed that the input power flow is confined to the arca S; (the cross section of 
the coaxial line in the lower diagram of Fig. 6.4). By now considering (6.134) for 
the volume V surrounded by the closed surface S, the right-hand side of (6.135) 
can be written in terms of integrals over the ficids inside the volume V: 

AV, = ; I Je -E dx + 2iw i (w, — w,,) Bx + 7 2 S+ada (6.136) 

The surface integral here represents power flow out of the volume V through the 
surface S, except for the input surface S,. If the surface (S — S,) is taken to infinity, 
this inicgral is real and represents escaping radiation (see Chapter 9). At low 
frequencies it is generally negligible. Then no distinction need be made between 
S, and S: the upper diagram in Fig. 6.4 applics. 

The input impedance Z = R — iX (electrical engincers please read as Z = 
R + jX!) follows from (6.136) with its definition, V; = Z/,. Its real and imaginary 
parts are 

R= aR I, & Ed's +24 S- ada + dum | Wm — wed ss} 

(6.137) 
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sont ss ay = if * 7 X= ine {40 Re - (w,, — w.) x — Im > vee Ed x} 

(6.138) 

In writing (6.137) and (6.138) we have assumed that the power flow out through 
Sis real. The second term in (6.137) is thus the “radiation resistance,” important 

at high frequencies. At low frequencies, in systems where ohmic losses are the 
only appreciable source of dissipation. these expressions simplify to 

(6.139) 

(6.140) 

Here o is the real conductivity, and the energy densities w,,, and w, (6.133) are 
also real over essentially the whole volume. The resistance is clearly the value 
expected from consideration of ohmic heat loss in the circuit, Similarly, the re- 
actance has a plausible form: if magnetic stored energy dominates, as for a 
lumped inductance, the reactance is positive, ctc. The different frequency de- 
pendences of the low-frequency reactance for inductances (X = wh) and capac- 
itances (X = —1/@C) can be traced to the definition of L in terms of current and 

voltage (V = /. di/dt) on the one hand, and of C in terms of charge and voltage 
{V = Q/C) on the other. The treatment of some simple examples is Icft to the 

problems at the end of the chapter. as is the derivation of results equivalent to 
{6.139} and (6.140) for the conductance and susceptance of the complex 
admittance Y. 

6.10 Transformation Properties of Electromagnetic Fields 
and Sources Under Rotations, Spatial Reflections, 
and Time Reversal 

The fact that related physical quantitics have compatible transformation prop- 
ertics under certain types of coordinate transformation is so taken for granted 
that the significance of such requirements and the limitations that can be thereby 
placed on the form of the relations is sometimes overlooked. It is useful therefore 
to discuss explicitly the relatively obvious propertics of clectromagnetic quanti- 

tics under rotations, spatial inversions, and time reversal. The notions have direct 

application for limiting phenomenological constitutive rcfations, and are applicd 
in the next section where the guestion of magnetic monopoles is discussed. 

It is assumed that the idea of space and time coordinate transformations and 
their relation to the gencral conservation laws is familiar to the reader from 

classical mechanics (see. ¢.g., Goldstein). Only a summary of the main results is 
given here. 

A. Rotations 

A rotation in three dimensions is a lincar transformation of the coordinates 

of a point such that the sum of the squares of the coordinates remains invariant. 



268 Chapter 6 Maxwell Equations, Macroscopic Electromagnetism, Conservation Laws—SI 

Such a transformation is called an orthogonal transformation. The transformed 
coordinates x%, are given in terms of the origina! coordinates Xp by 

= Dd aarp (6.141) 
2 

The requirement to have {x’)? = (x)’ restricts the reat transformation coefficients 
ay to be orthogonal, 

D aepstay = Fy (6.142) 

The inverse transformation has (@7')ag = dga and the square of the determinant 
of the matrix (a) is equal to unity. The value det(a) = +1 corresponds to a proper 
rotation, obtainable from the original configuration by a sequence of infinitesimal 
steps, whereas det(a) = —1 represents an improper rotation, a reflection plus a 
rotation. 

Physical quantities are classed as rotational tensors of various ranks depend- 
ing on how they transform under rotations. Coordinates x,, velocities v;, momenta 
p; have components that transform according to the basic transformation law 
(6.141) and are tensors of rank one, or vectors. Scalar products of vectors, such 
aS X) +X) OF ¥; + Po, are invariant under rotations and so are tensors of rank zero, 
or scalars. Groups of quantities that transform according to 

Big =D AaytianBys (6.143) 2 
are called second-rank tensors or, commonly, fensors. The Maxwell stress tensor 
is one such group of quantitics. Higher rank tensor transformations follow 
obviously. 

In considcring electromagnetic fields and other physical quantities, we deal 
with onc or more functions of coordinates and perhaps other kinematic variables, 
There then arises the choice of an “active” or a “passive’”’ view of the rotation. 
We adopt the active vicw—the coordinate axes are considered fixed and the 
physical system is imagined to undergo a rotation, Thus, for example. two 
charged particles with initial coordinates x, and x, form a system that under a 
rotation is transformed so that the coordinates of the particles are now x} and 
x5, as shown in Fig. 6.5. The components of cach coordinate vector transform 
according to (6.141), but clectrostatic potential is unchanged because it is a func- 
tion only of the distance between the two points, R = |x, -- x)|, and R? is a sum 
of scalar products of vectors and so is invariant under the rotation, The electro- 
static potential is one example of a scalar under rotations. In gencral, if a physical 
quantity , which is a function of various coordinates denoted colicctively by x; 
(possibly including coordinates such as velocitics and momenta), is such that 
when the physical system is rotated with x, x}, the quantity remains unchanged, 

(xi) = d(x) (6.144) 

then ¢ is a scalar function under rotations. Similarly, if a sct of three physical 
quantities V,(x,) (a = 1, 2, 3) transform under rotation of the system according 
to 

Vax) =D aua¥ lx) (6.145) 
B 

then the V,, form the components of a vector, and so on for higher rank tensors. 
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Figure 6.5 Active rotation of a system 
of two charges, x 

Differential vector operations have definite transformation properties under 
rotations, For example, the gradient of a scalar, V¢, transforms as a vector, the 
divergence of a vector, V - V, is a scalar, and the Laplacian operator V’ is a scalar 
operator in the sense that its application to a function or sct of functions docs 
not altcr their rotational transformation properties. 

Special mention must be made of the cross product of two vectors: 

A=BxC (6.146) 

In component form this vector shorthand reads 

Ac= 2 Expy By Cy 
By 

where €,y, = +1 for a = 1, B = 2, y = 3 and cyclic permutations. €,,,, = —1 for 

other permutations, and vanishes for two or more indices equal. Because of the 

presence of two vectors on the right-hand side, the cross product has some at- 

tributes of a traceless antisymmetric second-rank tensor. Since such a tensor has 
only three independent components, we treat it as a vector. This practice is jus- 

tified, of course, only insofar as it transforms under rotations according to (6.141). 

In actual fact, the transformation law for the cross product (6.146) is 

£ = det(a) S aagAp (6.147) 
Z 

For proper rotations, the only kind we have considered so far, det(a) = +1; thus 
(6.147) is in agreement with the basic coordinate transformation (6.141). Under 

proper rotations, the cross product transforms as a vector. 

B. Spatial Reflection or Inversion 

Spatial reflection in a plane corresponds to changing ihe signs of the normal 

components of the coordinate vectors of all points and to leaving the components 

parallel to thc plane unchanged. Thus, for refiection in the x-y plane, x; = 
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(X1, Yo 21) > X} = (i. ¥;. — Z,). Space inversion corresponds to reflection of all 
three components of every coordinate vector through the origin. x; > x} = ak, 
Spatial inversion or reficction is a discrete transformation that, for more than 
two coordinates, cannot in gencral be accomplished by proper rotations. It cor. 
responds to det(a) = —1, and for the straightforward inversion operation is given 
by (6.141) with @,g = —6,,. It follows that vectors change sign under spatial 
inversion, but cross products, which behave according to (6.147), do not. We are 
thus forced to distinguish two kinds of vectors (under gencral rotations): 

Polar vectors (or just vectors) that transform according to (6.145) and for 
xX; > x; = —x, behave as 

VoWw=-V 

Axial or pseudovectors that transform according to (6.147) and for x, > x} = 
behave as 

A> A= 

Similar distinctions must be made for scalars under rotations. We speak of scalars 
or pseudoscalars, depending on whether the quantitics do not or do change sign 
under spatial inversion. The triple scalar product a+ (b x ¢) is an example of a 
pscudoscalar quantity, provided a, b, ¢ are all polar vectors. (We see here in 
passing a dangerous aspect of our usual notation. The writing of a vector as a 
docs not tell us whether it is a polar or an axial vector.) The transformation 
properties of higher rank tensors under spatial inversion can be deduced directly 
if they are built up by taking products of components of polar or axial vectors. 
If a tensor of rank N transforms under spatial inversion with a factor (—1)%, we 
call it a true tensor or just a tensor, while if the factor is (—1)**! we call it a 
pseudotensor of rank N. 

C. Time Reversal 

The basic laws of physics are invariant (at least at the classical level) to the 
sense of direction of time. This does not mean that the equations arc even in f, 
but that, under the time reversal transformation ¢ > ¢’ = 1, the related physical 
quantities transform in a consistent fashion so that the form of the cquation is 
the same as before. Thus, for a particle of momentum p and position x moving 
in an external potential U(x), Newton’s equation of motion, 

dp —= -VU dr @) 
is invariant under time reversal provided x > x’ = x and p > p’ = —p. The sign 
change for the momentum is. of course, intuitively obvious from its relation to 
the velocity, v = dx/dt. The consequence of the invariance of Newton's laws under 
time reversal is that, if a certain initial configuration of a system of particles 
evolves under the action of various forces into some final configuration, a possible 
state of motion of the system is that the time-reversed final configuration (ail 
positions the same, but all velocities reversed) will evolve over the reversed path 
to the time-reversed initial configuration. 

The iransformation properties of various mechanica! quantitics under rota- 
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Tale 6.1 Transformation Properties of Various Physical Quantities under Rotations, 
Spatial Inversion and Time Reversal” 
————— 

Rotation 
(rank of Space Inversion Time 

Physical Quantity tensor) (name) Reversal 

1. Mechanical 
Coordinate x i Odd (vector) Even 
Velocity v i Odd (vector) Odd 
Momentum P i Odd (vector) Odd 
Angular momentum = L =x x p 1 Even (pseudovector) Odd 
Force F j Odd (vector) Even 
Torque N=xxF j Even (pscudovecior) — Even 
Kinetic energy pam 0 Even 
Potcntial energy UG) 0 Even 

Il. Electromagnetic 
Charge density p 0 Even (scalar) Even 
Current density J i Odd (vector) Odd 
Electric field E 
Polarization P 1 Odd (vector) Even 

Displacement D 
Magnetic induction B 
Magnetization | 1 Even (pseudovector) Odd 
Magnetic field H 
Poynting vector S=ExH 1 Odd (vector) Odd 
Maxwell stress tensor Tap 2 Even (tensor) Even 

“For quantities that are functions of x and 4, it is necessary to be very clear what is meant by 
evenness or oddness under space inversion or time reversal. For cxample, the magnetic induction is 
such that under space inversion, B(x. 1) > Bx, ) = + B(—x. 1), while under time reversal, 

B(x. 1) > By{x. 4) = ~ B(x, -1). 

tions, spatial inversion, and time reversal are summarized in the first part of Fable 

6.1. 

D. Electromagnetic Quantities 

Just as with the laws of mechanics, it is true (i.c., consistent with all known 

experimental facts) that the forms of the equations governing electromagnetic 
phenomena are invariant under rotations, space inversion, and time reversal. This 
implies that the different electromagnetic quantities have well-defined transfor- 
mation propertics under these operations. It is an experimental fact that electric 
charge is invariant under Galilean and Lorentz transformations and is a scalar 
under rotations. It is natural, convenient, and permissible to assume that charge 
is also a scalar under spatial inversion and even under time reversal. The point 
here is that physically measurable quantities like force involve the product of 
charge and ficld. The transformation properties attributed to ficlds like E and B 
thus depend on the convention chosen for the charge. 

With charge a truc scalar under all three transformations, charge density pis 

also a true scalar. From the fact that the electric field is force per unit charge, we 
see that E is a polar vector, even under time reversal. This also follows from the 
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Maxwell cquation. V-E = p/e,, since both sides must transform in the same 
manner under the transformations. 

The first term in the Maxwell cquation representing Faraday’s law, 

VxEt 2B =0 
OL 

transforms as a pscudovector under rotations and spatial inversion, and is even 
under time reversal. To preserve the invariance of form it is therefore necessary 
that the magnetic induction B be a pseudovector, odd under time reversal. The 
left-hand side of the Ampére-Maxwell equation. 

4 VxB-e oE =J 
Ba OL 

can be seen to transform as a polar vector, odd under time reversal. This implics 
that the current density J is a polar vector, odd under time reversal, as expected 
from its definition in terms of charge times velocity. 

We have just seen that the microscopic ficlds and sources have well-defined 
transformation properties under rotations, spatial inversion, and time reversal, 
From the derivation of the macroscopic Maxwell equations in Scction 6.6 and 
the definitions of P, M, ctc.. it can be scen that E, P, D all transform in the same 
way, as do B. M, H. The various transformation properties for clectromagnetic 
quantitics are summarized in the second part of Table 6.1. 

To illustrate the usefulness of arguments on the symmetry properties listed 
in Table 6.1, we consider the phenomenological structure of a spatially local 
constitutive relation specifying the polarization P for an isotropic, linear, non- 
dissipative medium in a uniform, constant, external magactic induction By. The 
relation is first order in the electric ficld E, by assumption, but we require an 
expansion in powers of Bg up to second order. Since P is a polar vector, and even 
under time reversal, the various terms to be multiplied by scalar coefficients must 
transform in the same way. To zeroth order in Bo, only E is available. To first 
order in By, possible terms involving E linearly are 

dE VE 
E x B,. or * B,, an Bo, 

All these are permitted by rotational and spatial inversion grounds, but only 
those involving odd time derivat: transform properly under time reversal. For 
the second order in Bo, the possibilities are 

E (By BIE, (E+ B,)By. (By Bo) 

Here only the terms with zcro or even time derivatives of E satisfy all the re- 
quirements. The most gencral spatially local expression for the polarization, cor- 
rect to second order in the constant magnetic field Bo, is thus 

1 dE oP WE + x1 FX By + xo(Bu- BIE + (E+ BoB) + = (6.148) o 

where the x; are real scalar coefficients and higher time derivatives of E can occur, 
odd for the terms linear in B, and even for the zeroth and second powers of By. 
At low frequencies, the response of essentially ail matcrial systems is via electric 
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forces. This means that at zcro frequency there should be no dependence of P 

on By, and a more realistic form is 

FE PE 
tp=yEty = af E x By + x5(By- By E+ (Se + B, |B, 149) = ae s) (6.149) 

where we have exhibited only the lowest order lime derivatives for each power 
of Bo. At optical frequencics this equation permits an understanding of the gy- 
rotropic behavior of waves in an isotropic medium in a constant magnetic ficld,* 

Another example, the Hall effect, is left to the problems. It, as well as ther- 
mogalvanomaganctic effects and the existence of magnetic structure in solids, are 
discussed in Landau and Lifshitz (op. cit.) 

in certain circumstances the constraints of space-time symmetrics must be 
relaxed in constitutive relations. For example, the optical rotatory power of chiral 
molecules is described phenomenologically by the constitutive relations, P = 
&oXoE + €dB/dt and xoM = y5B + £dE/ot. The added terms involve pseudoscalar 

quantities Zand é that reflect the underlying lack of parity symmetry for chiral 
substances, (Quantum mechanically, nonvanishing &or & requires both electric 

and magnetic dipole operators to have nonvanishing matrix clements between 
the same pair of states, something that cannot occur for states of definite parity.) 

6.11 On the Question of Magnetic Monopoles 

At the present time (1998) there is no experimental evidence for the existence 
of magnetic charges or monopoles. But chiefly because of an carly, brilliant the- 
orctical argument of Dirac, the search for monopoles is renewed whenever a 
new cnergy region is opened up in high-energy physics or a new source of matter, 
such as rocks from the moon, becomes available. Dirac’s argument, outlined 
below, is that the mere existence of onc magnetic monopole in the universe would 
offer an explanation of the discrete nature of clectric charge. Since the quanti- 
zation of charge is onc of the most profound mysteries of the physical world, 
Dirae’s idea has great appeal. The history of the thcorctical ideas and experi- 
mental searches up to 1990 are described in the resource letter of Goldhaber and 
Trower.* Some other references appear at the end of the chapter, 

There are some necessary prelin ies before examining Dirac’s argument. 

Onc question that arises is whether it is possible to tell that particles have mag- 
netic as well as electric charge. Let us suppose that there exist magnetic charge 

and current densities, p,, and J,,,, in addition to the clectric densities. p, and J... 

The Maxweil equations would then be 

V-D=p. vVxH 
(6.150) 

V-B=p,. -VXE 

*Sce Landau and Lifshitz, Electrodynamics of Continuous Media, p. 334, Problem 3, p. 337. 

'PL A.M. Dirac, Proc. R. Sec. London A133. 60 (1931): Phys. Rev. 74, 817 (1948). 

TA. S. Goldhaber and W. P. Trower, Resource Letter MM-1: Magactic Monopoles, Anz. J. Phys. 58. 

429-439 (1990). 
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The magnetic densities are assumed to satisfy the same form of the continuity 
equation as the electric densities. It appears from these equations that the exis. 
tence of magnetic charge and current would have observable clectromagnetic 
consequences. Consider, however, the following duality transformatio, 

E = E’ cosé + ZH’ sing Z.D = 7D! cosé + B' sing 
ZH = -E! sin€ + ZH" cos & B = —Z,D' sing + B' cosé 

(6.151) 

For a real (pseudoscalar) angle & such a transformation leaves quadratic forms 
such as E x H, (E-D + B-H), and the components of the Maxweil stress tensor 
7g invariant. If the sources are transformed in the same way, 

Zoke = Lop. COS + py» sin & ZS = LoS; cos E + In sin E 
6.15) 

Pm = —~Zop; sin E + py, cos & IS,, = —2oSi sin E + Ff, cos & (6.152) 

then itis straightforward algebra to show that the gencralized Maxwell equations 
(6.150) arc invariant, that is, the equations for the primed ficlds (E’, D', B', H’) 
are the same as (6.150) with the primed sources present. 

The invariance of the equations of electrodynamics under duality transfor- 
mations shows that it is a matter of convention to speak of a particle possessing 
an clectric charge. but not magnetic charge. The only meaningful question is 
whether aif particles have the same ratio of magnetic to electric charge. If they 
do, then we can make a duality transformation, choosing the angle € so that 
Pr, = 0, Sm = 0. We then have the Maxwell cquations as they are usually known. 

If, by convention, we choose the electric and magnetic charges of an electron 
to be q. = —e, Ym = 0, then it is known that for a proton, g. = +e (with the 
present limits of error being [q,(ciectron) + g,(proton)|/e ~ 10 7") and 
|an(nucleon)| <2 x 10 *4 Zoe. 

This extremely small limit on the magnetic charge of a proton or neutron 
follows directly from knowing that the average magnetic field at the surface of 
the carth is not more than 10 * T. The conclusion, to a very high degree of 
precision, is that the particles of ordinary matter possess only clectric charge or, 
equivalently, they ail have the same ratio of magnetic to electric charge. For 
other, unstable, particles the question of magnetic charge is more open, but no 
positive evidence exists. 

The transformation propertics of p,, and J,,, under rotations, spatial inver- 
sion, and time reversal are important. From the known behavior of E and B in 
the usual formulation we deduce from the second line in (6.150) that 

Pm is a pseudoscalar density, odd under time reversal, and 

J,,, is a pseudovector density, even under time reversal. 

Since the symmetrics of p,, under both spatial inversion and time reversal arc 
opposite to those of p,, it is a necessary consequence of the existence of a particle 
with both electric and magnetic charges that space inversion and time reversal 
are no longer valid symmetries of the laws of physics. It is a fact. of course, that 

*The presence of the “impedance of free space.” Zy ~ Vgin/é. in the transformation is a consequence 
of the presence of the dimensionful parameters , and je, in the SI system, Magnetic charge density 
differs in dimensions from electric charge density in SI units. For users of Gaussian units, put Zy — | 
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these symmetry principles are not cxactly valid in the realm of clementary par- 
ticle physics, but present evidence is that their violation is extremely small and 
associated somchow with the weak interactions. Future devclopments linking 
electromagnetic, weak, and perhaps strong, interactions may utilize particles car- 
rying magnetic charge as the vehicle for violation of space inversion and time 
reversal symmetries. With no evidence for monopoles, this remains speculation. 

In spite of the negative evidence for the existence of magnetic monopoles. 
let us turn to Dirac’s ingenious proposal. By considering the quantum mechanics 
of an electron in the presence of a magnetic monopole, he showed that consis- 
tency required the quantization condition, 

282 gs OBR =0,41.+ aah Ze 2 (mn = 0, 41, #2,...) (6.153) 

where ¢ is the clectronic charge. a = €7/47e,hic is the fine structure constant 

(a ~ 1/137), and g is the magnetic charge of the monopole. The discrete nature 
of clectric charge thus follows from the existence of a monopole. The magnitude 

of e is not determined, except in terms of the magnetic charge g. The argument 
can be reversed. With the known value of the fine structure constant, we infer 
the existence of magnetic monopoles with charges g whose magnetic “fine struc- 
aure’’ constant is 

gw Sree _ 137 4 
4mphc 4 2 

Such monopoles are known as Dirac monopoles. Their coupling strength is enor- 
mous, making their extraction from matter with de magnetic ficlds and their 
subsequent detection very simple in principle. For instance, the energy loss in 
matter by a relativistic Dirac monopole is approximately the same as that of a 
relativistic heavy nucleus with Z = 137n/2. It can presumably be distinguished 
from such a nucicus if it is brought to rest because it will not show an increase 
in ionization at the end of its range (see Problem 13.11). 

6.12 Discussion of the Dirac Quantization Condition 

Semiclassical considerations can illuminate the Dirac quantization condition 

(6.153). First, we consider the deflection at large impact parameters of a particle 
of charge ¢ and mass m by the ficid of a stationary magnetic monopole of mag- 
netic charge g. At sufficiently large impact parameter, the change in the state of 
motion of the charged particle can be determined by computing the impulse of 
the force, assuming the particle is undeflected. The geometry is shown in Fig. 6.6. 
The particle is incident parallel to the z axis with an impact parameter 6 and a 
specd v and is acted on by the radially directed magnetic ficld of the monopole, 
B = gr/4ar*, according to the Lorentz force (6.113). In the approximation that 

the particie is undeflected, the only force acting throughout the collision is a y 

component, 

eg ub , = eb, = & B= eB Te vee (6.154) 
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Figure 6.6 Charged particle 
passing a magnctic monopole at 
large impact parameter. 

The impulse transmitted by this force is 

ApS egub dt eg 

ae bP PY?” Ind {6:189) 
Since the impulse is in the y direction, the particle is deflected out of the plane 
of Fig. 6.6, that is. in the azimuthal direction. Evidently the particle's angular 
momentum is changed by the collision, a result that is not surprising in the light 
of the noncentral nature of the force. The magnitude of the change in angular 
momentum is somewhat surprising, however. There is no z component of L ini- 
tially, but there is finally. The change in L, is 

eg 
AL, = b Ap, = se (6.156) 

‘Phe change in the z component of angular momentum of the particle is inde- 
pendent of the impact parameter b and the speed v of the charged particle, It 
depends only on the product eg and is a universal value for a charged particle 
passing a stationary monopole, no matter how far away. If we assume that any 
change of angular momentum must occur in integral multiples of h, we are led 
immediately to the Dirac quantization condition (6.153).* 

The peculiarly universal character of the change in the angular momentum 
(6.156) of a charged particle in passing a magnetic monopole can be understood 
by considering the angular momentum contained in the fields of a point electric 
charge in the presence of a point magnetic monopole. If the monopole g is at 
x = R and the charge e¢ is at x = 0. as indicated in Fig. 6.7, the magnetic and 
electric ficlds in all of space are 

n=-&y(t)-€ 8 go ofl). #8 6157 
4mpto \) Amy ane, \r} 4meyr 

where 7’ = |x ~ R|,r = [x]. and n’ and n are unit vectors in the directions of 
(x — R) and x. respectively. The angular momentum L,,, is given by the volume 
integral of x x g, where g = (E x H)/c* is the clectromagnetic momentum density. 

*This argument is essentially due to A. S. Goldhaber, Pivs. Rev. 140, B1407 (1965). 
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Figure 6.7 

The total momentum of the fields P,,, (volume integral of g) vanishes. This fol- 

lows from the fact that P,,, is a vector and the only vector available is R. Thus 

P., = (R/R)P, where P is the volume integral of g+(R/R). But g°R ~ 

R-(n Xn’). Since R lics in the plane defined by the vectors n and n’, the triple 
scalar product vanishes and so does P,,,. This vanishing of the total momentum 

means that the angular momentum 

Lem = L fx x (E x H) d’x (6.158) ¢ 

is independent of choice of origin. To evaluate L,,,, one can first substitute from 
(6.157) for the electric field: 

4 
1,,-¢f 
Mo r 

Using a vector identity from the front flylcaf, this can be expressed as 

n X (n X H) dx = we | pt men Hy] a's 

4aL.,, = —e f (B- V)n d?x 

where B = gH. Integration by parts gives 

4aLe, =e | n(V = B) d'x - ef n(B + n,) da 
s 

where the second integral is over a surface S§ at infinity and my is the outward 

normal to that surface. With B from (6.157) this surface integral reduces to 
(g/4a)f a dQ = 0. since n is radially directed and has zero angular average. Since 
B is caused by a point monopole at x = R. its divergence is V- B = g 5(x — R). 
The field angular momentum is therefore* 

egR 
LS 15 aR (6.159) 

*This result was first stated by J. J. Thomson, Elements of the Mathematical Theory of Electricity and 
Magnetism, Cambridge University Press. Section 284 of the third (1904) and subsequent editions. 
The argument of Section 284 is exactly the converse of ours. From the conservation of angular 
momentum, Thomson deduces the magnetic part e(v x B) of the Lorentz force. 
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It is directed along the line from the electric to the magnetic charge and has 
magnitude equal to the product of the charges (in SI units) divided by 477. If we 
now think of the collision process of Fig. 6.6 and the total angular momentum of 
the system, that is, the sum of the angular momenta of the particle and the 
electromagnetic field, we see that the total angular momentum is conserved. The 
change (6.156) in the angular momentum of the particle is just balanced by the 
change in the clectromagnetic angular momentum (6.159) caused by the reversal 
of the direction R. A systematic discussion of the classical and quantum-me- 
chanical scattering problem, including the ciectromagnctic angular momentum, 
is given by Goldhaber (loc. cit). 

The Thomson result (6.159) was used by Saha* and independently by 
Wilson’ to derive the Dirac condition (6.153) by semiclassical means. To get n/2 
instead of n when only the ficld angular momentum is considered, it is necessary 
to postulate half-integral quantization of L,,,,, a somewhat undesirabte hypothesis 
for the clectromagnetic field. 

Finally, we present a simplified discussion of Dirac’s original (1931) argument 
leading to (6.153). In discussing the quantum mechanics of an clectron in the 
presence of a magnetic monopole it is desirable to change as little as possible of 
the formalism of ciectromagnetic interactions, and to keep, for example, the 
interaction Hamiltonian in the standard form, 

e é 
Hin =D -— pr Ata AvA 

where ® and A are the scalar and vector potentials of the external sources. To 
do this with a magnetic charge it is necessary to employ an artifice. The magnetic 
charge g is imagined to be the end of a fine of dipoles or a tightly wound solenoid 
that stretches off to infinity, as shown in Fig, 6.8. The monopole and its attached 
string, as the line of dipoles or solenoid is called, can then be treated more or 
less normally within the framework of conventional electromagnetic interactions 
where B = V X A, ctc. From (5.55) we see that the clemental vector potential 
dA for a magnetic dipole clement dm at x’ is 

z dA) = —F2 dm x ¥ (6.160) 

Thus for a string of dipoles or solenoid whose location is given by the string L 
the vector potential is 

AL(x) = -£] al x (a) (6.161) 

For all points except on the string. this vector potential has a curl that is directed 
radially outward from the end of the string, varies inversely with distance 
squared, with total outward flux g. as expected for the B ficld of monopole g. On 
the string itself the vector potential is singular. This singular behavior is cquiv- 
alent to an intense ficld B’ inside the solenoid and bringing a return contribution 
of flux (—g) in along the string to cancel the pole’s outward flow. So far we have 

*M.N. Saha, findian J. Phys. WO. 141 (1936): Phys. Rev. 75. 1968 (1949). 
*H. A. Wilson, Phys. Rev. 75, 309 (1949). 
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Figure 6.8 Two representations of a magnctic monopole g. one as the termination of a 

line of dipoles and the other as the end of a tightly wound solenoid. both “strings” 
stretching off to infinity. 

just described a long thin solenoid. To exhibit the field of the monopole alone 
we write 

Byoonopor = VX A — B’ 

where B’ exists only on the string (inside the solenoid). Dirac now argued that 
to describe the interaction of the clectron with a magnetic monopole, rather than 
with a long thin solenoid, it is mandatory that the electron never “see” the sin- 
gular ficld B’. He thus required the electronic wave function to vanish along the 
string. This arbitrary postulate has been criticized. but discussion of such aspects 
leads us too far afield and is not central to our limited purpose. Dirac’s later work 
(1948) treats the question of the unobservability of the strings in detail. 

If (6.161) for A,(x) is accepted as the appropriate vector potential for a 
monopole and its string L. there remains the problem of the arbitrariness of the 

location of the string. Clearly, the physical observables should not depend on 
where the string is. We now show that a choice of different string positions is 

equivalent to different choices of gauge for the vector potential. Indeed, the 
Tequirements of gauge invariance of the Schrédinger cquation and single-val- 
ucdness of the wave function lead to the Dirac quantization condition (6.153). 
Consider two different strings L and L’, as shown in Fig. 6.9. The difference of 
the two vector potentials is given by (6.161) with the integral taken along the 
closed path C = L’ — L around the area S. By Problem 5.1, this can be written 

Aj (x) = Ap(x) + FM (x) (6.162) 

where Q,. is the solid angle subtended by the contour C at the observation point 

x. Comparison with the gauge transformation equations, A > A’ = A + Vy, 
>’ = ® — (ikc)(Ay/at), shows that a change in string from L to L’ is equiv- 
alent to a gauge transformation, y = g0./4z. 
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Figure 6.9 Two different strings 1, 
and L' give monopole vector 
potentials differing by a gauge 

transformation involving the gradient 
of the solid angle (,-(x) subtended at 
the observation point P by the 
surface S spanning the contour C = 

7 OW Oe 

It is well known in quantum mechanics* that a change in the gauge of the 
clectromagnetic potentials leaves the form of the Schrédinger equation invariant, 
provided the wave function is transformed according to 

wy = yer" 
where e is the charge of the particle and y is the gauge function. A change in the 
location of the string from L to L’ must therefore be accompanied by a modifi- 
cation of the phase of the wave function of the electron, 

> Yl = peiesttclaen (6.163) 

Since N¢ changes suddenly by 47 as the electron crosses the surface S. the wave 
function will be multiple-valued unless we require 

¢ =2mn (n=0, 

This is the Dirac quantization condition (6.153). [t follows from the gencral re- 
quirements of gauge invariance and single-valuedness of the wave function, in- 
dependent of the location of the monopole’s string. 

The preceding discussion of magnetic monopoles presents only the most ba- 
sic concepts. An extensive literature exists on modifications of the quantization 
condition, attempts at a quantum clectrodynamics with magnetic monopoles and 
electric charges, and other aspects. The interested reader can pursue the subject 
through the article by Goldhaber and Trower (op. cit.) and the references at the 
end of the chapter. 

#22) 

6.13 Polarization Potentials (Hertz Vectors) 

It is sometimes useful to utilize potentials other than the standard scalar and 
vector potentials as auxiliary ficlds from which to determine the fundamental 
electromagnetic fields. The most important of these are the polarization potentials 

“The demonstration is very casy. See, for example, H. A. Kramers, Quantum Mechanics, Northy 
Holland, Amsterdam, (1957): Dover reprint (1964). Section 62 
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or Hertz vectors, introduced by Hertz (1889) and Righi (1901). As the name 
suggests, these potentials put the electric and magnetic polarization densities to 
the fore. We consider lincar, isotropic media with sources of external polarization 
densities, P.,, and M,... but no separate macroscopic charge or current. The me- 

dia are described by electric and magnetic susceptibilities, ¢ and ys. [The realistic 
situation of frequency-dependent quantities can be abstracted by choosing a 
unique sinusoidal time dependence and then using Fourier superposition. ] 

The macroscopic ficlds are written 

D=E+ Py, B= pH + poMex (6.164) 

Then with the standard definitions (6.7) and (6.9) of the ficlds in terms of the 

scalar and vector potentials, the macroscopic Maxweil equations yicld the wave 

equations, 

PA Pex 
pe - VA = p+ po X Mex (6.165a) 

or a 
eb 1 pe Se Vb = = 2 Vs Pow (6.165b) 

with 

ad 
VeAt+ pes = 0 

as the Lorenz condition. Two vector polarization potentials, M, and H,,, are 
introduced by writing A and @ in a form paralleling the structures of the right- 
hand sides of the wave equations (6.165), namely. 

all, 
A= ae + aVXTy = -ty Th (6.166) 

i 

When we substitute these definitions into (6.165), we find that the Lorenz con- 
dition is automatically satisfied. The wave equations become the following equa- 
tions for I, and F1,,: 

v- [en — pe + P| =0 

(6.167a) 

ae [ru = pe + P| + poV Xx [ru — pe a + Mx | =0 

(6.1675) 

From (6.167a) we find that the square-bracketed quantity can at most be equal 
to the curl of some vector function, cail it (ao/2)¥. When this form is inserted 

into (6.167b), we have a vanishing curl of a vector quantity that must therefore 
be equal at most to the gradient of some scalar field, call it ag/ar. The result is 

that the Hertz vectors satisfy the wave equations, 

rin. * 
pe SE - VM, = Pay — KV (6.168a) 

at BX 

av 3. 
— VIB, = Mou + a) * ve (6.168b) 
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It is Icft to the problems (Problem 6.23) to show that the arbitrary functions y 
and may be removed by a gauge transformation on the polarization potentials, 
We may thus set V and € equai to zero with no loss of generality. 

The electric and magactic fields are given in terms of the Hertz vectors by 

(6.169a) 

an. B= pV x 4 pV x Vx My (6.169b) 
ar 

Outside the source P.,, the wave equation (6.168a) can be used to express E in 
a form analogous to (6.169b) for B with the roles of the electric and magnetic 
Hertz vectors interchanged. 

The wave equations for II, and T1,,, have solutions that are particularly simple 
if the external polarization densities are simple. For example, a time-dependent 
magnetic dipole at the point x» has a magactization density, 

Mux, = m(1)5(x — x,) 

From the form of the wave equation (6.41) and its solution (6.47), we deduce 
that the magnetic Hertz vector is 

m(t — VpeR) 

Ma(x, = “TER 

where R = |x — x)| 
Iilustrations of the use of polarization potentials can be found in Born and 

Wolf. in Stratton, and in Panofsky and Phillips, who discuss elementary multipole 
radiation in terms of a Hertz vector. We find it adequate to work with the usual 
potentials A and or the ficlds themselves. 

References and Suggested Reading 

The conservation laws for the cnergy and momentum of electromagnetic fields are 
discussed in almost all text books. For example. 

Panofsky and Phillips, Chapter 10 
Stratton. Chapter II 

Landau and Lifshitz. Electrodynamics of Continuous Media (Sections 15, 16. 34) 
discuss the Maxwell stress tensor in some detail in considering forces in fluids and solids. 

The connection of lumped circuit concepts to a description using fields is given by 
Adler, Chu, and Fano 

Fano, Chu, and Adler 

as has already been mentioned. The description of resonant cavities as circuit clements is 
treated in a classic paper by 

W. W. Hansen. J. Appl. Phys. 9. 654 (1938). 

A thought-provoking discussion of the derivation of the macroscopic equations of 
electromagnetism, as well as of the thermodynamics of clectric and magnetic systems. is 
given by 

Robinson 
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The derivation of the macroscopic Maxwell equations from a statistical-mechanical point 
of view has long been the subject of rescarch for a school of Dutch physicists. Their 
conclusions are contained in two comprehensive books, 

de Groot 

de Groot and Suttorp 
A treatment of the energy, momentum, and Maxwell stress tensor of electromagnetic 
ficlds somewhat at variance with these authors is given by 

Penfield and Haus. 
Haus and Melcher 

For the reader who wishes to explore the detailed quantum-mechanical treatment of 

dielectric constants and macroscopic field equations in mattcr, the following are suggested: 
S.L. Adler, Phys. Rev, 126, 413 (1962). 

B. D. Josephson. Phys. Rev. 152, 21 (1966). 
G. D. Mahan, Phys. Rev. 153, 983 (1967). 

Symmetry properties of clectromagnetic fields under reflection and rotation are dis- 

cussed by 
Argence and Kahan 

The subject of magnetic monopoles has an extensive literature. We have already cited 
the paper by Goldhaber and his review with Trower, as well as the fundamcotal papers 
of Dirac. The relevance of monopoles to particle physics is discussed by 

J. Schwinger, Science 165. 757 (1969). 
The interest in and status of scarches for magnetic monopoles up to the 1980s can be 
found in 

R. A. Carrigan and W. P. Trower, Magnetic Monopoles. NATO Adv. Sci. Inst. 
Series B, Physics. Vol. 102, Plenum Press. New York (1983). 

The mathematical topics in this chapter center around the wave equation. The initial 
value problem in one, two, three, and more dimensions is discussed by 

Morse and Feshbach (pp. 843-847) 

and, in more mathematical detail, by 

Hadamard 

Problems 

6.1 In three dimensions the solution to the wave cquation (6.32) for a point source in 
space and time (a light flash at ¢’ = 0, x’ = 0) is a spherical shell disturbance of 
radius R = ct, namely the Green function G‘") (6.44). It may be initially surprising 
that in one or two dimensions. the disturbance possesses a “wake,” even though 
the source is a “point” in space and timc. The solutions for fewer dimensions than 

three can be found by superposition in the superfluous dimension(s). to eliminate 
dependence on such variable(s). For example, a flashing line source of uniform 
amplitude is equivalent to a point source in two dimensions. 

(a) Starting with the retarded solution to the thrce-dimensional wave equation 
(6.47), show that the source f(x‘, ') = &(x’)4(y')6(1’). equivalent to a = 0 
point source at the origin in two spatial dimensions, produces a two-dimen- 

sional wave, 

2c@(ct — p) 

Wen ap 
where p? = x? + y° and O{é) is the unit step function [O() = 0 (1) if 
é< (>) 0] 
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6.2 

6.3 

(b) Show that a “sheet™ source, equivalent to a point pulsed source al the origin 
im one space dimension. produces a one-dimensional wave proportional to 

W(x, ) = 2neO(et — |x) 
‘The charge and current densities for a single point charge g can be written formally 
as 

pbx’) = gilx’ — (eI) — gute yale’ te) 
where r(1') is the charge’s position at time ¢’ and v(s") is its velocity, In evaluating 
expressions involying the retarded time, onc must put t” = f.. = 6 — R(t". where 
R — x — e(¢’) (but R = x — x’ (’) inside the delta functions). 

(a) Asa preliminary to deriving the Heaviside-Feynman expressions for the elec. 
tric and magnetic ficlds of a point charge, show that 

Jey aw ~ rit =4 

where « = | — y+ Ric. Note that « is evaluated at the retarded time. 

(b) Starting with the Jefimenko generalizations of the Coulomb and Biot-Sayart 
Jaws. use the expressions for the charge and current densities for a point charge 
and the result of part a to obtain the Heaviside—Feynman expressions for the 
electric and magnetic ficlds of a point charge, 

eed R]) ,#fR] _ 4 fs 
4m6 (LeRf,,  cot LKR] COE LER Ju 

pata {[yxR] , a fyxR 
4a (LR? J, cal KR I 

(c) In our notation Feynman's expression for the clectric field is 

- 9 ([R] Rhea fR] vralle]* ale, «aaett| 
while Heaviside’s expression for the magnetic ficld is 

nog [[vxR 1 afvxR = + 2 
ae {[ eR? I. flew LK dice 

Show the equivalence of the two sets of expressions for the ficlds. 
References: O. Heaviside. Electromagnetic Theory. Vol. 3 (1912), p. 464, Fg. (214), 
R. P. Feynman, The Feynman Lectures in Physics. Vol. 1 (1963), Chapter 28, Eq. 
(28.3). 

The homogeneous diffusion equation (5.160) for the vector potential for quasi-static 
fields in unbounded conducting media has a solution to the initial value problem 
of the form. 

and 

A(x, 1) = fae G(x — x’. DAC’, 0) 

where A(x’, 0) describes the initial field configuration and G is an appropriate 
kernel. 
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{a) 

{b) 

(e) 

(@) 

Ch.6 Problems 285 

Solve the initial value problem by use of a three-dimensional Fourier trans- 

form in space for A(x, /). With the usual assumptions on interchange of orders 
of integration, show that the Green Junction has the Fourier representation, 

and it is assumed that ¢ > 0. 

By introducing a Fourier decomposition in both space and time, and perform- 
ing the frequency integral in the complex plane to recover the result of part 
a. show that G(x—x’, 1) is the diffusion Green function that satisfies the in- 

homogeneous equation. 

WG - 8% - x’ Whe (x — x’d(1) 

and vanishes for t < 0. 

Show that if o is uniform throughout all space, the Grecn function is 
x 

—po|x — x'P 
Gx. 1: x!,0) = on(42) oro( =e =#T) 

Suppose that at time 1’ = 0, the initial vector potential A(x’, 0) is nonvanishing 
only in a localized region of linear extent d around the origin. The time de- 
pendence of the fields is observed at a point P far from the origin, 
r >> d. Show that there are threc regimes of time, 0 < ¢ = 7). 7, Ts 
and ¢ >> T>. Give plausible definitions of T; and 72, and describe qualitatively 
the time dependence at P. Show that in the last regime, the vector potential 
is proportional to the volume integral of A(x’, 0) times ¢ *°. assuming that 
integral exists, Relate your discussion to those of Section 5.18.B and Problems 
5.35 and 5.36. 

A uniformly magnetized and conducting sphere of radius R and total magnetic 
moment m = 47MRY3 rotates about its magnetization axis with angular speed w 
In the steady state no current flows in the conductor. The motion is nonrelativistic: 

the sphere has no excess charge on it 

(a) 

(b) 

(e) 

(a) 

By considering Ohm's law in the moving conductor, show that the motion 
induces an electric ficld and a uniform volume charge density in the conductor. 

p= —mualmeR’. 

Because the sphere is electrically neutral, there is no monopole clectric field 
outside, Use symmetry arguments to show that the lowest possible electric 
multipolarity is quadrupole. Show that only a quadrupole field exists outside 
and that the quadrupole moment tensor has nonvanishing componcats. 

Oss = —AmaR3c?. Ou = Or: — —QrV2. 

By considering the radial clectric fields inside and outside the sphere, show 

that the necessary surface-charge density (8) is 

1 4me 3, oo = he Be -$ raeoss| 

The rotating sphere serves as a unipolar induction device if a stationary circuit 
is atiached by a slip ring to the pole and a sliding contact to the equator. Show 
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6.6 

that the line integral of the electric ficid from the equator contact to the pole 
contact (by any path) is € = pymwidaR. 

[See Landau and Lifshitz. Elecirodynamics of Continuous Media, p. 221, for an 
alternative discussion of this electromotive force.] 

A localized electric charge distribution produces an electrostatic field. E = —Vo 
Into this field is placed a small localized time-independent current density I(x), 
which generates a magnetic field H. 

(a) Show that the momentum of these clectromagnetic fields, (6.117), can be trans, 
formed to 

1 ‘ 
Praa = | OS dx 

¢ 

provided the product PH falls off rapidly enough at large distances. How 
rapidly is “rapidly enough"? 

(b) Assuming that the current distribution is localized to a region small compared 
to the scale of variation of the electric ficld. expand the electrostatic potential 
ina Taylor series and show that 

Pic = = EO) x m 
¢ 

where E(()) is the clectric ficld at the current distribution and m is the magnetic 
moment, (5.54), caused by the current. 

{c) Suppose the current distribution is placed instead in a uniform clectric field 
E, (filling all space). Show that, no matter how complicated is the localized J. 
the result in part a is augmented by a surface integral contribution from infinity 
equal to minus one-third of the result of part b, yielding 

2 
Prats E,xm 

Compare this result with that obtained by working directly with (6.117) and the 
considerations at the end of Section 5.6. 

(a) Consider a circular toroidal coil of mean radius @ and N turns. with a small 
uniform cross section of area A (both height and width smal! compared to a). 
The toroid has a current / flowing in it and there is a point charge () located 
at its center. Calculate al! the components of ficld momentum of the system; 
show that the component along the axis of the toroid is 

HoQINA 

4na* 
ae * + 

where the sign depends on the sense of the current flow in the coil. Assume 
that the elcciric field of the charge penctrates unimpeded into the region of 
nonvanishing magnetic ficld. as would happen for a toroid that is actually a 
sct of NV small nonconducting tubes inside which ionized gas moves to provide 
the current flow. 

Check that the answer conforms to the approximation of Problem 6.5b. 

(b) HQ = 10° C (~ 6 & 10” electronic charges), £ = 1.0 A. N = 2000, A = 
10~* m?. a = 0.1 m, find the electric ficld at the toroid in volts per meter, the 
magnetic induction in tesla. and the electromagnetic momentum in newton- 
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6.8 

6.9 
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seconds. Compare with the momentum of a 10 yg insect flying at a speed of 
0.1 més. 

[Note that the system of charge and toroid is at rest. Its sofa! momentum must 
vanish. There must therefore be a canceling “hidden” mechanicat momentum—sce 

Problem 12.8.] 
The microscopic current j(x, #) can be written as 

J) = D ayyjlx — ¥)) 
7 

where the point charge q; is located at the point x,(/) and has velocity vj = dx,(s)/dt. 
Just as for the charge density, this current can be broken up into a “free” (conduc- 
tion) electron contribution and a bound (molecular) current contribution. 

Following the averaging procedures of Section 6.6 and assuming nonrelativistic 
addition of velocities, consider the averaged current, (j(x, 9). 

(a) Show that the averaged current can be written in the form of (6.96) with the 

definitions (6.92), (6.97). and (6.98). 

(b) Show that for a medium whose internal molecular velocities can be neglected, 

but which is in bulk motion (i.c., v,, = v for all 2), 

tR-H=M+(D-«E) xy 
Bo 

This shows that a moving polarization (P) produces an effective magnetization 

density. 

Hints for part a: Consider quantities like (dp,/dt), (€Qi/de) and see what they 
look like. Also note that 

of a - 2 Seen AES ay BAD) = Vn VFR — Xu()) 

A diclectric sphere of dielectric constant € and radius a is located at the origin. 
There is a uniform applied cicctric ficld Ey in the x direction. The sphere rotates 
with an angular velocity @ about the z axis. Show that there is a magnetic field 
H = -Voj, where 

3fe-& a\ 
ous (: + ©) atin( ) “a8 

where r., is the larger of r and a. The motion is nonrelativistic. 

You may use the results of Section 4.4 for the dielectric sphere in an applicd 

field. 

Discuss the conservation of energy and linear momentum for a macroscopic system 
of sources and electromagnetic fields in a uniform, isotropic medium described by 
a permittivity € and a permeability 4. Show that in a straightforward calculation 
the energy density, Poynting vector. field-momentum density, and Maxwell stress 
tensor are given by the Minkowski expressions, 

= i) 1 3 (cH? + nH?) 

=ExH 

peEE XH 

Ty = [€bE; + wHH, ~ 36,(€E? + wH?)] 

What modifications arise if ¢ and yx are functions of position? 
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6.10 

641 

6.12 

6.13 

With the same assumptions as in Problem 6.9 discuss the conservation of angular 
momentum. Show that the differential and integral forms of the conservation law 
are 

(Finecn + Lea) + VM = 0 
Ble 

and 

af ase + Lao) Pe + fo da =0 

where the field angular-momentum density is 

Prog =X XB wex x (EX H) 

and the flux of angular momentum is described by the tensor 

-~Txx 

Note: Here we have used the dyadic notation for M, and Ty. A double-headed 
arrow conveys a fairly obvious meaning. For example, n> M is a vector whose jth 
component is ¥1,M,. The second-rank M can be written as a third-rank tensor, 
Mix = T,X« — Tax, But in the indices j and k it is antisymmetric and so has only 
three independent elements. Including the index i. M,x therefore has nine compo- 
nents and can be written as a pscudotensor of the second rank, as above. 

A transverse plane wave is incident normally in vacuum on a perfectly absorbing 
flat screen. 

(a) From the law of conservation of linear momentum. show that the pressure 

{called radiation pressure) exerted on the screcn is cqual to the field energy 
per unit volume in the wave. 

(b) In the neighborhood of the carth the flux of electromagnetic energy from the 
sun is approximately 1.4 kW/m”. If an interplanetary “sailplane™ had a sail of 
mass | g/m? of arca and negligible other weight. what would be its maximum 
accelcration in meters per second squared due to the solar radiation pressure? 
How does this compare with the acceleration due to the solar “wind 
puscular radiation)? 

Consider the detinition of the admittance ¥Y = G — iB of a two-terminal linear 
passive network in terms of field quantities by means of the complex Poynting 
theorem of Scction 6.9. 

(a) By considering the complex conjugate of (6.134) obtain general expressions 
for the conductance G and susceptance B for the general case including 
radiation loss. 

{b) Show that at low frequencies the expressions equivalent to (6.139) and (6.140) 
are 

1 
o=mph o |EP d’x “Pde 

Aw f , 
B ive ¥ (Oty, — we) Bx 

A parallel plate capacitor is formed of two fiat rectangular perfectly conducting 
sheets of dimensions @ and 5 separated by a distance d small compared to a or b. 

Current is fed in and taken out uniformly along the adjacent edges of length b. 



6.14 

6.15 
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With the input current and voltage defincd at this end of the capacitor, calculate 

the input impedance or admittance using the ficld concepts of Section 6.9. 

{a) Calculate the clectric and magnetic ficlds in the capacitor correct to second 

order in powers of the frequency, but neglecting fringing fields. 

(b) Show that the expansion of the reactance (6.140) in powers of the frequency 
to an appropriate order is the same as that obtained for a lumped circuit 
consisting of a capacitance C = «,ab/d in serics with an inductance L = 
mond 3b. 

An ideal circular parallel plate capacitor of radius @ and plate separation d <<a is 
connected to a current source by axial leads, as shown in the sketch. The current 

in the wire is /(¢) = {,cos wt. 

no{ 

nol 
Problem 6.14 

{a) Calculate the electric and magnetic ficlds between the plates to second order 
in powers of the frequency (or wave number). neglecting the effects of fringing 

fields. 

(b) Calculate the volume integrals of w, and w,, that enter the definition of the 
reactance X, (6.140). to second order in w. Show that in terms of the input 

current J, defined by /; = —iwQ. where Q is the total charge on one plate, 
these energies are 

1 1 ied / a 2 Ho iPad vee diy = mig = EO +5 i Wed = Te wa? Mint ee emg NY tae 

{c) Show that the equivalent series circuit has C = weya/d, L = pod/8ar, and that 
an estimate for the resonant frequency of the system is «,.. = 2V/2 cla, Com- 
pare with the first root of J,(x). 

If a conductor or semiconductor has current flowing in it because of an applied 
electric field, and a transverse magnetic field is applied, there develops a component 
of electric field in the direction orthogonal to both the applied clectric field (direc- 
tion of current fiow) and the magnetic field, resulting in a voltage difference be- 
tween the sides of the conductor. This phenomenon is known as the Hall effect. 
{a) Use the known properties of electromagnetic fields under rotations and spatial 

reflections and the assumption of Taylor series expansions around zero mag- 
netic field strength to show that for an isotropic medium the generalization of 
Obm’s law, correct to second order in the magnetic field. must have the form 

E=pJ + RX 5) + BH + BMH- DH 
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6.16 

6.17 

6.18 

where py is the resistivity in the absence of the magnetic field and R is calleg 
the Hall coefficient. 

(b) What about the requirements of time reversal invariance? 

(a) Calculate the force in newtons acting on a Dirac monopole of the minimum 
magnetic charge located a distance 0.5 A from and in the median plane of 
magnetic dipole with dipole moment equal to one nuclear magneton (cft/2m,), 

(b) Compare the force in part a with atomic forces such as the direct electrostatic 
force between charges (al the same separation), the spin-orbit force, the hy- 
pertine interaction. Comment on the question of binding of magnetic mono- 
poles to nuclei with magnetic moments. Assume that the monopole mass is at 
least that of a proton. 

Reference: D. Sivers. Phys. Rev. D2. 2048 (1970). 

(a) For a particle possessing both electric and magnetic charges. show that the 
generalization of the Lorentz force in vacuum is 

B= GE + qoBliy + gv XB gu¥ X eE 

(b) Show that this expression for the force is invariant under a duality transfor. 
mation of both fields and charges, (6.151) and (6.152). 

(c) Show that the Dirac quantization condition, (6.153), is generalized for two 
particles possessing electric and magnetic charges ¢). g; and >, g>. respectively, 
to 

Balt 
=2nn 

a 

and that the relation is invariant under a duality transformation of the charges. 

Consider the Dirac expression 

dX (x - x’) 
Ix x'f 

for the vector potential of a magnetic monopole and its associated string L. Suppose 
for deliniteness that the monopole is located at the origin and the string along the 
negative z axis. 

(a) Calculate A explicitly and show that in spherical coordinates it has 
components 

g(1 = cos 8) g é =0, a): pi BUS 008 Fie (28.2 2 A, 4o= 0. Ag= = Ta) lS 

{b) Verify that B = V x A is the Coulomb-like field of a point charge. except 

perhaps at @ = 7, 

(©) With the B determined in part b, evaluate the total magnetic flux passing 

through the circular loop of radius R sin @ shown in the figure. Consider 
4@< n/2 and @ > w/2 separately. but always calculate the upward flux, 

(d) From § A+ dl around the loop, determine the total magnetic flux through the 
loop. Compare the result with that found in part c. Show that they are equal 
for 0 < @< a2, but have a constant difference for 7/2 < @< 7. Interpret this 
difference. 



Ch.6 Problems 291 

Problem 6.18 

6.19 (a) Apply space inversion to the monopole vector potential of Problem 6.18 and 

6.20 

{b) 

{c) 

show that the vector potential becomes 

,__ (itcs)__ gf 
Ab 8 Gar sin ane OND 

with the other components vanishing. Show explicitly that its curl gives the 
magnetic field of a magnetic monopole. except perhaps at @ = 0. [Remember 
the space-inversion properties of the magnetic charge!] 

Show that the difference. SA — A’ — A. can be expressed as the gradient of 
a scalar function, indicating that the original and space-inverted vector poten- 

tials differ by a gauge transformation. 

Interpret the gauge function in terms of Fig. 6.9. [Hint: Choose the contour C 
to be a rectangle lying in a plane containing the z axis, with three sides at 
infinity.] 

An cxample of the preservation of causality and finite speed of propagation in spite 
of the use of the Coulomb gauge is afforded by a dipole source that is flashed on 
and off at ¢ = 0. The effective charge and current densities are 

lx. 2) ~ (2)6(9)8'(2)50 
Jax. 1) = ~A(x)5(VA(ZIE'C) 

where a prime means differentiation with respect to the argument. This dipole is 

of unit strength and it points in the negative z direction. 

(a) 

(b) 

Show that the instantancous Coulomb potential (6.23) is 

os.) - -—LE aye 
. ame, 

Show that the vansverse current J, is 

Fix.) = —8() 

where the factor of 2/3 multiplying the delta function comes from treating the 
gradient of </r* according to (4.20). 
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(ce) Show that the electric and magnetic ficlds are causal and that the electric fielg 
componenis are 

(eR: 
Amer 

Edx.d = [-se - et) + : Br — ct) - 5 arr - a} sin 8 cos 8 cos 

E, is the same as E,, with cos & replaced by sin @. and 

E(x. = x [screw ~ et) + Bcos# - 1): oe = a) 
yr r r 

Hint: While the answer in part b displays the transverse current explicitly. the less 
explicit form 

az 
Sx.) = 500] 6600 + iv f. (| 

can be used with (6.47) to calculate the vector potential and the fields for part ¢, 
An alternative method is to use the Fourier transforms in time of J, and A, the 
Green function (6.40) and its spherical wave expansion from Chapter 9. 

6.21 An clectric dipole of dipole moment p. fixed in direction. is located at a position 
t)(¢) with respect to the origin. Its velocity v = dry/dt is nonrelativistic. 

(a) Show that the dipole’s charge and current densitics can be expressed formally 
as 

atx. 1) = —(p + V6(X — rN): IG) = —v(p + V)SOK ~ ro(t)) 

(b) Show that the off-center moving dipole gives rise to a magnetic dipole ficld 
and an clectric quadrupole ficld in addition to an electric dipole ficld. with 
moments 

and 

Qs = 3(%up; + Lop.) — ty + pS, 

(There are. of course, still higher moments.] 

(c) Show that the quasi-static electric quadrupole field is 

E(x) = Fag pills + m)(n= p) — Sem» p) — 3plm =r) — 3n(ty + p)| 

where ris a unit vector in the radial direction. 

6.22 (a) For the off-center. slowly moving, electric dipole of Problem 6.21, show that 

the quasi-static vector potential produced by the current flow associated with 
the dipole motion is 

1 A(x.) = 5 (x, #) rS 
4ur 4a [2 eo r 

BoV(M +P) _ po [; (PX¥) xx | 1 fp(esy) + aaa 

where the first term of the second form (antisymmciric in v and p) is the vector 
potential of the magnetic dipole whose momcat is given in Problem 6.21. The 
added term is symmetric in v and p. 

(bh) Show that the magnetic field of the symmeiric term is 

Bom = — GE mx [aCe 8) + vip =m 



6.23 

6,24 
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(e) By calculating its curl, show that B.,,,, is consistent with being the quasi-static 
magnetic field associated with the electric quadrupole field of Problem 6.21c. 

(d) Show that the total magnetic field (computed from the first form of the vector 

potential, i-c., the sum of B,,,, and the magnetic dipole field) is 

pa By » Gatu-p) = Pl 
an r 

Comment. 

The wave equations (6.168) for the Hertz vectors contain arbitrary source terms 
involving the functions V and & Consider the gauge transformations 

I, = Tl. + wo¥ x G- Vg: Th, = On — # 

where G and g are well-behaved functions of space and time. 

(a) Show that, if G and g satisfy the wave equations 

ve (V+ Ve) 
mn 

0 

then the new polarization potentials II; and IL, satisfy (6.168) with vanishing 
V and é 

(b) Show that the gauge transformation on the Hertz vectors is equivalent to a 
gauge transformation on A and . What is the gauge function A of (6.19) in 
terms of G and g? 

A current distribution J(x, 1) localized near the origin varies slowly in time. 

(a) Use the Jefimenko expressions (6.55) and (6.56) for the retarded ficlds to 
evaluate the quasi-static ficlds far from the current distribution, Assuming that 
there are no electric multipole moments and retaining only the magnetic di- 
pole contributions, show that the magnetic and electric fields at the point 
(x = ér. ) to first order in an expansion in successive time derivatives are 

Be I ra a Hel FV samc — ric) « B=-> ( + 2) sme ric) 

= Ho Lg, alt ~ rle) 
“anP a 

= m(t = rie)] 

(b) The construction and excitation of an infinite, straight, right circular solenoid 
of radius a. with N turns per unit length, are such that its current /(#) is the 
same everywhere along its length and is changed very slowly in time. Show 
that the fields far from the solenoid are approximately 

ay B=0+0 (2) 

gw He Nee alle = ple) g 
2p at 

where p is the perpendicular distance from the axis, provided max(|di/dt/I|) 
«<< clp. A long solenoid with a time-varying current has an electric field outside 
it, in contrast to the static situation. Verify that Faraday’s law is satisfied. 
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6.25 (a) Starting with the Lorentz force expression (6.114). show that in the dipole 
approximation the force acting on a neutral atom at rest can be expressed ag 

ae, : 
Sem a -V)E+dxB ai (d-¥) 

where d is the atomic dipole moment and E and B are the electric and mag. 
netic fields at the site of the atom. 

{b) For a uniform piane wave of frequency w in a nonmagnetic tenuous dielectric 
medium with index of refraction n{c), show that the time rate of change of 
mechanical momentum per unit volume gucch accompanying the electromag. 
netic momentum g.., (6.118) of the wave is 

Bech 1s 4) Bom 
a 

[sce Peierls (loc. cit.) for corrections for dense media and non-uniform waves,} 

Note of explanation: 

The reader may be startled to find {in all but the carlicst printings) the association 
of Danish physicist Ludvig V. Lorenz's name instead of Dutch physicist Hendrik A. Lo- 
rentz’s with the relation (6.14) between the scalar and vector potentials. Yet it is a fact 
that in 1867 Lorenz. in a paper entitled “On the identity of the vibrations of light with 
electrical currents,” (op. cit.) exploited the retarded solutions for the potentials, derived 
{6.14) and equations equivalent to wave equations for the electric field. and discussed the 
characteristics of light propagation in conductors and transparent media, contemporane- 
ously with Maxwell. H. A. Lorentz has ample recognition in physics terminology without 
the mis-attribution of (6.14) to him (by others, beginning around 1900). As Van Bladel* 
observes, it is up to textbook authors to accord Lorenz his due." 

“J, Van Bladel, IEEE Antennas and Propagation Magazine 33, No. 2, 69 (April 1991). 
An earlier author who deplored the lack of recognition of Lorenz’s contributions is A. O'Rabilly, 
Electromagnetic Theory, Dover Publications, New York (1965) [originally published as Electromag- 
netics, Longman Green and Cork University Press (1938)], footnote, p. 184. 



CHAPTER 7 

Plane Electromagnetic Waves 
and Wave Propagation 

This chapter on plane waves in unbounded, or perhaps scmi-infinite, media treats 
first the basic properties of plane clectromagnetic waves in nonconducting me- 
dia—their transverse nature, linear and circular polarization states. Then the 
important Fresnel formulas for reflection and refraction at a plane interface are 
derived and applied. This is followed by a survey of the high-frequency dispersion 
properties of dielectrics, conductors, and plasmas. The richness of nature is illus- 
trated with a panoramic view (Fig. 7.9) of the index of refraction and absorption 
coefficient of liquid water over 20 decades of frequency. Then comes a simplified 
discussion of propagation in the ionosphere, and of magnetohydrodynamic waves 
in a conducting fluid. The ideas of phase and group velocities and the spreading 
of a pulse or wave packet as it propagates in a dispersive medium come next. 
The important subject of causality and its consequences for the dispersive prop- 
erties of a medium arc discussed in some detail, including the Kramers~Kronig 
dispersion relations and various sum rules derived from them. The chapter con- 
cludes with a treatment of the classic problem of the arrival of a signal in a 
dispersive medium, first discussed by Sommerfcid and Brillouin (1914) but only 
recently subjected to experimental test. 

7.1 Plane Waves in a Nonconducting Medium 

A basic feature of the Maxwell equations for the electromagnetic field is the 
existence of traveling wave solutions which represent the transport of encrgy 
from one point to another. The simplest and most fundamental electromagnetic 
waves are transverse, plane waves. We proceed to see how such solutions can be 
obtained in simple nonconducting media described by spatially constant per- 
meability and susceptibility. In the absence of sources, the Maxwell equations in 

an infinite medium are 

v-B=0, vxE+ B= 
ay (7.1) 

vV-D=0, VxH-—=0 
or 

Assuming solutions with harmonic time dependence e~“”, from which we can 
build an arbitrary solution by Fourier superposition, the equations for the am- 
plitudes E(w, x), etc. read 

0, Vx E-— ioB=0 

vV-D=0, VxH+ ioD=0 

295 
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For uniform isotropic linear media we have D = €F, B = wH, where € and w 
may in general be complex functions of w. We assume for the present that they 
are real and positive (no losses). Then the equations for E and H are 

Vx E — ioB = 0, Vx B+ iwpeE = 0 (7.2) 

The zero-divergence equations are not independent, but are obtained by taking 
divergences in (7.2). By combining the two equations we get the Helmholtz wave 
equation 

(W? + nea} =0 (7.3) 

Consider as a possible solution a plane wave traveling in the x direction, e** -, 
From (7.3) we find the requirement that the wave number & and the frequency 
w are related by 

k= View (7.4) 

The phase velocity of the wave is 

7 a jae 75 
k pe on Veo & 75) 

The quantity » is called the index of refraction and is usually a function of fre- 
quency. The primordial solution in one dimension is 

u(x, 0) = gel! + be “ernie (7.6) 

Using @ = kv from (7.5), this can be written 

U(X, 1D) = ae 4 Herikorren 

If the medium is nondispersive (4 independent of frequency), the Fourier su- 
perposition theorem (2.44) and (2.45) can be used to construct a general solution 
of the form 

u(x, ) = f(x — vt) + g(x + v8) (1.7) 

where f(z) and g(z) are arbitrary functions. Equation (7.7) represents waves 
traveling in the positive and negative x directions with speeds cqual to the phase 
velocity v. 

If the medium is dispersive, the basic solution (7.6) still holds, but when we 
build up a wave as an arbitrary function of x and ¢, the dispersion produces 
modifications. Equation (7.7) no longer holds. The wave changes shape as it 
propagates (see Sections 7.8, 7.9, and 7.11). 

We now consider an electromagnetic plane wave of frequency w and wave 
vector k = kn and require that it satisfy not only the Helmholtz wave equation 
(7.3) but also all the Maxwell cquations. The constraint imposed by (7.3) is es- 
sentially kinematic; those imposed by the Maxwell equations, dynamic. With the 
convention that the physical clectric and magnetic fields are obtained by taking 
the real parts of complex quantities, we write the plane wave fields as 

E(x, 1) = Se#™ i (7.8) 

Bix.) = Be*™™ 
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where %, %, and n are constant vectors. Each component of E and B satisfies 
{7.3) provided 

koa-n= pew (7.9) 

To recover (7.4) it is necessary that n be a unit vector such that n-n = 1. With 
the wave equation satisfied, there only remains the fixing of the vectorial prop- 
ertics so that the Maxwell equations (7.1) are valid. The divergence equations in 

{7.1) demand that 

n-€=0 and n-B=0 (7.10) 

This means that E and B arc both perpendicular to the direction of propagation 
n. Such a wave is called a transverse wave. The curl equations provide a further 

restriction, namcly 

B= Vuenx FE (cna) 

The factor Vie can be written Ve = nic, where n is the index of refraction 
defined in (7.5). We thus sec that cB and E, which have the same dimensions, 

have the same magnitude for plane electromagnetic waves in free space and differ 
by the index of refraction in ponderable media. In enginecring literature the 
magnetic field H is often displayed in parallel to E instead of B. The analog of 
(7.11) for H is 

# =n x BIZ av) 

where Z = Ve is an impedance. In vacuum, Z = Zy = Vpo/€y ~ 376.7 ohms, 
the impedance of free space. 

If mis real, (7.11) implies that 6 and B have the same phase. It is then useful 
to introduce a set of real mutuaily orthogonal unit vectors (€,, €2, m), as shown 

in Fig. 7.1. In terms of these unit vectors the ficld strengths € and B are 

$=€E, B= Vue Ey (7.12) 

or 

$S=e6Fi, B= —eVue Fi (7.12/) 
where Ey and Ej, are constants, possibly complex. The wave described by (7.8) 
and (7.12) or (7.12') is a transverse wave propagating in the direction n. It rep- 

Figure 7.1 Propagation vector k and two 
x orthogonal polarization vectors €, and €. 
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resents a time-averaged flux of energy given by the real part of the complex 
Poynting vector: 

1 
S=<.E x H* 

2 

The energy flow (energy per unit area per unit time) is 
lon 

1 ile 
S= > /-|E,P 7. 3 Va |E.P a (7.13) 

The time-averaged energy density u is correspondingly 

v=! (a-+ 15-0) 
4 & 

This gives 

u= 5 lEoP (7.14) 

The ratio of the magnitude of (7.13) to (7.14) shows that the speed of energy 
flow is v = 1/V/ue, as expected from (7.5). 

In the discussion that follows (7.11) we assumed that n was a real unit vector, 
This does not yield the most general possible solution for a plane wave. Suppose 
that n is complex, and written as n = ny + in; Then the exponential in (7.8) 
becomes 

iO for Sg AM ggihtyen ~le 

The wave possesses exponential growth or decay in some directions. It is then 
called an inhomogeneous plane wave. The surfaces of constant amplitude and 
constant phase are still planes, but they are no longer parallel. The relations (7.10) 
and (7.11) still hoid. The requirement n+ n = 1 has real and imaginary parts,” 

nh - np = (7.15) 

Naen, = 0 

The second of these conditions shows that n, and n, are orthogonal. The coor- 
dinate axes can be oriented so that ng is in the x direction and n, in the y direction. 
The first equation in (7.15) can be satisfied generally by writing 

n = e, cosh + ie, sinh @ (7.16) 

where @ is a real constant and e, and e, are real unit vectors in the x and y 
directions (not to be confused with e, and e2!). The most general vector & sat- 
isfying n-@ = 0 is then 

% = (ie, sinh 6 — e, cosh #)A + e,A’ (7.17) 

where A and A’ arc complex constants. For 6 # 0, € in general has components 
in the direction(s) of n. It is easily verified that for @ = 0, the solutions (7.12) and 
(7.12') are recovered. 

We encounter simple examples of inhomogeneous plane waves in the dis- 
cussion of total internal reflection and refraction in a conducting medium later 
in the chapter, although in the latter case the inhomogeneity arises from a com- 

1. *Note that if m is complex il does not have unit magnitude, that is, m+ m = } docs not imply |m? 
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piex wave number, not a complex unit vector n. Inhomogeneous plane waves 
form a general basis for the treatment of boundary-vaiue problems for waves 
and are especially useful in the solution of diffraction in two dimensions. The 
interested reader can refer to the book by Clemmow for an extensive treatment 

with examples. 

9.2 Linear and Circular Polarization; Stokes Parameters 

The plane wave (7.8) and (7.12) is a wave with its electric field vector always in 
the direction €,. Such a wave is said to be linearly polarized with polarization 
vector €,. Evidently the wave described in (7.12’) is linearly polarized with po- 
larization vector €, and is linearly independent of the first. Thus the two waves, 

E, = €,E,e** “ 
Fp = @£e F 

with 
{7.18) 

-k x E, 
= Ve i? 

can be combined to give the most general homogencous plane wave propagating 
in the direction k = kn. 

E(x, 1.) = (€\F, + €2£,)e** (7.19) 

The amplitudes E, and £) are complex numbers, to allow the possibility of a 
phase difference between waves of different linear polarization. 

If E, and E, have the same phase, (7.19) represents a linearly polarized wave, 
with its polarization vector making an angle @ = tan ' (EYE)) with €, and a 

magnitude E = VER + E3, as shown in Fig. 7.2. 
If E, and E, have different phases, the wave (7.19) is elliptically polarized. 

To understand what this means Ict us consider the simplest case, circular polar- 

ization. Then E, and E, have the same magnitude, but differ in phase by 90°. 

The wave (7.19) becomes: 

E(x, 1) = Eg(e, * ie2)e™™-™" (7.20) 

B, j=1,2 

with E, the common real amplitude. We imagine axes chosen so that the wave 

is propagating in the positive z direction, while €, and €, are in the x and y 
directions, respectively. Then the components of the actual electric field, obtained 

by taking the real part of (7.20), are 

E(x, 1) = Fy cos(kz — wt) } 
: a (7.21) 

E,(x, t) = FE, sin(kz — ot) 

Figure 7.2. Electric ficld of a linearly polarized 
wave. 
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At a fixed point in space, the fields (7.21) are such that the electric vector jg 
constant in magnitude, but sweeps around in a circle at a frequency w, as shown, 
in Fig. 7.3. For the upper sign (€, + ie2), the rotation is counterclockwise when 
the observer is facing into the oncoming wave. This wave is called /eft circularly 
polarized in optics. In the terminology of modern physics, however, such a wave 
is said to have positive helicity. The latter description seems more appropriate 
because such a wave has a positive projection of angular momentum on the z 
axis (see Problem 7.29}. For the lower sign (€, — ie), the rotation of E is clock. 
wise when looking into the wave; the wave is right circularly polarized (optics), 
it has negative helicity. 

The two circularly polarized waves (7.20) form an equally acceptable set of 
basic fields for description of a general state of polarization. We introduce the 
complex orthogonal unit vectors: 

1 
€: = le * fe) (7.22) 

with properties 

ere =0 

€r-e,=0 (7.23) 
et-e. = 1 

Then a general representation, equivalent to (7.19), is 

E(x, 1) = (E,e, + E € )e®™ (7.24) 

where £, and £ are complex amplitudes. If £, and F have different magni- 
tudes, but the same phase, (7.24) represents an elliptically polarized wave with 
principal axes of the ellipse in the directions of €, and €;, The ratio of semimajor 
to semiminor axis is |(1 + r)/(1 — r)|, where E/E, = r. If the amplitudes have 
a phase difference between them, E_/E.. = re’, then it is casy to show that the 
ellipse traced out by the E vector has its axes rotated by an angle (a/2). Figure 
7.4 shows the gencral case of elliptical polarization and the ellipses traced out by 
both E and B at a given point in space. 

For r = £1 we get back a linearly polarized wave. 
The polarization content of a plane electromagnctic wave is known if it can 

be written in the form of either (7.19) or (7.24) with known coefficients (F,, F2) 
or (£,, E_). In practice, the converse probiem arises, Given that the wave is of 
the form (7.8), how can we determine from observations on the beam the state 
of polarization in all its particulars? A useful vehicle for this are the four Stokes 

y 

? Figure 7.3. Electric field of a circularly polarized 
Efe, 1) = Eo(e, + iege't *~ ot wave. 
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Figure 7.4 Flectric field and magnetic induction for an clliptically polarized wave. 

parameters, proposed by G. G. Stokes in 1852. These parameters are quadratic 
in the field strength and can be determined through intensity measurements only, 
in conjunction with a linear polarizer and a quarter-wave plate or equivalents. 

Their measurement determines completely the state of polarization of the wave. 

The Stokes parameters can be motivated by observing that for a wave prop- 
agating in the 2 direction, the scalar products, 

E. e§-E (7.25) 
are the amplitudes of radiation, respectively, with linear polarization in the x 
direction, lincar polarization in the y direction, positive helicity, and negative 
helicity, Note that for circular polarization the complex conjugate of the appro- 
priate polarization vector must be used, in accord with (7.23). The squares of 
these amplitudes give a measure of the intensity of each type of polarization. 
Phase information is also needed; this is obtained from cross products. We give 
definitions of the Stokes parameters with respect to both the lincar polarization 
and the circular polarization bases, in terms of the projected amplitudes (7.25) 
and also explicitly in terms of the magnitudes and relative phases of the com- 
ponents. For the latter purpose we define each of the scalar cocfficients in (7.19) 

and (7.24) as a magnitude times a phase factor: 

e€,- E, @ +E, et 

£, = ae™, Ey = ase” 

E. =a.e', E_ = a_e* (2) 

In terms of the linear polarization basis (€), €2), the Stokes parameters are* 

So = |€.+ EP? + le,+ EP = af + @ 
51 = |e,+ EP — |e.- EP = aj ~ a3 
82 = 2 Re[(e, + E)*(€2 + E)] = 2ayae cos(5, — 34) 
33 = 2 Im[(e, - E)*(€: + E)] = 2aiaz sin(&: — 4) 

If the circular polarization basis (€., €_) is used instead, the definitions read 

(7.27) 

wo = |e EP + le*-EP =a +a? 
5) = 2 Re[(e= + E)*(e* + E)] = 2a,a cos(é — 8.) 

sy = 2 Im[(et - E)*(e*  E)] = 2a,a_ sin(S. — 8.) 
sy =|e*- Ef — let - EF = 

(7.28) 

a 

+The notation for the Stokes parameters is unfortunately not uniform. Stokes himself used (A, B.C. 
D), other labelings are (, Q. U, V) and (2. M,C, S). Our notation is that of Born and Wolf. 
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The expressions (7.27) and (7.28) show an interesting rearrangement of roles of 
the Stokes parameters with respect to the two bases. The parameter 5 measures 
the relative intensity of the wave in either case. The parameter s, gives the pre. 
ponderance of x-linear polarization over y-linear polarization, while sz and s, in 
the linear basis give phasc information. We see from (7.28) that s3 has the inter. 
pretation of the difference in relative intensity of positive and negative helicity, 
while in this basis s, and s. concern the phases. The four Stokes parameters are 
not independent, since they depend on only three quantities, a), a2, and 8, - §, 
They satisfy the relation 

sa = st + 53+ 83 (7.29) 

Discussion of the operational steps needed to measure the Stokes parameters 
and so determine the state of polarization of a plane wave would take us too far 
aficld. We refer the reader to Section 13.13 of Stone for details. Also neglected, 
except for the barest mention, is the important problem of quasi-monochromatic 
radiation. Beams of radiation, even if monochromatic cnough for the purposes 
at hand, actually consist of a superposition of finite wave trains. By Fourier’s 
theorem they thus contain a range of frequencies and are not completely mono- 
chromatic, One way of viewing this is to say that the magnitudes and phases 
(a; 6,) in (7.26) vary slowly in time, slowly, that is, when compared to the fre- 
quency w. The observable Stokes parameters then become averages over a rel- 
atively long time interval. and are written as 

$2 = Aaaz cos(d, — 6))) 
for cxample, where the angle brackets indicate the macroscopic time average, 
One consequence of the averaging process is that the Stokes parameters for a 
quasi-monochromatic beam satisfy an inequality, 

33 2st + 53 + 33 

rather than the equality, (7.29). “Natural light,” even if monochromatic to a high 
degree, has s) = s, = s; = 0. Further discussion of quasi-monochromatic light 

and partial cohcrence can be found in Born and Wolf. Chapter 10. 
An astrophysical example of the use of Stokes parameters to describe the 

state of polarization is afforded by the study of optical and radiofrequency ra- 
diation from the pulsar in the Crab nebula. The optical light shows some small 
amount of linear polarization, while the radio emission at w ~ 2.5 X 10° ' has 
a high degree of linear polarization.* At neither frequency is there evidence for 
circular polarization, Information of this type obviously helps to clucidate the 
mechanism of radiation from these fascinating objects. 

7.3 Reflection and Refraction of Electromagnetic Waves 
at a Plane Interface Between Dielectrics 

The reflection and refraction of light at a plane surface between two media of 
different diclectric properties are familiar phenomena. The various aspects of the 
phenomena divide themselves into two classes. 

*See The Crab Nebula and Related Supernova Remnants, eds. M. C. Kafatos and R. B. C. Henry. 
Cambridge University Press, New York (1985). 
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1. Kinematic properties: 

(a) Angle of reflection equals angie of incidence. 

(b) Snell's law: (sin é)/(sin r} = n’/n, where i, r are the angles of incidence 
and refraction, while n, n’ are the corresponding indices of refraction. 

2. Dynamic properties: 

(a) Intensities of reflected and refracted radiation. 

(b) Phase changes and polarization. 

The kinematic properties follow immediately from the wave nature of the 
phenomena and from the fact that there are boundary conditions to be satisfied. 
But they do not depend on the detailed nature of the waves or the boundary 
conditions. On the other hand, the dynamic properties depend entirely on the 
specific nature of electromagnetic fields and their boundary conditions. 

The coordinate system and symbols appropriate to the problem are shown 
in Fig. 7.5. The media below and above the plane z = 0 have permeabilities and 
permittivities 4, € and yu’, ¢’, respectively. The indices of refraction, defined 

through (7.5), are n = V pee/ppéy and n! = Vp’ e'/uyé. A plane wave with wave 

vector k and frequency w is incident from medium yw. €. The refracted and re- 

flected waves have wave vectors k’ and k", respectively. and n is a unit normal 
directed from medium y, € into medium yp’, €’. 

According to (7.18), the three waves are: 

INCIDENT 
E = Eye” 

(7.30) 
B= Vue X** 

REFRACTED 
E! = Bye ior 

Sai (731) 
B= Vue Mae E 

ue 
HE 

Figure 7.5 Incident wave k strikes plane interface between different media, giving rise 
to a reflected wave k” and a refracted wave k’. 
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REFLECTED 
E" = Bgje® ior 

ase (7.32 
B’ = Vpe k ) 

k 

The wave numbers have the magnitudes 

|k| = |k’] =k = oVype an 

Ik] =k = oVpe 33) 
The existence of boundary conditions at z = 0, which must be satisfied at all 

points on the plane at all times. implies that the spatial (and time) variation of 
all fieids must be the same at z = 0. Consequently, we must have the phase factors 
all equal at z = 0, 

(K+ x)-20 = (Ko + x)_-9 = (k"+ x): <0 (7.34) 

independent of the nature of the boundary conditions. Equation (7.34) contains 
the kinematic aspects of reflection and refraction. We see immediately that all 
three wave vectors must lie in a plane. Furthermore, in the notation of Fig. 7.5, 

kK sini = k' sinr = k" sinr’ (7.35) 

Since k" = k, we find i = r'; the angle of incidence equals the angle of reflection. 
Snell's law is 

sini _ k’ frien iets [PE a7 (7.36) 
sinr k  Y pe n 

The dynamic properties are contained in the boundary conditions—normal 
components of D and B are continuous; tangential components of E and H are 
continuous. In terms of fields (7.30)-(7.32) these boundary conditions at z = 0 
are: 

[e(Ey + Ej) — eB] +n = 0 
[kx Ej +k" x Ej -k’x Ej]-n=0 

(E, + Ej — Bj) Xn =0 32) 
[boxe sux ey - Laxey] xn =o 
B w 

In applying these boundary conditions it is convenient to consider two sep- 

arate situations, one in which the incident plane wave is linearly polarized with 
its polarization vector perpendicular to the piane of incidence (the plane defined 
by k and n), and the other in which the polarization vector is parallel to the plane 
of incidence. The general case of arbitrary elliptic polarization can be obtained 
by appropriate linear combinations of the two results, following the methods of 
Section 7.2. 

We first consider the electric field perpendicular to the plane of incidence, 
as shown in Fig. 7.6a. All the electric fields are shown directed away from the 
viewer. The orientations of the B vectors are chosen to give a positive flow of 
energy in the direction of the wave vectors. Since the electric fields are all parallel 
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we 
we 

Figure 7.6 Reflection and 
refraction with polarization (a) 
perpendicular and (#) parallel to 

(b) the plane of incidence. 

to the surface, the first boundary condition in (7.37) yields nothing. The third and 
fourth equations in (7.37) give 

- (738) 
(Fo — Fi 

while the second, using Sneil’s law, duplicates the third. The relative amplitudes 
of the refracted and reflected waves can be found from (7.38). These are: 

E PERPENDICULAR 10 PLANE OF INCIDENCE 

2a cosi 

noosit H Vn = Ww sini 

fe (7.39) 
noosi — © Va ae sin’ 

Be 

4 Val a anh neosi + — mW sin’t 

The square root in these expressions is n’ cos r, but Snell’s law has been used to 

express il in terms of the angle of incidence. For optical frequencies it is usually 
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permitted to put z/y’ = J. Equations (7.39), and (7.41) and (7.42) below, are 
most often employed in optical contexts with real nm and n', but they are also 
valid for complex dielectric constants. 

If the clectric field is paralie] to the plane of incidence, as shown in Fig. 7.65, 
the boundary conditions involved are norma! D, tangential F, and tangential 
[the first, third, and fourth equations in (7.37)]. The tangential F and /? contin. 
uous demand that 

cosi(Ey — EG) — cosr sr Es =0 

fi (7.40) 
(Ey + FG) — © a =0 

Normal D continuous, plus Snell!’s law, oh duplicates the second of these 
equations, The relative amplitudes of refracted and reficcted ficlds are therefore 

E PARALLEL TO PLANE OF INCIDENCE 

EQ 2nn' cosi 

E : 
0 Fn? cosi + nV — Po 

(7.41) 
eS edict c in. yh? cosi — nVn? — nr? sini 

Foe 

Eo iF, n? cosi + nVn? — aii 

For normal incidence (i = 0), both (7.39) and (7.41) reduce to 

ES 2 2n 

nt+n 

(7.42) 

n'i-n 

notn 

where the results on the right hold for »’ = y. For the reflected wave the sign 
convention is that for polarization parallel to the plane of incidence. This means 
that ifm’ > n there is a phase reversal for the reflected wave. 

7.4 Polarization by Reflection and Total Internal Reflection; 
Goos-Héinchen Effect 

Two aspects of the dynamical relations on reflection and refraction are worthy 
of mention. The first is that for polarization parailel to the plane of incidence 
there is an angle of incidence. called Brewster's angle, for which there is no re- 
flected wave. With yw’ = ys for simplicity, we find that the amplitude of the re- 
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flected wave in (7.41) vanishes when the angle of incidence is equa! to Brewster's 

angle, 

Meo Kis 
ig = tan (=) (7.43) 

For a typical ratio n'/n = 1.5, ig ~ 56°. If a plane wave of mixed polarization is 
incident on a plane interface at the Brewster angle. the reflected radiation is 
completely plane-polarized with polarization vector perpendicular to the plane of 

incidence, This behavior can be utilized to produce beams of plane-polarized 
light but is not as efficient as other means employing anisotropic propertics of 
some dielectric media. Even if the unpolarized wave is reflected at angles other 
than the Brewster angle. there is a tendency for the reflected wave to be pre- 
dominanily polarized perpendicular to the plane of incidence. The success of dark 
glasses that selectively transmit only one direction of polarization depends on 
this fact. In the domain of radiofrequencies, receiving antennas can be oriented 
to discriminate against surface-reflected waves (and also waves reflected from 
the ionosphere) in favor of the directly transmitted wave. 

The second phenomenon is called total internal reflection. The word “inter- 
nal” implies that the incident and reflected waves are in a medium of larger index 
of refraction than the refracted wave (n > n‘), Snell’s law (7.36) shows that, if 
n> n',then r > i. Consequently, r = 7/2 when i = ig, where 

Sy (8 
iy = sin (“) (7.44) 

For waves incident at i = ig, the refracted wave is propagated parallel to the 
surface. There can be no energy flow across the surface. Hence at that angle of 
incidence there must be total reflection. What happens if i > i,? To answer this 
we first note that, for i > ip, sinr > 1. This means that r is a complex angle with 
a purely imaginary cosine. 

cosr = (2) =a (7.45) 
¥ \sin iy, 

The meaning of these complex quantities becomes clear when we consider the 

propagation factor for the refracted wave: 

PIR A pik rsinr = 2008) gH Utsinesingyy” IIMs pk Ginidinin)e (7.46) 

This shows that, for i > iy, the refracted wave is propagated only parallel to the 
surface and is attenuated exponentially beyond the interface. The attenuation 
occurs within a very few wavelengths of the boundary, except for i = io. 

Even though fields exist on the other side of the surface therc is no cnergy 
flow through the surface. Hence total internal reflection occurs for i = i). The 

lack of energy flow can be verified by caiculating the time-averaged normal com- 
ponent of the Poynting vector just inside the surface: 

S-n= ; Re[n- (E’ x H’*)] (747) 
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Figure 7.7 Geometrical interpretation of the Goos— 

Hanchen effect, the lateral displacement of a totally 
internaily-reflected beam of radiation because of the 

penetration of the evanescent wave into the region 
of smaller index refraction. 

with H’ = (k’ x E’)/j.'w, we find 

S +m = 5+ Rel(a- RY) [Ei om 

But n-k’ = k’ cos ris purely imaginary, so that S-n = 0. 
‘The purcly imaginary value (7.45) of cos r, times n’, is the appropriate quan- 

tity to replace the square root appearing in the Fresnel formula, (7.39) and (7.41). 
Inspection shows that the ratios Ef/E, are now of modulus unity, as is expected 
physically for total internal reflection. The reflected wave does, however, suffer 
a phase change that is different for the two kinds of incidence and depends on 
the angle of incidence and on (n/n'). These phase changes can be utilized to 
convert one kind of polarization into another. Fresnel’s rhombus is one such 
device, whereby linearly polarized light with cqual amplitudes in the plane of 
incidence and perpendicular to it is converted by two successive internal reficc- 
tions, each involving a relative phase change of 45°, into circularly polarized light 
(see Born and Wolf, p. 50). 

The evanescent wave penctrating into the region z > 0 has an exponential 
decay in the perpendicular direction, e *°, where 67! = kVSii Fiy. The 
penetration of the wave into the “forbidden” region is the physical origin of the 
Goos-Hiinchen effect: If a beam of radiation having a finite transverse extent 
undergoes total internal reflection, the reflected beam emerges displaced laterally 
with respect to the prediction of a geometrical ray reflected at the boundary.* If 
we imagine that the beam is reflected from the plane a distance 5 beyond the 
boundary, as indicated in Fig. 7.7, the beam should emerge with a transverse 
displacement of D ~ 26 sini. More careful calculation (see Problem 7.7) shows 
that this naive result is modified somewhat. with D dependent on the state of 
polarization of the radiation. The first-order expressions for D for the two states 
of linear polarization are 

A sini sini, 

Ps a Vsinri — sini," Pua Pi (sin? — cosé - sini] 

where A is the wavelength in the medium of higher index of refraction. 
The phenomenon of internal reflection is exploited in many applications 

where it is desired to transmit light without loss in intensity. In nuclear and 

(7.48) 

*F. Goos and H. Hanchen, Ann. Phys. (Leipzig) (6) 1, 333-346 (1947). For an extensive discussion 
of the effect, with many references, see the four-part article, H. K. V. Lotsch, Oprik, 32, 116-137, 
189-204, 299-319, 353-568 (1970). 
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particle physics, plastic “light pipes” are used to carry light from scintillators 
(excited by the passage of a charged particle or energetic photon) to photomul- 

tipliers, where the light is converted into useful elcctrical signals. If the light pipe 

is large in cross-sectional dimension compared to the wavelength of the light 

involved, the considerations presented here for a plane interface have approxi- 

mate validity. In telecommunications, optical fibers exploit total internal reflec- 

tion for transmission of modulated light signals over long distances. The various 

transverse dimensions of a multilayered fiber arc not always very large compared 

to a wavelength. Then the precise geometry must be taken into account; the 

language of modes in a waveguide may be more appropriate—see Chapter 8. 

7.5 Frequency Dispersion Characteristics of Dielectrics, 
Conductors, and Plasmas 

In Section 7.1 we saw that in the absence of dispersion an arbitrary wave train 

(7.7) travels without distortion. In reality all media show some dispersion. Only 

over a limited range of frequencies, or in vacuum, can the velocily of propagation 
be treated as constant in frequency. Of course, all the results of the preceding 
sections that involve a single frequency component are valid in the presence of 
dispersion. The values of 4: and € need only be interpreted as those appropriate 
to the frequency being considered, Where a superposition of a range of frequen- 
cies occurs, however, new effects arise as a result of the frequency dependence 
of e and yu. To examine some of these consequences, we need to develop at least 

a simple model of dispersion. 

A. Simple Model for €(w) 

Almost all of the physics of dispersion is illustrated by an extension to 

time-varying fields of the classical model described in Section 4.6. For simplicity 

we neglect the difference between the applied electric field and the local field. 

The model is therefore appropriate only for substances of relatively low density. 
[This deficiency can be removed by usc of (4.69), if desired.] The relative per- 

meability will be taken equal to unity. The equation of motion for an electron of 

charge —e¢ bound by a harmonic force (4.71) and acted on by an electric ficld 

E(x, f) is 

m{& + yk + ix] = —eB(x, ) (7.49) 

where y measures the phenomenological damping force. Magnetic force effects 

are neglected in (7.49), We make the additional approximation that the ampli- 

tude of oscillation is smail enough to permit evaluation of the electric field at the 

average position of the electron. If the field varics harmonically in time with 

frequency w as e~“”, the dipoic moment contributed by one electron is 

2 2 p= —ex =~ (ai ~ oF — iw) 'E (7.50) 

Hf we suppose that there are N molecules per unit volume with Z electrons per 

molecule, and that, instead of a single binding frequency for ail, there are f; 
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electrons per molecule with binding frequency , and damping constant 7, then 
the dielectric constant. e/ey = 1 + y.. is given by 

€(w) Ne* 
SS = 1+ YD file — oF - iwy) 78 7 eqn IAG j (751) 

where the oscillator strengths f, satisfy the sum rule. 

DH=Z (7.52) 
7 

With suitable quantum-mechanical definitions of f;, y; and @;. (7.51) is an ac. 
curate description of the atomic contribution to the diclectric constant. 

B,. Anomolous Dispersion and Resonant Absorption 

The damping constants y, are generally small compared with the binding or 
resonant frequencies w;. This means that e(w) is approximately real for most 
frequencies. The factor (a; — w°)~! is positive for w < w; and negative for w > 
w,. Thus, at low frequencies. below the smallest w,, all the terms in the sum in 
(7.51) contribute with the same positive sign and €(@) is greater than unity. As 
successive «, values arc passed, more and more negalive terms occur in the sum, 
until finally the whole sum is negative and e(«) is less than one. In the neigh- 
borhood of any w,, of course. there is rather violent behavior. The real part of 
the denominator in (7.51) vanishes for that term at » = @, and the term is large 
and purely imaginary. The general features of the real and imaginary parts of 
e(w) around two successive resonant frequencies are shown in Fig, 7.8. Normal 
dispersion is associated with an increase in Re €(w) with w, anomalous dispersion 
with the reverse. Normal dispersion is seen to occur everywhere except in the 
neighborhood of a resonant frequency. And only where there is anomalous dis- 
persion is the imaginary part of € appreciable. Since a positive imaginary part to 
€ represents dissipation of encrgy from the ¢lectromagnetic wave into the me- 
dium, the regions where Im e is large are called regions of resonant absorption.* 

The attenuation of a plane wave is most directly expressed in terms of the 
real and imaginary parts of the wave number &. If the wave number is written as 

ge page (7.53) 

then the parameter @ is known as the attenuation constant or absorption coef- 
ficient. ‘The intensity of the wave falls off as e~**. Equation (7.5) yields the con- 
nection between (a, 8) and (Re «, Im e)}: 

oe 
poe 22 Re ele 

¢ 4 (7.54) 

Ba = = im ley 

“If Im ¢ < 0, energy is given to the wave by the medium: amplification occurs, as in a maser or laser. 
Sce M. Borenstein and W. E. Lamb. Phys. Rev. AS, 1298 (1972) 
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0 o 

Figure 7.8 Real and imaginary parts of the dielectric constant €(w)/e in the 
neighborhood of two resonances. The region of anomalous dispersion is also the 
frequency interval where absorption occurs. 

If @ << f, as occurs unless the absorption is very strong or Re € is negative, the 
attenuation constant a can be written approximately as 

B (7.55) 
_ Im e(w) 

Re €(w) 

where 8 = VRe(e/e,) wie. The fractional decrease in intensity per wavelength 

divided by 27 is thus given by the ratio, Im €/Re «. 

C. Low-Frequency Behavior, Electric Conductivity 

In the limit w — 0 there is a qualitative difference in the response of the 

medium depending on whether the lowest resonant frequency is zero or nonzero. 

For insulators the lowest resonant frequency is different from zero. Then at w = 

0 the molecular polarizability is given by (4.73), corresponding to the limit # = 

0 in (7.51). The elementary aspects of dielectrics in the static limit have been 
discussed in Section 4.6. 

If some fraction fy of the clectrons per moiccule are “free” in the sense of 

having w = 0, the dielectric constant is singular at = 0. If the contribution of 

the free electrons is exhibited separately, (7.51) limes €, becomes 

Ne*fa 
meo(% — ia) 1729) e(@) = €,(@) +i 
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where €,(w) is the contribution of ail the other dipoles. The singular behavior 
can be understood if we examine the Maxwell-Ampére cquation 

dD 
VxH=J+— 

dt 

and assume that the medium obcys Ohm’s law. J = cE and has a “normal” 
dielectric constant e,. With harmonic time dependence the equation becomes 

VxH= ~ia £ iZ)e (7.57) © 
If, on the other hand, we did not insert Ohm’s law explicitly but attributed instead 
all the propertics of the medium to the diclectric constant, we would identify the 
quantity in brackets on the right-hand side of (7.57) with e(w). Comparison with 
(7.56) yields an expression for the conductivity: 

foNe® 

Oa = Te) (7.58) 
This is essentially the model of Drude (1900) for the electrical conductivity, with 
foN being the number of free electrons per unit volume in the medium, The 
damping constant y/f, can be determined empirically from experimental data 
on the conductivity. For copper, N = 8 x 10° atoms/m? and at normal temper- 
atures the low-frequency conductivity is ¢ = 5.9 X 10’ (Q-m)"!. This gives y/fy 
= 4X 10" s"'. Assuming that fy ~ 1, this shows that up to frequencies well 
beyond the microwave region (w < 10" s') conductivities of metals are essen- 
tially real (i.e., current in phase with the field) and independent of frequency. At 
higher frequencies (in the infrared and beyond) the conductivity is complex and 
varies with frequency in a way described qualitatively by the simple result (7.58). 
The problem of electrical conductivity is really a quantum-mechanical one in 
which the Pauli principle plays an important role. The free electrons arc actually 
valence electrons of the isolated atoms that become quasi-free and move rela- 
tively unimpeded through the lattice (provided their energies lic in certain inter- 
vals or bands) when the atoms are brought together to form a solid. Thc damping 
effects come from collisions involving appreciable momentum transfer between 
the electrons and lattice vibrations, lattice imperfections, and impurities.* 

The foregoing considerations show that the distinction between dielectrics 
and conductors is an artificial one, at least away from @ = 0. If the medium 
possesses free electrons it is a conductor at low frequencies; otherwise, an insu- 
lator." But at nonzero frequencies the “conductivity” contribution to €(w) (7.51) 
merely appears as a resonant amplitude like the rest. The dispersive propertics 
of the medium can be attributed as well to a complex dielectric constant as to a 
frequency-depcendent conductivity and a dielectric constant. 

*See R. G. Chambers, Electrons in Metuls and Semiconductors, Chapman & Hall, New York (1990). 
or G. Lehmann and P. Ziesche, Electronic Properties of Metals, Elscvicr, New York (1990). 
“In terms of the quantum-mechanical band structure of the solid, the conductor has some electrons 
in a partially filled band, while the insulator has its bands filled to the full extent permitted by the 
Pauli principle. A “free” electron must have nearby energy-conserving quantum states to which it 
can move. In partially filled band there are such states. but a filled band has, by definition, no such 
states available. 
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D. High-Frequency Limit, Plasma Frequency 

At frequencies far above the highest resonant frequency the dielectric con- 
stant (7.51) takes on the simple form 

(7.59) 

where 

(7.60) 
Eqn 

The frequency w,. which depends only on the total number NZ of electrons per 
unit volume, is called the plasma frequency of the medium. The wave number is 
given in the limit by 

ck =Vwer— (761) 

Sometimes (7.61) is expressed as o? = of + ck?, and is called a dispersion 
relation or equation for w = w(k). In dielectric media, (7.59) applies only for 

w* >> w). The dielectric constant is then close to unity, although slightly tess, 
and increases with frequency somewhat as the highest frequency part of the curve 
shown in Fig. 7.8. The wave number is rea! and varies with frequency as for a 
mode in a waveguide with cutoff frequency w,. (See Fig. 8.4.) 

Tn certain situations, such as in the ionosphere or in a tenuous electronic 
plasma in the laboratory, the electrons are free and the damping is negligible. 
Then (7.59) holds over a wide range of frequencies. including w < «,. For fre~ 
quencies lower than the plasma frequency, the wave number (7.61) is purely 
imaginary. Such waves incident on a plasma are reflected and the fields inside 
fall off exponentially with distance from the surface. At w = 0 the attenuation 
constant is 

2w, 
Aptasma = (7.62) 

On the laboratory scale, plasma densitics are of the order of 10'* — 10° clectrons/ 
m’, This means w, ~ 6 X 10'°-6 x 10's’ ' so that typically attenuation lengths 
(a ') are of the order of 0.2 cm to 2 x 10°? cm for static or low-frequency ficlds. 
The expulsion of fields from within a plasma is a well-known cffect in controlled 
thermonuclear processes and is exploited in attempts at confinement of hot 
plasma. 

The reflectivity of metals al optical and higher frequencics is caused by es- 
sentially the same behavior as for the tenuous plasma. The dielectric constant of 
a metal is given by (7.56). At high frequencics (@ >> yo) this takes the approx- 
imate form, 

“%, 
e(w) = €,(@) — —3 & 

oT 

where wi, = ne?/m’*e, is the plasma frequency squared of the conduction elec- 
trons, given an effective mass m* to include partially the effects of binding. For 
w << w, the behavior of light incident on the metal is approximately the same 
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as for the plasma described by (7.59). The light penetrates only a very short 
distance into the metal and is almost entirely reflected. But when the frequency 
is increased into the domain where e(w) > 0, the metal suddenly can transmit 
light and its reflectivity changes drastically. This occurs typically in the ultraviolet 
and leads to the terminology “ultraviolet transparency of metals.” Determination 
of the critical frequency gives information on the density or the effective mass 
of the conduction electrons.* 

E. Index of Refraction and Absorption Coefficient 
of Liquid Water as a Function of Frequency 

As an example of the overall frequency behavior of the real part of the index 
of refraction and the absorption coefficient of a real medium, we take the ubiq- 
uitous substance, water. Our intent is to give a broad view and to indicate the 
tremendous variations that are possible, rather than to discuss specific details, 
Accordingly, we show in Fig. 7.9, on a log-log plot with 20 decades in frequency 
and 11 decades in absorption, a compilation of the gross features of n(w) = 
Re V we/po€) and a(w) = 21m V ue w for liquid water at NTP. The upper part 
of the graph shows the interesting, but not spectacular, behavior of n(w). At very 
low frequencies, n(w) = 9, a value arising from the partial orientation of the 
permanent dipole moments of the water molecules. Above 10'° Hz the curve falls 
relatively smoothly to the structure in the infrared. In the visible region, shown 
by the vertical dashed lines, n(w) ~ 1.34, with little variation. Then in the ultra- 
violet there is more structure. Above 6 x 10'* Hz (hv = 25 eV) there are no data 
on the real part of the index of refraction. The asymptotic approach to unity 
shown in the figure assumes (7.59). 

Much more dramatic is the behavior of the absorption coefficient a. At fre- 
quencies below 10° Hz the absorption coefficient is extremely small. The data 
seem unreliable (two different sets are shown), probably because of variations 
in sample purity. As the frequency increases toward 10'' Hz, the absorption 
coefficient increases rapidly to # = 10° m’', corresponding to an attenuation 
length of 100 yum in liquid water. This is the well-known microwave absorption 
by water. It is the phenomenon (in moist air) that terminated the trend during 
World War II toward better and better resolution in radar by going to shorter 
and shorter wavelengths. 

In the infrared region absorption bands associated with vibrational modes of 
the molecule and possibly oscillations of a molecule in the field of its neighbors 
cause the absorption to reach peak values of a = 10° m7!. Then the absorption 
coefficient falls precipitously over 73 decades to a value of a< 3 x 10°} m7! in 
a narrow frequency range between 4 x 10'* Hz and 8 x 10! Hy. It then rises 
again by more than 8 decades by 2 x 10'° Hz. This is a dramatic absorption 
window in what we call the visible region. The extreme transparency of water 
here has its origins in the basic energy level structure of the atoms and molecules. 
The reader may meditate on the fundamental question of biological evolution 
on this water-soaked planet, of why animal eyes see the spectrum from red to 

“See Chapter 4 of D. Pines, Elementary Excitations in Solids, W. A. Benjamin. New York (1963), for 
a discussion of these and other dielectric properties of metals in the optical and ultraviolet region. 
More generally, see F. Wooten, Optical Properties of Solids, Academic Press, New York (1472) and 
Handbook of Optical Constants of Solids. ed. E. D. Palik, Academic Press, Boston (1991). 
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Figure 7.9 The index of refraction (top) and absorption coefficient (bottom) for liquid 
water as a function of linear frequency. Also shown as abscissas are an energy scale 
(arrows) and a wavelength scale (vertical lines). The visible region of the frequency 
spectrum is indicated by the vertical dashed lines. ‘The absorption coefficient for 
seawater is indicated by the dashed diagonal line at the left. Note that the scales are 

logarithmic in both directions. 

violet and of why the grass is green. Mother Nature has certainly exploited her 
window! In the very far ultraviolet thc absorption has a peak value of a = 1.1 X 
10° m7! at y= 5 X 10'S Hz (21 eV). This is exactly at the plasmon energy fiw, 
corresponding to a collective excitation of al! the electrons in the molecule. The 
attenuation is given in order of magnitude by {7.62). At higher frequencies data 
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are absent until the photoelectric effect, and then Compton scattering and other 
high-energy processes take over. There the nuclear physicists have studied the 

absorption in detail. The behavior is basically governed by the atomic properties 
and the density, not by the fact that the substance is water. 

At the low-frequency end of the graph in Fig. 7.9 we have indicated the 

absorption coefficient of seawater. At iow frequencies. seawater has an ¢clectrical 
conductivity o = 4.4.07’ m7. From (7.57) we find that below about 10° Hz a ~ 
(2uoao)'?. The absorption coefficient is thus proportional to Vw and becomes 

very small at low frequencies. The line shown is a (m ') = 8.4 x 10 *Vv(H7), 
At 10° Hy, the attenuation length in seawater is a@ ' ~ 10 meters. This means 

that 1% of the intensity at the surface will survive at 50 meters below the surface, 
Tf one had a large flect of submarines scattered throughout the oceans of the 
world and wished to be abic to send messages from a land base to the submerged 

vessels, one would be led to consider extremely low-frequency (ELF) commu- 

nications. The existence of prominent resonances of the earth-ionosphere cavity 
in the range from 8 Hz to a few hundred hertz (see Section 8.9) makes thal region 
of the frequency spectrum specially attractive, as does the reduced attenuation. 
With wavelengths of the order of 5 X 10° km, very large antennas are necded 
(still small compared to a wavelength!).* 

7.6 Simplified Model of Propagation in the Ionosphere 
and Magnetosphere 

The propagation of electromagnetic waves in the ionosphere is described in 
zeroth approximation by the diclectric constant (7.59), but the presence of the 
earth’s magnetic field modifies the behavior significantly. The influence of a static 
external magnetic field is also present for many laboratory plasmas. To illustrate 
the influence of an external magnetic field, we consider the simple problem of a 
tenuous ¢lectronic plasma of uniform density with a strong, static, uniform, mag- 
netic induction B, and transverse waves propagating parallel to the direction of 
B,. (The more general problem of an arbitrary direction of propagation is con- 
tained in Problem 7.17.) If the amplitude of electronic motion is small and col- 
lisions are neglected, the equation of motion is approximately 

mi — eB, X x = —eEe ™ (7.63) 

where the influence of the B field of the transverse wave has been neglected 
compared to the static induction B, and the electronic charge has been written 

as —e. It is convenient to consider the transverse waves as circularly polarized. 
Thus we write 

E = (e, + ie,)E (7.64) 

and a similar expression for x. Since the direction of B, is taken orthogonal to €, 

and €>, the cross product in (7.63) has components only in the direction €, and 

*For detailed discussion of ELF communications, see the conference proceedings, ELF/VLI/LF Ra- 

dio Propagation and Systems Aspects, (AGARD-CP-529), Brussels, 28 September-2 October, 1992, 

AGARD, Neuilly sur Seine, France (1993). 
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€, and the transverse components decouple. The steady-state solution of (7.63) 
is 

€ 
= SSE 7.65 Gna Ge ws) (7.85) 

where wz is the frequency of precession of a charged particle in a magnetic field, 

_ By 
m 

WR (7.66) 

The frequency dependence of (7.65} can be understood by the transformation of 
(7.63) to a coordinate system precessing with frequency w, about the direction 
of By. The static magnetic field is eliminated; the rate of change of momentum 

there is caused by a rotating electric field of effective frequency (w + wz), de- 
pending on the sign of the circular polarization. 

The amplitude of oscillation (7.65) gives a dipole moment for each electron 
and yields, for a bulk sample. the dielectric constant 

a 
€J/é = 1 - ———_ (7.67) 

w(w * wy) 

The upper sign corresponds to a positive helicity wave (left-handed circular po- 
larization in the optics terminology), while the lower is for negative helicity. For 
propagation antiparalicl to the magnetic field B,. the signs are reversed. This is 
the extension of (7.59) to include a static magnetic induction. It is not completely 
general, since it applies only to waves propagating along the static field direction. 
But even in this simple example we sec the essential characteristic that waves of 
right-handed and left-handed circular polarizations propagate differentiy. The 
ionosphere is birefringent. For propagation in dircctions other than parallel to 
the static field By it is straightforward to show that, if terms of the order of w 
are neglected compared to w” and ww, the dielectric constant is still given by 
(7.67). But the precession frequency (7.66) is now to be interpreted as that due 
to only the component of By parallel to the direction of propagation. This means 
that w, in (7.67) is a function of angle—the medium is not only birefringent, but 
also anisotropic (see Problem 7.17). 

For the ionosphere a typical maximum density of free cicctrons is 10'"-10'? 
electrons/m*, corresponding to a plasma frequency of the order of w, ~ 6 X 10° 
-6 x 10’ 57". If we take a valuc of 30 T as representative of the earth’s magnetic 
ficld, the precession frequency is wo, = 6 X 10°s |. 

Figure 7.10 shows €./e) as a function of frequency for two values of the ratio 

of (w,/@,). In both examples there are wide intervals of frequency where one of 
€. or € is positive while the other is negative. At such frequencies one state of 
circular polarization cannot propagate in the plasma. Consequently a wave of 
that polarization incident on the plasma will be totally reflected. ‘The other state 
of polarization will be partially transmitted. Thus, when a linearly polarized wave 
is incident on a plasma, the reflected wave will be elliptically polarized, with its 
major axis generally rotated away from the direction of the polarization of the 
incident wave. 

The behavior of radio waves reflected from the ionosphere is explicable in 
terms of these ideas, but the presence of several layers of plasma with densities 
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Figure 7.10 Dielectric constants as functions of frequency for model of the ionosphere 
(tenuous clectronic plasma in a static, uniform magnetic induction). €-(«) apply to the 
right and left circularly polarized waves propagating parallel to the magnetic field. wy is 
the gyration frequency; w, is the plasma frequency. The two scts of curves correspond 

10 wplwn = 2.0, 0.5. 

and relative positions varying with height and time makes the problem consid- 
erably more complicated than our simple example. The electron densities al var- 
ious heights can be inferred by studying the reflection of pulses of radiation 
transmitted vertically upwards. The number 1 of free electrons per unit volume 
increases slowly with height in a given layer of the ionosphere, as shown in Fig. 
7.11, reaches a maximum, and then falls with further increase in height. A pulse 
of a given frequency , enters the layer without reflection because of the slow 
change in ny, When the density fy is large enough, however, w,(A,) ~ @). Then 
the dielectric constants (7.67) vanish and the pulse is reflected. The actual density 
ny where the refection occurs is given by the roots of the right-hand side of (7.67). 
By observing the time interval between the initial transmission and reception of 

the refiected signal the height A, corresponding to that density can be found. By 
varying the frequency «, and studying the change in time intervals, the electron 

Figure 7.11 Electron density as a 
function of height in a layer of the 

by &—> ionosphere (schematic). 
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density as a function of height can be determined. If the frequency «, is too high, 
the index of refraction does not vanish and very littic reflection occurs. The 
frequency above which reflections disappear determines the maximum electron 
density in a given layer. A somewhat more quantitative treatment using the 
Wentzel-Kramers-Brillouin (WKB) approximation is sketched in Problem 7.14. 

The behavior of € (w) at low frequencies is responsible for a peculiar mag- 
netospheric propagation phenomenon called “‘whistlers.” As w 0. € {w) tends 
to positive infinity as €_/ey ~ 2/@w,. Propagation occurs, but with a wave num- 

ber (7.5), 

This corresponds to a highly dispersive medium. Energy transport is governed 
by the group velocity (7.86)—see Section 7.8—which is 

Vogw 

Op 

v,(@) = 2v,{w) = 2c 

Pulses of radiation at different frequencies travel at different speeds: the lower 
the frequency, the slower the speed. A thunderstorm in one hemisphere gener- 
ates a wide spectrum of radiation, some of which propagates more or less along 
the dipole ficld lines of the earth’s magnetic field in a fashion described approx- 
imately by (7.67). The higher frequency components reach the antipodal point 
first, the lower frequency ones later. This gives risc at 10° Hz and below to whis- 
ders, so named because the signal, as detected in an audio receiver. is a whistlelike 
sound beginning at high audio frequencies and falling rapidly through the audible 
range. With the estimates given above for w, and w, and distances of the order 

of 10* km, the reader can verify that the time scale for the whistlers is measured 
in seconds. Further discussion on whisticrs can be found in the reading sugges- 
tions at the end of the chapter and in the problems. 

7.7. Magnetohydrodynamic Waves 

In the preceding section we discussed in terms of a dielectric constant the prop- 
agation of waves in a dilute plasma in an external magnetic field with negligible 
collisions. In contrast, in conducting fluids or dense ionized gases, collisions are 

sufficiently rapid that Ohm’s law holds for a wide range of frequencies. Under 
the action of applied fields the electrons and ions move in such a way that, apart 
from high-frequency jitter, there is no separation of charge, although there can 

be current flow. Electric fields arise from external charges, current flow, or time- 

varying magnctic fields. At low frequencies the Maxwell displacement current is 
usually neglected. The nonrclativistic mechanical motion is described in terms of 

a single conducting fluid with the usual hydrodynamic variables of density. ve- 
locity, and pressure, with clectromagnetic and gravitational forces. The combined 
system of cquations describes magnetohydrodynamics (MHD). 

The electromagnetic equations are those of Section 5.18, with the Ohm’s law 
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in (5.159) generalized for a fluid in motion to J = o{E + v X B), in accord with 
the discussion of Section 5.15. The generalization of (5.160), but for the Magnetic 
induction, is 

eB bey 
ai Ve @ 2B) eB (7.68) 

where for simplicity we have assumed that the conductivity and permeability are 
independent of position. 

Consider the idealization of a compressible, nonviscous, “perfectly conduct. 
ing” fluid in the absence of gravity, but in an external magnetic field. By perfectly 
conducting we mean that the conductivity is so large that the second term on the 
right-hand side of (7.68) can be neglected—the diffusion time (5.161) is very long 
compared to the time scale of interest. The hydrodynamic equations are 

4p 2 at Vey =0 (765) 

av 1 
Prag PAYNE AVR oo BV 4B) 

The first equation is conservation of matter; the second is the Newton equation 
of motion with the mechanical pressure force density and the magnetic force 
density, J x B, in which J has been replaced by V x H. The magnetic force can 
be written as 

1 ire 1 BX WX B) = (te) +5 (B-V)B 

The first term represents the gradient of a magnetic pressure; the second is an 
additional tension, Equation (7.69) must be supplemented by an equation of 
state. 

In the absence of a magnetic field, the mechanical equations can describe 
small-amplitude, longitudinal, compressional (sound) waves with a speed s, the 
square of which is equal to the derivative of the pressure p with respect to the 
density p at constant entropy. With the adiabatic gas law, p = Kp’, where vis 
the ratio of specific heats, s* = ypo/py. By analogy, we anticipate longitudinal 
MHD waves in a conducting fluid in an external field By, with a speed squared 
of the order of the magnetic pressure divided by the equilibrium density, 

Yerin = OV B52 upy 

To exhibit these waves we consider the combined equations of motion (7.68) and 
(7.69), with the neglect of the V*B/uo term in (7.68), with an unperturbed con- 
figuration consisting of a spatially uniform, time-independent magnetic induction 
Bo throughout a stationary fluid of constant equilibrium density py. We then allow 
for small-amplitude departures from equilibrium, 

B= By + B(x. 

P= po t p(x, £) (7.70) 
v = vilx, 1) 
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Tf equations (7.69) and (7.68) are linearized in the smal! quantities, they become: 

a O + p¥-v, = 0 

a py + 5°Rp, + BY x CV x BY) = 0 (7.71) 
ar 2 

B. 
oY XM XB) = 0 

where s? is the square of the sound velocity. These equations can be combined 

to yicld an equation for v, alone: 

ey, 5 
az PVVev) ty, x Vx [Vx (v, X ¥,4)] = 0 (7.72) 

where we have introduced a vectorial Alfvén velocity: 

gs Bae 
“Vien 

The wave equation (7.72) for v, is somewhat involved, but it allows simple 
solutions for waves propagating parallel or perpendicular to the magnetic field 
direction.* With v,(x, £) a plane wave with wave vector k and frequency w: 

v(x, = yee (1.74) 

(7.73) 

equation (7.72) becomes: 

maby, + (8? + va) vk + va + k[(va > ky, (7.75) 

— (Vas vik — (K+ v)va] = 0 

If k is perpendicular to v, the last term vanishes. Then the solution for y, is a 
longitudinal magnetosonic wave with a phase velocity: 

Ung = VS? + 0A (7.76) 

Note that this wave propagates with a velocity that depends on the sum of hy- 
drostatic and magnetic pressures, apart from factors of the order of unity. If k és 
parallel to v4, (7.75) reduces to 

2 
(kv ~ wv, + (5 = 1) +v)v, = 0 (1.77) 

3 

There are two types of wave motion possible in this case. There is an ordinary 
longitudinal wave (vy, parallel to k and v,,) with phase velocity equal to the sound 
velocity s. But there is also a transverse wave (¥, + ¥4 = 0) with a phase velocity 
equal to the Alfvén velocity v,. This Alfvén wave is a purely magnetohydrody- 
namic phenomenon, which depends only on the magnetic field (tension) and the 

density (inertia). 
For mercury at room temperature the Alfvén velocity is 7.67 By (tesla) u/s, 

*The determination of the characicristics of the waves for arbitrary direction of propagation is left 
to Problem 7.18 
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(a) (0) 
Figure 7.12 Magnetohydrodynamic waves. 

compared with the sound speed of 1.45 x 10° m/s. Atall laboratory field strengths 
the Alfvén velocity is much less than the specd of sound. In astrophysical prob- 
lems, on the other hand, the Alfvén velocity can become very large because of 
the much smaller densities. In the sun's photosphere, for example. the density is 
of the order of 10~* kg/m’ (~6 X 10” hydrogen atoms/m*) so that v, ~ 10° B(T) 
vs, Solar magnetic ficlds appear to be of the order of 1 or 2 X 10) “ T at the 
surface, with much larger values around sunspots. For comparison, the velocity 
of sound is of the order of 10° m/s in both the photosphere and the chromosphere. 

The magnetic fields of these different waves can be found from the third 
equation in (7.71): 

k 
— v0 By fork 1 By 
o 

B,=20 for the longitudina! k || By (7.78) 

-* Bory for the transverse k || Bo 

The magnetosonic wave moving perpendicular to By causes compressions and 
rarefactions in the lines of force without changing their dircction, as indicated in 
Fig. 7.124. The Alfvén wave parallel to By causes the lines of force to oscillate 
back and forth laterally (Fig. 7.120). In either case the lines of force are ‘frozen 
in” and move with the fluid. 

Inclusion of the effects of fluid viscosity, finite, not infinite, conductivity, and 
the displacement current add complexity to the analysis. Some of these elabo- 
rations are treated in the problems. 

7.8 Superposition of Waves in One Dimension; Group Velocity 

In the preceding sections plane wave solutions to the Maxwell equations were 
found and their properties discussed. Only monochromatic waves, those with a 
definite frequency and wave number, were treated. In actual circumstances such 

idealized solutions do not arise. Even in the most monochromatic light source or 
the most sharply tuned radio transmitter or recciver, one deals with a finite (al- 

though perhaps small) spread of frequencies or wavelengths. This spread may 

originate in the finite duration of a pulse. in inherent broadening in the source, 

or in many other ways. Since the basic equations are linear, it is in principle an 
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elementary matter to make the appropriate lincar superposition of solutions with 
different frequencies. In general, however, several new features arise. 

1. Hf the medium is dispersive (i.c., the dielectric constant is a function of the 

frequency of the fields), the phase velocity is not the same for each frequency 
component of the wave. Consequently different components of the wave 
travel with different speeds and tend to change phase with respect to one 

another. 

2. Ina dispersive medium the velocity of energy flow may differ greatly [rom 

the phase velocity, or may even lack precise meaning. 

3. Ina dissipative medium, a pulse of radiation will be attenuated as it travels 
with or without distortion, depending on whether the dissipative effects are 
or are not sensitive functions of frequency. 

The essentials of these dispersive and dissipative effects are implicit in the 
ideas of Fourier series and integrals (Section 2.8). For simplicity, we consider 
scalar waves in only one dimension, The scalar amplitude u(x, t) can be thought 

of as one of the components of the electromagnetic field. The basic solution to 
the wave equation has been exhibited in (7.6). The relationship between fre- 
quency » and wave number k is given by (7.4) for the clectromagnetic field. 
Either w or k can be viewed as the independent variable when one considers 
making a linear superposition. Initially we will find it most convenient to use k 
as an independent variable. To allow for the possibility of dispersion we will 
consider @ as a general function of k: 

@ = w(k) (7.79) 

Since the dispersive properties cannot depend on whether the wave travels to 
the left or to the right, w must be an even function of k, #(—k) = w(k). For most 
wavelengths w is a smoothly varying function of k, But, as we have seen in Section 
7.5, at certain frequencies there are regions of “anomalous dispersion” where w 
varies rapidly over a narrow interval of wavelengths. With the general form 
(7.79), our subsequent discussion can apply equally well to electromagnetic 
waves, sound waves, de Broglie matter waves, etc. For the present we assume 

that k and w{k) are real, and so exclude dissipative effects. 
From the basic solutions (7.6) we can build up a general solution of the form 

u(x, ) = ort i i Alke® 4" dk (7.80) 

The factor 1/277 has been inserted to conform with the Fourier integral notation 
of (2.44) and (2.45). The amplitude A(k) describes the propertics of the linear 

superposition of the different waves. It is given by the transform of the spatial 

amplitude u(x, f), evaluated at ¢ = 0*: 

A(k) = — {- u(x, Ne de (7.81) 

If u(x. 0) represents a harmonic wave e* for all x, the orthogonality relation 
(2.46) shows that A(k) = V2z 8(k — kp), corresponding to a monochromatic 

*The following discussion slights somewhat the initial-value problem. For a second-order differential 
equation we must specify not only a(x 0) but also du(x, Oat. This omission is of no consequence for 
the rest of the material in this section. It is remedied in the following section. 
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traveling wave u(x,t) = eo", as required. If, however, at f = 0, u(x, 0) 
represents a finite wave train with a length of order Ax, as shown in Figure 7.13, 
then the amplitude A(k) is not a delta function. Rather, it is a peaked function, 
with a breadth of the order of Ak, centered around a wave number ko, which is 

the dominant wave number in the modulated wave u(x, 0). H Ax and Ak are 
defined as the rms deviations from the average values of x and k [defined in terms 
of the intensities |u(x, 0)[? and |A(k))|, it is possible to draw the general 
conclusion: 

Ax Ak =} (7.82) 

The reader may readily verify that, for most reasonable pulses or wave packets 
that do not cut off too violently, Ax times Ak lies near the lower limiting value 
in (7.82). This means that short wave trains with only a few wavelengths present 
have a very wide distribution of wave numbers of monochromatic waves, and 

conversely that long sinusoidal wave trains are almost monochromatic. Relation 
(7.82) applies equally well to distributions in time and in frequency. 

The next question is the behavior of a pulse or finite wave train in time. The 
pulse shown at ¢ = 0 in Fig. 7.13 begins to move as time goes on. The different 
frequency or wave-number components in it move at different phase velocities, 
Consequently there is a tendency for the original coherence to be lost and for 
the pulse to become distorted in shape. At the very least, we might expect it to 
propagate with a rather different velocity from, say, the average phase velocity 
of its component waves. The general case of a highly dispersive medium or a 
very sharp pulse with a great spread of wave numbers present is difficult to treat. 
But the propagation of a pulse which is not too broad in its wave-number spec- 
trum, or a pulse in a medium for which the frequency depends weakly on wave 
number, can be handled in the following approximate way. The wave at time ¢ 
is given by (7.80). If the distribution A(x) is fairly sharply peaked around some 
value k,, then the frequency w(k) can be expanded around that value of k: 

d 
o(k) = a + FP eo ka) to (7.83) 

u(x, 0) 

A(k) 

i 
1 
I 
1 
I 

I 
i Figure 7.13 A harmonic wave train of 
Fo k—> finite extent and its Fourier spectrum in 

wave number. 
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and the integral performed. Thus 

gilto(deoldidle—anle 

ae ay ra 
S apparcat that the integral in (7.84) is just a(x‘, 0), 

f Alkjet® eteilae ay (7.84) 

From (7.81) and its inverse i 
where x' = x — (deldk)|o t: 

di F 
u(x, t) ~ if = oa : o eats oul (7.85) 

This shows that, apart from an overall phase factor, the pulse travels along un- 
distorted in shape with a velocity, called the group velocity: 

do 
"= aE (7.86) 

o 

If an energy density is associated with the magnitude of the wave (or its absolute 

square), it is clear that in this approximation the transport of energy occurs with 
the group velocity, since that is the rate at which the pulse travels along, 

For light waves the relation between and k is given by 

ck 
w(k) = nb (7.87) 

where c is the velocity of light in vacuum, and n(x) is the index of refraction 
expressed as a function of k. The phase velocity is 

wk) c 
=—-=—— 7.88 aay ale (7.88) 

and is greater or smaller than c depending on whether n(x) is smaller or larger 
than unity. For most optical wavelengths n(k) is greater than unity in almost all 
substances. The group velocity (7.86) is 

c 

Ys = nw) + w(dnidw) 

In this equation it is more convenient to think of 7 as a function of than of k. 
For normal dispersion (dn/dw) > 0, and also n > 1; then the velocity of energy 
fiow is less than the phase velocity and also less than c. In regions of anomalous 

dispersion, however, dn/dw can become large and negative as can be inferred 

from Fig. 7.8, Then the group velocity differs greatly from the phase velocity, 
often becoming larger than c or even negative. The behavior of group and phase 

velocitics as a function of frequency in the neighborhood of a region of anoma- 
lous dispersion is shown in Fig. 7.14. There is no cause for alarm that our ideas 
of special relativity are violated: group velocity is generally not a useful concept 
in regions of anomalous dispersion. In addition to the existence of significant 
absorption (sce Fig. 7.8). a large dn/dw is equivalent to a rapid variation of w 

with k. Consequently the approximations made in (7.83) and following equations 
are no longer valid. Usually a pulse with its dominant frequency components in 
the neighborhood of a strong absorption line is absorbed and distorted as it 
travels. As shown by Garret and McCumber,* however, there are circumstances 

(7.89) 

*C, G. B. Garrett and D. E. McCumber, Phys. Rev. A 1, 305 (1970). 
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1 
at) 

Ale } Figure 7.14 Index of refraction n(w) 
1 as a function of frequency @ at a 
\ region of anomalous dispersion; phase 
a velocity v, and group velocity u, as 

@—> functions of w. 

in which “group velocity” can still have meaning, even with anomalous disper- 
sion. Other authors* subsequently verified experimentally what Garrett and 
McCumber showed theoretically: namely, if absorbers are not too thick, a 
Gaussian pulse with a central frequency near an absorption line and with support 
narrow compared to the width of the line (pulse wide in time compared to Vy) 
propagates with appreciable absorption, but more or less retains its shape, the 
peak of which moves at the group velocity (7.89), even when that quantity is 
negative. Physically, what occurs is pulse reshaping—the leading edge of the 
pulse is icss attenuated than the trailing edge. Conditions can be such that the 
peak of the greatly attenuated pulse cmerges from the absorber before the peak 
of the incident pulse has entered it! (That is the meaning of negative group 
velocity.) Since a Gaussian pulse does not have a sharply defined front edge, 
there is no question of violation of causality. 

Some experiments are described as showing that photons travel faster than 
the speed of light through optical “band-gap” devices that reflect almost all of 
the incident flux over a restricted range of frequencies. While it is true that the 
centroid of the very small transmitted Gaussian pulse appears slightly in advance 
of the vacuum transit time, no signal or information travels faster than c. The 
main results are explicable in conventional classical terms. Some aspects are cx- 
amined in Problems 7.9-7.11. A review of these and other experiments has been 
given by Chiao and Steinberg.” 

7.9 Illustration of the Spreading of a Pulse as It Propagates 
in a Dispersive Medium 

To illustrate the ideas of the preceding section and to show the validity of the 
concept of group velocity, we now consider a specific model for the dependence 

*S. Chu and S. Wong, Phys. Rev, Letters 48, 738 (1982); A. Katz and R. R. Alfano, Phys. Rev. Letters, 
49, 1292 (1982); S. Chu, and S. Wong, bid. 1293. B. Ségard and B. Macke, Phys. Lett. 1094, 213 (1985). 
“R. Y. Chiao and A. M. Steinberg, in Progress in Optics, Vol. 37. ed. E. Wolf, Elsevier. Amsterdam 
(1997), p. 347-406. 
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of frequency on wave number and calculate without approximations the propa- 
gation of a pulse in this model medium. Before specifying the particular model 
it is necessary to state the initial-value problem in more detail than was done in 
(7.80) and (7.81). As noted there, the proper specification of an initial-value 

problem for the wave equation demands the initial valucs of both function u(x. 0) 
and time derivative du(x, 0)/at. If we agree to take the real part of (7.80) to obtain 

u(x,t), 

u(x, ) = i A(kje @ dk + cc. (7.90) 
IVE 

then it is casy to show that A(k) is given in terms of the initial values by: 

fie [acs oy + _ Hex, ofa IX (7.91) A(k) = = 
# Vi0 

We take a Gaussian modulated oscillation 

u(x, 0) = e 7?!" cos kox (7.92) 

as the initial shape of the pulse. For simplicity, we will assume that 

. (x0) =0 (7.93) 

This means that at times immediately before : = 0 the wave consisted of two 
pulses, both moving toward the origin, such that at ¢ = 0 they coalesced into the 
shape given by (7.92). Clearly at later times we expect each pulse to rcemerge 
on the other side of the origin. Consequently the initial distribution (7.92) may 
be expected to split into two identical packets. onc moving to the left and one 
to the right. The Fouricr amplitude A(x) for the pulse described by (7.92) and 
(7.93) is 

A(k) = LL”, ttxe 22? gos kox dx 
Via /-« (7.94) 

= £ fe“ 229k kal” 4 gt (ANG A) 
2 

The symmetry A(—k) = A(k) is a reflection of the presence of two pulses trav- 

eling away from the origin, as is seen below. 
To calculate the waveform at later times, we must specify w = w(k). Asa 

model allowing cxact calculation and showing the essential dispersive effects, we 

assume 

w(k) = (1 + *) (7.95) 

where vis a constant frequency. and @ is a constant length that is a typical wave- 
length where dispersive effects become important. Equation (7.95) is an approx- 
imation to the dispersion equation of the tenuous plasma, (7.59) or (7.61). Since 
the pulse (7.92) is a modulated wave of wave number k = ky, the approximate 
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arguments of the preceding section imply that the two pulses will travel with the 
group velocity 

d 
by = one (ky) = vy (7.96) 

and will be essentially unaltered in shape provided the pulse is not too narrow 
in space. 

The exact behavior of the wave as a function of time is given by (7.90). with 
(7.94) for Atk): 

L 7 es . 2 2 s 2K, u(x, ) = —— Re fe CRN 4g FRMK I Ko)"| gia iel CERN ye 
2V20 

(7.97) 

‘The integrals can be performed by appropriately completing the squares in the 
exponents. The result is 

u(x, 1) = 

cin = (& = va?kot 

ia? vt 

w(t " ) ane 
$Re exp kx - a + “e),| + (ky > ~ky) 

iavt\"” 
t+ wks 

Fquation (7.98) represents two pulses traveling in opposite directions. The peak 
amplitude of each pulse travels with the group velocity (7.96), while the modu- 
lation envelop remains Gaussian in shape. The width of the Gaussian is not 
constant, however, but increases with time. The width of the envelope is 

2 a yt a 
Lo =| +{ (7.99) 

Thus the dispersive effects on the pulse are greater (for a given elapsed time), 
the sharper the envelope. The criterion for a small change in shape is that 
L >> a. Of course, at long times the width of the Gaussian increases linearly with 
time 

(7.98) 

LQ) a (7.100) 

but the time of attainment of this asymptotic form depends on the ratio (L/a). 
A measure of how rapidly the pulse spreads is provided by a comparison of L(t) 
given by (7.99), with u,t = va°kot. Figure 7.15 shows two examples of curves of 
the position of peak amplitude (v,f) and the positions v,f + L{1), which indicate 
the spread of the pulse, as functions of time. On the left the pulse is not too 
narrow compared to the wavelength k, ' and so does not spread too rapidly. The 
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Figure 7.15 Change in shape of a wave packet as it travels along. The broad packet, 
containing many wavelengths (kal >> 1), is distorted comparatively little, while the 
narrow packet (kL < 1) broadens rapidly. 

pulse on the right, however, is so narrow initially that it is very rapidly spread 

out and scarcely represents @ pulse after a short time. 
Although the results above have been derived for a special choice (7.92) of 

initial pulse shape and dispersion relation (7.95), their implications are of a more 
general nature. We saw in Section 7,8 that the average velocity of a pulse is the 
group velocity vu, = dw/dk = w’. The spreading of the pulse can be accounted 
for by noting that a pulse with an initial spatial width Axo must have inherent in 
it a spread of wave numbers Ak ~ (1/Axo). This means that the group velocity, 
when evaluated for various k valucs within the pulse, has a spread in it of the 

order 

wo” 
Au, ~ w" Ak ~ — Avy ~ w ‘ai (7.101) 

Ata time { this impties a spread in position of the order of Aug. If we combine 
the uncertainties in position by taking the square root of the sum of squares, we 

obtain the width Ax(¢) at time t: 

Ax(t) = yi +(2t (7.102) 

We note that (7.102) agrees exactly with (7.99) if we put Axy = L. The expression 
(7.102) for Ax(t) shows the general result that, if o” # 0, a narrow pulse spreads 

rapidly because of its broad spectrum of wave numbers, and vice versa. All these 
ideas carry over immediately into wave mechanics. They form the basis of the 
Heisenberg uncertainty principie. In wave mechanics, the frequency is identified 
with energy divided by Planck’s constant, while wave number is momentum di- 

vided by Planck’s constant. 
The problem of wave packets in a dissipative, as well as dispersive, medium 

is rather complicated. Certain aspects can be discussed analytically, but the an- 
alytical expressions are not readily interpreted physically. Except in special cir- 
cumstances, wave packets are attenuated and distorted appreciably as they prop- 
agate. The reader may refer to Stratton (pp. 301-309) for a discussion of the 

problem, including numerical examples. 
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7.10 Causality in the Connection Between D and E; 
Kramers—Kronig Relations 

A. Nonlocality in Time 

Another consequence of the frequency dependence of €(w) is a temporally 
nonlocal connection between the displacement D(x, t) and the electric field 
E(x, 2). If the monochromatic components of frequency w are related by 

D(x, w) = €(w)E(x. @) (7.103) 

the dependence on time can be constructed by Fouricr superposition. Treating 
the spatial coordinate as a parameter, the Fourier integrals in time and frequency 
can be written 

1 
D(x.) = +] f D(x, we“ dw 

and (7.104) 

{ D(x, te!" de’ Ts « 

with corresponding equations for E. The substitution of (7.103) for D(x, w) gives 
rt 

D(x, t) = = F e(w)E(x. we dw 

We now insert the Fourier representation of E(x, w) into the integral and obtain 

Ele fF ine if 1 la 1! D(x, ) = als dw ewe . dt’ e'*" E(x, 1’) 

With the assumption that the orders of integration can be interchanged, the last 
expression can be written as 

Dox, ) = of Ee y+ | G(a)E(x, t — 7) ar| (7,105) 

where G(7) is the Fouricr transform of y, = €(w)/ey — 1: 

G(r) = | [e(w)/en — Me™"? dw (7.106) 
Qt J-.2 

Equations (7.105) and (7.106) give a nonlocal connection between D and E, in 
which D at time ¢ depends on the electric field at times other than 1.* If e(w) is 

“Equations (7.103) and (7.105) are recognizable as an example of the faltung theorem of Fourier 
integrals: if A(). B(), Cf) and a(w), b(). ew) are two sets of functions related in pairs by the 
Fourier inversion formulas (7.104), and 

cw) = ao)b(0) 

then, under suitable restrictions concerning integrability, 

Cw = =! _ AWB ~ 0) ae" 
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independent of w for all w, (7.106) yields G(r) « 5(z) and the instantaneous 
connection is obtained, but if e(w) varies with w, G(r) is nonvanishing for some 

values of 7 different from zero. 

B. Simple Model for G(x), Limitations 

To illustrate the character of the connection implied by (7.105) and (7.106) 
we consider a one-resonance version of the index of refraction (7.51): 

e(w)l@ — 1 = wi(we — w — iyo) | (7.107) 

The susceptibility kernel G(7) for this model of e(w) is 

yx ier ow 
Gays | eee 7.108 3(7) oa ie FF ae maT ( ) 

The integral can be evaluated by contour integration. The integrand has poles in 

the lower half-w-plane at 

9 = =3 +, where = og -— 2% (7.109) 

For 7 < 0 the contour can be closed in the upper half-plane without affecting the 

value of the integral. Since the integrand is regular inside the closed contour, 

the integral vanishes. For 7 > (), the contour is closed in the lower half-plane and 

the integral is given by —277 times the residues at the two poles. The kernel 

(7.108) is therefore 

2 SiN MT G(r) = oe” a7) (7.110) 
% 

where 6(7) is the step function (A(z) = 0 for r < 0; @(7) = 1 for 7 > 0]. For the 
dielectric constant (7.51) the kernel G(7) is just a linear superposition of terms 
like (7.110). The kernel G(z) is oscillatory with the characteristic frequency of 
the medium and damped in time with the damping constant of the electronic 

oscillators. The nonlocality in time of the connection between D and E is thus 

confined to times of the order of y~'. Since y is the width in frequency of spectral 
lines and these are typically 10’-10° s ', the departure from simultaneity is of 
the order of 10 7-10~° s. For frequencies above the microwave region many 

cycles of the electric field oscillations contribute an average weighed by G(7) to 
the displacement D at a given instant of time. 

Equation (7.105) is nonlocal in time, but not in space. This approximation is 
valid provided the spatial variation of the applied fields has a scale that is large 

compared with the dimensions involved in the creation of the atomic or molecular 

polarization. For bound charges the latter scale is of the order of atomic dimen- 

sions or fess, and so the concept of a dielectric constant that is a function only of 

w can be expected to hold for frequencies weil beyond the visible range. For 

conductors, however, the presence of free charges with macroscopic mean free 

paths makes the assumption of a simple €{«) or o(w) break down at much lower 

frequencies. For a good conductor like copper we have seen that the damping 

constant (corresponding to a collision frequency) is of the order of y) ~ 3 x 10° 
s”' at room temperature. At liquid helium temperatures, the damping constant 

may be 10-> times the room temperature value. Taking the Bohr velocity in 
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hydrogen (c/137) as typical of electron velocities in metais, we find mean free 
paths of the order L ~ c/(i37y) ~ 10 * m at liquid helium temperatures. On 
the other hand, the conventional skin depth 6 (5.165) can be much smaller, of 
the order of 10°’ or 10 * m at microwave frequencies. In such circumstances, 
Ohm’s law must be replaced by a nonlocal expression. The conductivity becomes 
a tensorial quantity depending on wave number k and frequency w. The associ- 
ated departures from the standard behavior are known collectively as the anom- 
alous skin effect. They can be utilized to map out the Fermi surfaces in metals.* 
Similar nonlocal effects occur in superconductors where the electromagnetic 
propertics involve a coherence jength of the order of 107° m.+ With this brief 
mention of the limitations of (7.105) and the arcas where generalizations have 
been fruitful we return to the discussion of the physical content of (7.105). 

C. Causality and Analyticity Domain of €(w) 

The most obvious and fundamental feature of the kernel (7.110) is that it 
vanishes for 7 < 0. This means that at time ¢ only values of the electric field prior 
to that time enter in determining the displacement, in accord with our funda- 
mental ideas of causality in physical phenomena. Equation (7.105) can thus be 
written 

D(x, ) = of ets t+ ia G(n)E(x, ¢ — 7) ar} (7.111) 

This is, in fact, the most general spatially local, linear, and causal relation that 
can be written between D and E in a uniform isotropic medium. Its validity 
transcends any specific model of e(w). From (7.106) the dielectric constant can 
be expressed in terms of G(7) as 

e(wyleg = 1 + [ G(r)e' dr (7.112) 

This relation has several interesting consequences. From the reality of D, E, and 
therefore G(r) in (7.111) we can deduce from (7.112) that for complex @. 

€(~ w)ley = ew" Ven (7.113) 

Furthermore, if (7.112) is viewed as a representation of €(w)/ey in the complex 
w plane, it shows that €(«)/e, is an analytic function of w in the upper half-plane. 
provided G(r) is finite for all 7, On the real axis it is necessary to invoke 
the “physically reasonable” requirement that G(7) > 0 as tr » to assure that 
€(w)/€y is also analytic there. This is true for dielectrics, but not for conductors, 
where G(r) ~ o/e, as > ~ and €(w)/e has a simple pole at w = 0 (€ > iolw 

as w > 0). Apart, then, from a possible pole at w = 0, the dielectric constant 

€(w)/é, is analytic in w for Im @ = 0 as a direct result of the causal relation (7.111) 

*A. B. Pippard, in Reports on Progress in Physics 23. 176 (1960), and the article entitled “The Dy- 
namics of Conduction Electrons.” by the same author in Low-Temperature Physics, Les Houches 
Summer School (1961), eds. C. de Wil. B. Dreyfus, and P. G. de Gennes. Gordon and Breach, New 
York (1962). The jatter article has been issued separately by the same publisher 
"See. for cxample, the article “Superconductivity” by M. Tinkham in Low Temperature Physics. op. 
cit 
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between D and E. These properties can be verified. of course, for the models 
discussed in Sections 7.5.A and 7.5.C. 

The behavior of €{w}/é, — 1 for large w can be related to the behavior of 

G(r) at small times. Integration by parts in (7.112) leads to the asymptotic scries, 

iG(O fex@ 
e{wVeg — 1 = 

where the argument of G and its derivatives is 7 = )'. It is unphysical to have 
G{0") = 0, but G(O') # 0. Thus the first term in the scrics is absent, and 
€(w)/e, — | falls off at high frequencies as w ~, just as was found in (7.59) for the 
oscillator model. The asymptotic series shows. in fact, that the real and imaginary 
parts of e(w)/e, — 1 behave for large real w as 

Refe(w)/ey — 1] = of). Im €(@)/e, — o(5) (7.114) 

These asymptotic forms depend only upon the existence of the derivatives of 

G(r) around 7 = 0'. 

D. Kramers-Kronig Relations 

The analyticity of €(@)/e, in the upper half-w-plane permits the use of Cau- 
chy's theorem to relate the real and imaginary part of €(w)/e, on the real axis, 
For any point z inside a closed contour C in the upper half-w-plane, Cauchy's 
theorem gives 

7 Lg lovea- I, , e(zley = 1 4 uf Prac day 

The contour C is now chosen to consist of the real w axis and a great semici 
at infinity in the upper half-plane. From the asymptotic expansion just discussed 
or the specific results of Section 7.5.D, we sce that €/é€, — 1 vanishes sufficiently 

rapidly at infinity so that there is no contribution to the integral from the great 
semicircle. Thus the Cauchy integral can be written 

* fe(w' Veo — 1] 
an w - 2 

i 
e(zey = 1 + | dw (7.115) 

2m 

where z is now any point in the upper half-plane and the integral is taken along 
the real axis. Taking the limit as the complex frequency approaches the real axis 
from above, we write z = w + é in (7.115): 

Lf? [elo'Veo = 1] 
e(ale a1+suf = dw’ 76 (Vlg = 1455) iene 116) 

For real w the presence of the if in the denominator is a mnemonic for the 
distortion of the contour along the real axis by giving it an infinitesimal semicir- 
cular detour below the point w = w. The denominator can be written formally 
as 

soa it ) ace - ) (7.117) 
w' —ao— id -o 
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where P means principal part. The delta function serves to pick up the contrj- 
bution from the small semicircle going in a positive sense halfway around the 

pole at w' = w. Use of (7.117) and a simple rearrangement turns (7.116) into 

* [e(w'Veo = avigeiee p{ do’ (7.118) mi Joe wo — w 

The real and imaginary parts of this equation are 

= Am ew") 
Re e(wyey = 1 +b pf im e(w' Veo 4,7 

oe (7.119) 

Im €(w)/ey = ip lise [Re e(w'Vieo = 1] 
oe 

These relations, or the ones recorded immediately below, are called Kramers~ 

Kronig relations or dispersion relations. They were first derived by H. A. Kramers 
{1927) and R. de L. Kronig (1926) independently. The symmetry property (7.113) 

shows that Re e(w) is even in w, while Im e(«) is odd. The integrals in (7.119) 
can thus be transformed to span only positive frequencies: 

Re e(w)/ey = 1 += 2p [en ot ns €(w" mS i ; 

7 (7.120) 
ley — 

Im e(w\/e = —22 P “Re = 1 4c 
a dw Sed 

Jn writing (7.119) and (7.120) we have tacitly assumed that €(w)/e) was regular 
at @ = (). For conductors the simple pole at w = 0 can be exhibited separately 
with little further complication. 

The Kramers—Kronig relations are of very gencral validity, following from 
little more than the assumption of the causal connection (7.111) between the 
polarization and the electric field. Empirical knowledge of Im e{«) from absorp- 
tion studies allows the calculation of Re e(w) from the first equation in (7.120). 
The connection between absorption and anomalous dispersion, shown in Fig. 7.8, 
is contained in the relations. The presence of a very narrow absorption linc or 
band at @ = w, can be approximated by taking 

K Im e(w") = a Blo! — uy) +o 
, 

where K is a constant and the dots indicate the other (smoothly varying) contri- 
butions to Im ¢. The first equation in (7.120) then yields 

Re (22 (7.121) 
a — @ 

for the behavior of Re e(w) near, but not exactly at, wo = wy. The term é represents 
the slowly varying part of Re € resulting from the more remote contributions to 

Im e. The approximation {7.121} exhibits the rapid variation of Re e(w) in the 
neighborhood of an absorption linc, shown in Fig. 7.8 for lines of finite width. A 

more realistic description for Im € would lead to an expression for Re ¢ in com- 
plete accord with the behavior shown in Fig. 7.8. The demonstration of this is 

left to the problems at the end of the chapter. 
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Relations of the general type (7.119) or (7.120) connecting the dispersive and 
absorptive aspects of a process are extremely useful in all areas of physics. Their 
widespread application stems from the very small number of physically well- 
founded assumptions necessary for their derivation. References to their appli- 
cation in particle physics, as well as solid-state physics, are given at the end of 
the chapter. We end with mention of two sun rudes obtainable from (7.120). It 

was shown in Section 7.5.D, within the context of a specific model, that the di- 

electric constant is given at high frequencies by (7.59). The form of (7.59) is 
fact, quite general, as shown above {Section 7.10.C). The plasma frequency can 
therefore be defined by means of (7.59) as 

w, = tim {w*[1 — €(w)/eo]} 

Provided the falloff of Im ¢(w) at high frequencies is given by (7.114), the first 
Kramers-Kronig relation yields a swm rule for w}: 

oe = 2 I o Im e(w)/ey dw (7.122) 
Jo 

This relation is sometimes known as the sum rule for oscillator strengths. It can 
be shown to be equivalent to (7.52) for the diclectric constant (7.51), but is ob- 

viously more general. 
The second sum rule concerns the integral over the real part of €(«) 

and follows from the second relation (7.120). With the assumption that 

[Re €(w’ eg — 1] = —wi/w’* + O(1/e'*) for all w' > N, it is straightforward to 
show that for @ > N 

2f_%, F , 1 Tm €(w)/e) = Tae TN. +], [Re e(w’ ve, — 1] dw’ ¢ + O a 

it was shown in Section 7.10.C that, excluding conductors and barring the un- 
physical happening that G(0*) # 0, Im e(w) behaves at large frequencies as o”*. 
it therefore follows that the expression in curly brackets must vanish. We are 
thus led to a second sum rule, 

1° wh HI, Re ellen do = 14 55 (7.123) 

which, for N > %, states that the average value of Re €()/€, over all frequencies 
is equal to unity. For conductors, the plasma frequency sum rule (7.122) still 
holds, but the second sum rule (sometimes called a superconvergence relation) 
has an added term ~ 0/2e,N, on the right hand side (sec Problem 7.23). These 

optical sum rules and several others are discussed by Altarclli et al.* 

7.11 Arrival of a Signal After Propagation Through 
a Dispersive Medium 

Some of the effects of dispersion have been considered in the preceding sections. 
‘There remains onc important aspect. the actual arrival at a remote point of a 

*M. Altarelli, D. L. Dexter, H. M. Nussenzveig. and D. Y. Smith, Phys. Rev. B6, 4502 (1972). 
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wave train that initially has a well-defined beginning. How does the signal build 
up? If the phase velocity or group velocity is greater than the velocity of light in 
vacuum for important frequency components, does the signal propagate faster 
than allowed by causality and relativity? Can the arrival time of the disturbance 
be given an unambiguous definition? These questions were examined authori. 
tatively by Sommerfeld and Brillouin in papers published in Annalen der Physik 

in 1914.* The original papers, plus subsequent work by Brillouin, are contained 

in English translation in the book, Wave Propagation and Group Velocity, by 

Brillouin. A bricfer account is given in Sommerfeld’s Optics, Chapter III. A com- 

plete discussion is lengthy and technically complicated.’ We treat only the qual- 

itative features. The reader can obtain more detail in the cited literature or the 

second edition of this book, from which the present account is abbreviated. 
For definiteness we consider a plane wave train normally incident from vac- 

uum on a semi-infinite uniform medium of index of refraction n(@) filling the 

region x > 0. From the Fresnel equations (7.42) and Problem 7.20, the amplitude 
of the electric field of the wave for x > 0 is given by 

wonm J [abo “do (7.124) 

where 

ei i is 
Aw) = 5= J wil, Ne" dt (7.125) 

is the Fourier transform of the real incident electric field u,(x, 1) evaluated just 

outside the medium, at x = 0°. The wave number k(w) is 

k(w) = 2 nw) (7.126) 

and is generally complex, with positive imaginary part corresponding to absorp- 

tion of energy during propagation. Many media are sufficiently transparent that 

the wave number can be treated as real for most purposes, but there is always 

some damping present. [Parenthetically we observe that in (7.124) frequency, not 

wave number, is used as the independent variable. The change from the practice 

of Sections 7.8 and 7.9 is dictated by the present emphasis on the time develop- 

ment of the wave at a fixed point in space.] 
We suppose that the incident wave has a well-defined front edge that reaches 

x = 0 not before t = 0. Thus u(0, t) = 0 for ¢ < 0. With additional physically 

reasonable mathematical requirements, this condition on (0,1) assures that A(w) 

is analytic in the upper half-w-plane [just as condition (7.112) assured the anal- 

yticity of e(w) there}. Generally, A() will have singularities in the lower half-w- 

plane determined by the exact form of u(x, ). We assume that A(w) is bounded 

for |w| > %. 
The index of refraction n(c) is crucial in determining the detailed nature of 

the propagation of the wave in the medium. Some general features follow, how- 

¥A Sommerfeld, Ann. Phys (Leipzig) 44, 177 (1914). L. Brillouin, Ann. Phys. (Leipzig) 44. 203 (1914). 
An exhaustive treatment is given in K. E. Oughstun and G. C. Sherman. Efectromagnetic Pulse 
Propagation in Causal Dielectrics, Springer-Verlag, Berlin (1994). 
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ever, from the global propertics of n(). Just as €(w) is analytic in the upper half- 
w-plane. so is n(w). Furthermore, (7.59) shows that for |@| > %, n(w) > 
1s a3 /20. Asimple one-resonance model of n(w) based on (7.51), with resonant 

frequency «, and damping constant y, leads to the singularity structure shown in 
Fig. 7.16. The poles of e(w) become branch cuts in n(w). A multiresonance ex- 
pression for € leads to a much more compicx cut structure, but the upper plane 
analyticity and the asymptotic behavior for large || remain. 

The proof that no signal can propagate faster than the specd of light in 
vacuum, whatever the detailed properties of the medium, is now straightforward. 
We consider evaluating the amplitude (7.124) by contour integration in the com- 
plex w planc. Since n(w) — 1 for |w| — %, the argument of the exponcatial in 
(7.124) becomes 

ib (w) = ifk(w)x — wt] > tala'S ad) 

for large |w|. Evidently, we obtain a vanishing contribution to the integral by 
closing the contour with a great semicircle at infinity in the upper half-plane for 
x > ct and in the lower half-plane for x < ct. With n(w) and A(w) both analytic 

in the upper half-plane, the whole integrand is analytic there. Cauchy's theo- 
rem tells us that if the contour is closed in the upper half-plane (x > ct), the 
integral vanishes. We have therefore established that 

u(x,t) = 0 for (x ~ ct) > 0 (7.127) 

provided only that A(w) and n(w) are analytic for Im » > 0 and n(w) > 1 for 
|w| — %, Since the specific form of n(w) does not enter, we have a general proof 
that no signal propagates with a velocity greater than c, whatever the medium. 

For ct > x, the contour is to be closed in the lower half-plane, enveloping 
the singularities. The integral is dominated by different singularities at different 

Imw 

wzwg 
xe + + Rew 

ener ai 2 coerced 
op we We Wa 

Figure 7.16 Branch cuts defining the singularities of a simple one-resonance model for 
the index of refraction n(@). For transparent media the branch cuts lie much closer to 
(but still below) the real axis than shown here. More realistic models for n(w) have 
more complicated cut structures, all in the lower half-w-planc. The crosses mark the 

possible locations of singularities of A{w). 
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times. Brillouin and Sommerfeld used the method of steepest descent* to eval. 
uate (7.124) in various regimes. We sketch the chief aspects using the concepts 
of the less rigorous method of stationary phase. The method of stationary phase 
is based on the idea that the phase }() in an integral such as (7.124) is generally 
large and rapidly varying. The rapid oscillations of e'* over most of the range of 
integration mean that the integrand averages almost to zero. Exceptions to the 
cancellation occur only when ${w) is “stationary.” that is, when ${w) has an 
extremum, The integral can therefore be estimated by approximating the integral 
at cach of the points of stationary phase by a Taylor series expansion of (0) 
and summing these contributions. 

We use the idea of stationary phase to discuss the qualitative aspects of 
the arrival of the signal without explicit usc of the integration formulas. With 
$(w) = k(w)x ~ wt and k(w) given by (7.126), the stationary phase condition 
Adldi@ = 0 becomes 

dk dnt 
oa n{w) + Serre md for tf > 4) = x/ce (7.128) 

The earliest part of the wave occurs when (/t, is infinitesimally larger than unity. 
From the global properties of n(w) we see that the point of stationary phase is 
at |w| > %, where n > 1. Explicitly, we have 

2 

PE re a for 1 = t eee a2 = 
dw 20 ; 

showing that the frequency of stationary phase w, ~ wl V(t, — 1) depends 
only on ¢/ty and w;, a global property of the index of refraction. The incident 
wave’s A(w,) is presumably very small. The earliest part of the signal is therefore 
extremely small and of very high frequency, bearing no resemblance to the in- 
cident wave. This part of the signal is called the first or Sommerfeld precursor. 
At somewhat latcr times, the frequency @, slowly decreases; the signal grows 
very slowly in amplitude. and its structure is complex. 

Only when #/ty in (7.128) reaches n(0) is there a qualitative change in the 
amplitude. Because » = 0 is now a point of stationary phase, the high frequency 
of oscillation is replaced by much lower frequencies. More important is the fact 
that d’k(w)ide* = 0 at w = 0. In such circumstances the stationary phase 
approximation fails, giving an infinite result. One must improve the approxi- 
mation to include cubic terms in the Taylor series expansion of ¢(w) around 
« + w,. The amplitude is expressible in terms of Airy integrals (of rainbow 
fame). The wave becomes relatively large in amplitude and of long period for 
times ¢ = n(0)f>. This phase of development is called the second or Brillouin 
precursor. 

At still later times, there are severai points of stationary phase. The wave 
depends in detail on the exact form of n(w). Eventually, the behavior of A(w) 
begins to dominate the integral. By then the main part of the wave has arrived 
at the point x. The amplitude behaves in time as if it were the initial wave prop- 
agating with the appropriate phase velocity and attenuation. 

The sequence of arrival of the tiny, high-frequency Sommerfeld precursor. 
the larger and slower oscillating Brillouin precursor, and then the main signal. 

*See Jeffreys and Jeffreys (Section 17.04) or Born and Wolf (Appendix iI) for a discussion of this 
method, originally developed by P. Debye. 
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and indeed their detailed appearance, can differ greatly depending upon the 
specifics of n(w), A(w), and the position x of observation. A textbook example 
can be found in Oughstun and Sherman (op. cit., Fig. 9.10, p. 383). 
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Problems 

7.1 For cach set of Stokes parameters given below deduce the amplitude of the electric 
field, up to an overall phase, in both linear polarization and circular polarization 
bases and make an accurate drawing similar to Fig. 7.4 showing the lengths of the 
axes of one of the ellipses and its orientation. 

@ w= seo 944 ye 

(b) y= 25,0 8 = 0, 8p = 2, 7. 

7.2 A plane wave is incident on a layered interface as shown in the figure. The indices 
of refraction of the three nonpermeable media are n,, nz. 05. The thickness of the 
intermediate layer is d. Each of the other media is semi-infinite. 

(a) Calculate the transmission and reflection coefficients (ratios of wransmitted 

and reflected Poynting’s flux to the incident flux), and sketch their behavior 
as a function of frequency for m = 1 mz = 20m = 3: my = 3.m =2m = bi 
and n, - 2.m =4.n, = 1. 

Problem 7.2 

(b) The medium »; is part of an optical system (¢.g.. a lens); medium ny is air 
(nx = 1). HLis desired to pui an optical coating (medium nr.) on the surface so 
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that there is no reflected wave for a frequency wy). What thickness d and index 

of refraction ny are necessary? 

‘wo plane semi-infinite slabs of the same uniform. isotropic, nonpermeable, lossless 
diclectric with index of refraction # are paralle! and separated by an air gap (n = 1) 
of width d. A plane clectromagnctic wave of frequency w is incident on the gap 
from one of the slabs with angle of incidence i. For linear polarization both parallel 
to and perpendicular to the plane of incidence, 

{a)_ calculate the ratio of power transmitted into the second slab to the incident 

power and the ratio of reflected to incident power, 

(b) for i greater than the critical angle for total internal reflection, sketch the ratio 

of transmitted power to incident power as a function of d measured in units 

of wavelength in the gap. 

A plane-polarized electromagnetic wave of frequency w in free space is incident 
normally on the flat surface of a nonpermcable medium of conductivity @ and di- 
electric constant e. 

(a) Calculate the amplitude and phase of the reflected wave relative to the inci- 

dent wave for arbitrary o and €. 

(b) Discuss the limiting cases of a very poor and a very good conductor, and show 
that for a good conductor the reflection cocflicient (ratio of reflected to inci- 
dent intensity) is approximately 

R=1-2768 
c 

where dis the skin depth. 

A plane polarized electromagnetic wave E = E,e**~" is incident normally on a 
flat uniform shect of an excellent conductor (o >> wey) having a thickness D. As- 
suming that in space and in the conducting sheet w/ity = €/ey = 1, discuss the 
reflection and transmission of the incident wave. 

(a) Show that the amplitudes of the reflected and transmitted waves, correct to 
the first order in (ep@/a)', are: 

zs -a 6) 
“d-e*y+ yl te 

2ye * 
ay + y(1 + eo 

where 

= (1 — pis 

and 6 = V2/ayo is the penctration depth. 

(b} Verify that for zero thickness and infinite thickness you obtain the proper 

limiting resuits. 

(c) Show that, except for sheets of very small thickness, the transmission coeffi- 

cient is 

We 8(Re ye 2% 

© 1 = 2e?* cos(2D/8) + oP? 

Sketch log T as a function of (0/8), assuming Re y = 1077. 
Define “very smail thickness.” 
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7.6 A plane wave of frequency wis incident normally from vacuum on a semi-infinite 
slab of material with a complex index of refraction n(w) [n°(@) = €(w)/ey]. 
(a) Show that the ratio of reficcted power to incident power is 

= no) 
1+ nw) 

while the ratio of power transmitted into the medium to the incident power 
aS 

~ [Talo 
(b) Evaluate Re[io(E - D* — B- H*)/2] as a function of (x, y, z). Show that this 

rate of change of cnergy per unit volume accounts for the relative transmitted 
power 7. 

(e) For a conductor, with n? = 1 + i{a/wes), o real, write out the results of parts 
aand bin the limit e4@ < o. Express your answer in terms of 6 as much as 
possible, Calculate } Re(J* - E) and compare with the result of part b. Do both 
enter the complex form of Poynting’s theorem? 

7.7 A ribbon beam of planc-polarized radiation of wavelength A is totally reflected 
internally at a plane boundary between two nonpermeable media with indices of 
refraction x and n' (n’ <n). As discussed in Section 7.4, the ratio of the reflected 
to incident amplitudes is a complex number of modulus unity, EN/ Ey = explid(i. i))] 
for the angle of incidence i > i, where sin i) = n/n. 

(a) Show that for a “monochromatic” ribbon beam of radiation in the z direction 
with an electric field amplitude, E(e“* “?, where E(x) is smooth and finite 
in transverse extent (but many wavelengths broad). the lowest order approx: 
imation in terms of plane waves is 

E(x. z. 1) = € [ a Alera 

where € is a polarization vector. and A(x) is the Fourier transform of F(x), 
with support in « around « = 0 small compared to k. The finite beam consists 
of plane waves with a small range of angles of incidence. centered around the 
gcomctrical optics valuc. 

(b) Consider the reflected beam and show that for / > ig the clectric ficld can be 
expressed approximately as 

r(x. 2, £) = €E(x" — &x) explik” «x — iwt + ib(é, io)] 

where €” is x polarization vector, x" is the x coordinate perpendicular to k", 
the reficeted wave vector, and & = —(1ik)[d (i, ighdil. 

{e) With the Fresnel expressions of Section 7.3 for the phases #(i, in) for the two 
states of plane polarization, show that the lateral displacements of reflected 
beams with respect to the geometric optics position are 

in i 

sin*ip)) : 
si 

“Isn't — cos - sin] 

The displacement is known as the Goos-Hanchen effect (op. cit.). 
7.8 A monochromatic plane wave of frequency @ is incident normally on a stack of 

layers of various thicknesses ¢, and lossless indices of refraction n,. Inside the stack, 
the wave has both forward and backward moving components. The change in the 



A) 

Ch.7 Problems 343 

wave through any interface and also from one side of a layer to the other can be 
described by means of 2 x 2 transfer matriccs. If the electric field is written as 

E=E.e* + Ee ™* 

in each layer, the transfer matrix equation F’ = TE is explicitly 

() 7 C aye ) ES fy te /\E 

{a) Show that the transfer matrix for propagation inside, but across, a layer of 

index of refraction n, and thickness ¢; is 

eth 0 ; 
Tallin 1) = ("9 ay,) = Fe0s(ks) + tas sin( kt) 

3 

where k; = njovc, / is the unit matrix, and @, arc the Pauli spin matrices of 
quantum mechanics, Show that the inverse matrix is 7*. 

(b) Show that the transfer matrix to cross an interface from nm, (« < xy) to 

ny (X > xy) is 

n+l -(i-1) (n +1) (n -1) 
= (Fu 

-(n-1) nt 2 
Fs i 
Fasass2 1) = 5 ( 

where n = nino. 

(c) Show that for a complete stack, the incident, reflected, and transmitted waves 

are related by 

_ det(T) bn 
ans Ene Fen = 7 Eine te be 

where 4, are the clements of 7, the product of the forward-going transfer 
matrices, including from the material filling space on the incident side into the 
first layer and from the last layer into the medium filling the space on the 

transmitted side. 

A stack of optical clemenis consists of N layers with index of refraction # and 
thickness 1, separated by air gaps (7 = 1) of thickness f. A monochromatic plane 
wave is incident normally. With appropriate thicknesses, a modest number of layers 
can cause almost total reflection of a given range of frequencies, even for normal 
n-values (¢.g.. 1.3 <n < 1.8). 

(a) Show the transfer matrix for the stack is Tyce = TY (7 cos az ~ igs sin a), 
where a = wt,/c, and the single air gap plus foil transfer matrix is 

T = (1/4n){[(n + 1 cos(ay + a) — (2 — 1° cos(ay — a2))f 

+ ios{(n + 1) sin(a, + a) + (2 — 1)? sinfa, — a)] 

+ 2o,(n? — 1) sina; sin a 
— 2ox(n? — 1) sin a, cos a} 

with a, = nwt,/e. 

(b) [fall the layers (both air gaps and foils) have optical thicknesses of a quarter- 
wavelength of the incident wave, show that 

T = —cxp(—Ao;), — where A = ln() 

is (roughly) the amplitude “decay constant” per layer. Show that the fractional 

transmitted intensity is 

{Ecansl? an’® TE = sech"[N In(n}] = r Ge 7 TO-N Ine?)| 

‘The asymptotic form holds for n?” >> 1. 
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7.40 An arbitrary optical clement of length L is placed in a uniform nonabsorbing me, 

7.11 

dium with index of refraction n(w) with its front face at x = (and its back face - 
x = L. Ifa monochromatic plane wave of frequency with amplitude d.(e, xe 
= explik(w)x — iat] is incident on the front face of the element, the transmitteq 
wave amplitude is Yiran(@, X, 1) = T(w) expfik(w}(x — L) — iwt}, where the relative 
transmission amplitude T(} = 7(w) exp[id(w)] is a complex quantity of magnitude 
7(w) and phase (0). 

A plane wave of radiation dipc(x. £), consisting of a coherent superposition of 
diffcrent frequencics centered around w = ey, with support A(w) narrow on the 
scale of variation of r(a), b(w) and k(w), is incident on the optical clement, Show, 
thal the transmitted wave for x > L is approximately 

Yrrawd® 1) = leone Pine x", #) 

where § is a constant phase and x’ = x — L,¢' = — T. The transit OF group 
delay time (sometimes attributed in another context to E. P. Wigner) is 7 = 
[do(w)lde],..,- H eT < L, some authors speak of superluminal propagation 
through the clement. Discuss. 

A simple example of the transit time of the preceding problem is afforded by a slab 
of lossless diclectric of thickness d and index of refraction n in vacuum. 

(a) For a planc wave incident normally, show that the magnitude of the trans. 
mitted amplitude is 

4n 

V((a + 1P = (a = 1) cos(2z))? + [(n — 1)" sin(2z) FP 
I7(w)} = 

while its phase is 

in(2z) 

1) cos(2z 

a ¢ 
b(w) = 2+ actan r 

where z = nlc. 

(b) Neglecting dispersion, show that for z > 0 and z = a, |7| = 1.0 and ¢Tid = 
(x + 1)/2, while for z = 7/2 (quarter-wave plate), |r] = 2n/(n? + 1) and 
cTid = 2ni(n? + 1), Show also that cTid, averaged over any integer number 
of quarter-wavelength optical paths, is (cT/d) = n. Does this result tell you 
anything about what you might expect for the observed transit time of a long 
wave train (Aw/w << 1) through a piece of window glass? Explain. 

(e) Calculate numerically and plot the results as functions of z for the magnitude 
of the transmission amplitude, its phase, and the transit time in units of dic 
forn = 1.5 andn = 2.0. 

The time dependence of electrical disturbances in good conductors is governed by 
the frequeney-dependent conductivity (7.58). Consider longitudinal electric ficlds 
in a conductor, using Ohm's law, the continuity equation, and the differential form 
of Coulomb's law. 

(a) Show that the time-Fourier-transformed charge density satisfics the equation 

lo(@) — iwe|p(x, w) = 0 

{b) Using the representation o() = oy/{1 — ier), where oy = gaat and ris a 
damping time, show that in the approximation @,7 >> | any initial disturbance 
wil! oscillate with the plasma frequency and decay in amplitude with a decay 
constant A = 1/27. Note that if you use o(«) ~ o(0) = vy in part a, you will 



714 

Ch.7 Problems 345 

find no oscillations and extremely rapid damping with the (wrong) decay con- 

stant A, = Go/€. 

Reference: W, M. Saslow and G. Wilkinson, Am. J. Phys. 39, 1244 (1971). 

A stylized mode! of the ionosphere is a medium described by the diclectric constant 

(7.59). Consider the carth with such a medium beginning suddenly al a height # 
and extending to infinity. For waves with polarization both perpendicular to the 

plane of incidence (from a horizontal antenna) and in the plane of incidence (from 
a vertical antenna), 

{a) show from Fresne!’s equations for reftection and refraction that for @ > «, 

there is a range of angles of incidence for which reflection is not total, bul for 

larger angles there is total reflection back toward the carth. 

(b) A radio amatcur operating at a wavelength of 21 meters in the carly cvening 

finds that she can receive distant stations located more than 1000 km away, 

but none closer, Assuming that the signals are being reflected from the F layer 

of the ionosphere at an effective height of 300 km, calculate the clectron 

density. Compare with the known maximum and minimum F layer densitics 

of ~ 2 X 10 m “in the daytime and ~ (2-4) 10"! mat night. 

A simple mode! of propagation of radio waves in the carth’s atmosphere or iono- 

sphere consists of a flat carth at z = 0 and a nonuniform medium with € = e(z) for 

z > 0. Consider the Maxwell equations under the assumption that the ficlds are 

independent of y and can be written as functions of z times e"#*. 

(a) Show that the wave equation governing the propagation for z > Ois 

+ P(2)F = 0 

where 

(2) = wr tine(z) = 

and F = £, for horizontal polarization, and 

GP(2) = & pye(z) + x 

with F = Véle, E. for vertical polarization. 

{b) Use the WKB approximation to treat the propagation of waves directed ver- 

tically into the ionosphere (k = 0), assuming that the diclectric constant is 

given by (7.59) with a plasma frequency w,(z) governed by an clectran density 
like that shown in Fig. 7.11. Verify that the qualitative arguments in Scction 

7.6 hold, with departures in detail only for @ ~ @p sax 

(c) Using the WKB results of part b and the concepts of the propagation ofa 

pulse from Scction 7.8, define an effective height of the ionosphere fh'(w) by 
calculating the time 7 for a pulse of dominant frequency w to travel up and 

be reflected back (h’ = e7/2). [The WKB approximation is discussed in most 
books on quantum mechanics.| 

The partially ionized intersicllar medium (mostly hydrogen) responds to optical 

frequencies as an electronic plasma in a weak magnetic ficld. The broad-spectrum 
pulses from a pulsar allow determination of some average properties of the inter- 
stellar medium (c.g., mean electron density and mean magnetic field). ‘The treat- 
ment of an electronic plasma in a magnetic ficld of Section 7.6 is pertincnl 
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(a) Ignoring the weak magnetic ficld and assuming that max(«,) << «, show that 
¢ times the Lransit time of a pulsc of mean frequency w from a pulsar a distance 
R away is 

é | etlw) = R + SS | ne) de 

where n,(z) is the ciectron density along the path of the light. 

{b) The presence of the magnetic field causes a rotation of the plane of tinear 
polarization (Faraday cffect). Show that to lowest order in the magnetic field, 
the polarized light from the pulsar has its polarization rotatcd through an angle 
5H w): 

5H w) = — nl2)B(z) dz 
& { 

Zeca” 

where B(z) is the component of B parallel to the path of the light. 

{ec} Assuming you had an independent measure of the pulsar distance R, what 
observations would you make in order to infer (#,) and (B.)? What assump- 
tions, if any, about the polarization are necessary? 

Plane waves propagate in a homogencous, nonpermeable, but anisotropic diclectric, 
The diclectric is characterized by a tensor €;, but if coordinate axes are chosen as 
the principle axes, the components of displacement along these axes are related to 
the clectric-ficld components by D, = €,F, (i = 1, 2,3), where ¢; are the cigenvalues 
of the matrix €,. 

{a) Show that plane waves with frequency w and wave vector k must satisfy 

k x (k X E) + pyo’D = 0 

(b) Show that for a given wave vector k = kn there are two distinct modes of 

propagation with different phase velocities uv = o/k that satisfy the Fresnel 
equation 

where v; = 1/V/ poe, is called a principal velocity, and 7; is the component of 
a along the ith principal axis. 

(©) Show that D,- D, = 0, where D,. D, are the displacements associated with 
the two modes of propagation. 

Consider the problem of dispersion and waves in an clectronic plasma when a 
uniform external magnetic induction By is present, as in Section 7.6. 

(a) Show that in general the susccptibi 
Lee Eg. and € — €oSe + Xx) IS 

y tensor yj«(w) defined through D, = 

Sk 
aa? — 0) 

Xe [oS — ebb, — i@oyes:b)) 

where b is a unit vector in the direction of By. 

(b) By straightforward diagonalization of the dielectric tensor €, or by an airtight 
argument based on the approach and results of Section 7.6, find the cigenval- 
ues €, 7 = 1.2.3. 
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{ec} A plane wave (w, k = kn) must satisfy the vector equation of Problem 7.16a. 
Show that in terms of yx the clectric field and wave number must satisfy the 
three homogencous equations, 

(1 OE + &fn-E) +> yeh = 0 7 = 1,23 ‘ 

where € = (ck/@)*. Keeping only first-order terms in an expansion of yj in 
powers of w,/@, show thal the effective dielectric constant for propagation of 
the plane wave is 

for positive and negative helicity waves. 

Magnctohydrodynamic waves can occur in a compressible, nonviscous, perfectly 
conducting fluid in a uniform static magnetic induction B,. If the propagation di- 
rection is not parallel or perpendicular to By, the waves are not separated into 
purcly longitudinal (magnctosonic) or transverse (Alfvén) waves. Let the angle 
between the propagation direction k and the ficld B, be @ 

(a) Show that there are three different waves with phase velocities given by 

1} = (v, cos 8” 

1B, = Xs + 0%) + 3[(8° + vA)’ — 4s7v% cos*a)!” 

where x is the sound velocity in the fluid, and uv, = (Bi/jep,)'? is the Alfvén 
velocity. 

(b) Find the velocity cigenvectors for the three different waves, and prove that 
the first (Alfvén) wave is always transverse, while the other two are neither 

longitudinal nor transverse. 

(c) Evaluate the phase velocities and cigenvectors of the mixed waves in the ap- 
proximation that v, >> s. Show that for onc wave the only appreciable com- 
ponent of velocity is paralicl to the magnetic field, while for the other the only 
component is perpendicular to the field and in the plane containing k and By. 

An approximately monochromatic plane wave packet in one dimension has the 
instantaneous form, w(x, 0) = f(x) e**", with f(x) the modulation cnvelope. For 
cach of the forms f(x) below, calculate the wave-number spectrum | A(k)[? of the 
packet, sketch |ze(x, 0)|° and | A(k)?, evaluate explicitly the rms deviations from the 
means Ax and Ak (defined in terms of the intensities |u(x, 0)|? and |A(k)). and 
test incqualily (7.82). 

(a) f(x) = Ne “8? 
(b) f(x) = Ne er" 

_ fad -alxl)  fore|x|<1 
© fo) = {8 for @ |x| >1 

for |x] <a 
for |x| >a (@) §@) = {0 

A homogencous, isotropic, nonpermeable diclectric is characterized by an index of 
refraction n{w), which is in general complex in order to describe absorptive 
processes. 
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{a} Show that the general solution for plane waves in one dimension can be 
written 

ux, 0) = [ dea e™FA(a)eAMO" 4. Bae HotOntoe 
Via 

where u(x, £) is a component of E or B. 

(b) Ifu(x, 0) is real, show that n(—) = n*(@). 

(c) Show that, if u(0, 4) and ax(0, /ax are the boundary values of w and its deriy. 
ative at x = 0, the coefficients A(w) and B(w) are 

Aco)) LL VE a iw = eu eed = I. dt ¢ [uo, y= aia) ae (0, o| 

7.21 Consider the nonlocal (in time) connection between D and E, 

Di.) = of es n+ frame, t- a} 

with the G(r) appropriate for the singte-resonance model, 

e(a)/é. = 1 + oF (ai — w — iyw) | 

(a) Convert the nonlocal connection between D and E into an instantancous re- 
lation involving derivatives of E with respect to time by expanding the electric 
ficld in the integral in a Taylor scries in 7. Evaluate the integrals over G(s) 
explicitly up to at least @E/ar?, 

(b) Show that the series obtained in part a can be obtained formally by converting 
the frequency-representation relation, D(x, w) = e(@)E(x, w) into a space- 
time relation, 

D(x. 9 = di etn ) 

where the variable w in e(@) is replaced by w — i(a/ae). 

7.22 Use the Kramers-Kronig relation (7.120) to calculate the real part of e(w), given 
the imaginary part of e(w) for positive w as 

(a) Im elé = A[O(@ — @) — Blo — )), — w > 0, > 0 

Ayo 

(ah wy + Fa 
In cach case sketch the behavior of Im e(c) and the result for Re e(w) as 
functions of w. Comment on the reasons for similarities or differences of your 

Tesults as compared with the curves in Fig. 7.8. The step function is 6(x) = 0, 
x <Oand Ox) = 1.x > 0. 

7.23 Discuss the extension of the Kramers—Kronig relations (7.120) for a medium with 
astatic clectrical conductivity o. Show that the first equation in (7.120) is unchanged, 
but that the second is changed into 

(by Im é/e, = 

ede) 16 
Im e(w) = 2 — 28 p [" Re eo’) ~ 4) elo’) ol Gey oot bk oe 

[Hint: Consider e(w) — iofe as analytic for Im @ = 0} 
7.24 (a) Use the relation (7.113) and the analyticity of e(w)/e for Im = 0 to prove 

that on the positive imaginary axis e{w)/e, is real and monotonically decreasing 
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away from the origin toward unity as @ > is, provided Im € = 0 for real 
positive frequencies. Assume that (7.114) holds for real w. 

(b) With the assumption that Im € vanishes for finite real @ only at @ = 0, show 
that e(«) has no zeros in the upper half-c-plane. 

(©) Write down a Kramers-Kronig relation for ¢/e(w) and deduce a sum rule 
similar to (7.122), but as an integral over Im[eo/e(w)). 

(a) With the one-resonance mode! (7.107) for ew) determine Im e(w) and 
Im{1/e(«)] and verify explicitly that the sum rules (7.122) and part ¢ are 
satisfied. 

Equation (7.67) is an expression for the square of the index of refraction for waves 
propagating along ficld lines through a plasma in a uniform external magnetic ficld. 
Using this as a model for propagation in the magnetosphere, consider the arrival 
of a whistler signal (actually the Brillouin precursor and subsequently of Section 

7.11). 
(a) Make a reasonably careful sketch of ¢dk/dw, where k = wn(w)le, for 

the positive helicity wave, assuming w,/@, = 1. Indicate the interval where 
¢ dkidw is imaginary, but do not try to sketch it there! 

(b) Show that on the interval, 0 < w < @,, the minimum of ¢ dk/dw occurs at 
wla, = 4, provided w,/@, = 1. Find approximate expressions for ¢ dk/dw for 

w near zero and for w near w,. 

(©) By means of the method of stationary phase and the general structure of the 
solution to Problem 7.20a, show that the arrival of a whistler is signaled by a 
rising and falling frequency as 2 function of time, the falling frequency com- 
ponent being the source of the name. 

(d) (Optional) Consider the form of the signal in the Brillouin precursor, Show 
that it consists of a modulated waveform of frequency @ = w,/4 whose en- 
velope is the Airy integral. This then evolves into a signal beating with the 
two frequencies of part c. 

A charged particle (charge Ze) moves at constant velocity v through a medium 
described by a dielectric function €(q, @)/e, or, cquivalently, by a conductivity func- 
tion o(q. @) = iafe, — e(g, w)). It is desired to calculate the energy loss per unit 
time by the moving particle in terms of the diclectric function e(q, w) in the ap- 
proximation that the clectric field is the negative gradient of the potential and 
current flow obcys Ohm's law, J(q, @) = of. wE(q, ©) 
(a) Show that with suitable normalization, the Fourier transform of the particle’s 

charge density is 

P(g, @) = q:¥) 
Ze 
mT 4 Gm (eo 

(b) Show that the Fouricr components of the scalar potential are 

P(g, ©) 
F €q, 0) 

{c) Starting from dWidr = {J - E dx show that the energy loss per unil time can 
be written as 

ee ee =(af dow in| = |e an 

(gq, w) = 

dt 

[This shows that Im[e(q. )]~' is related to cnergy loss and provides, by study 
ing characteristic energy losscs in thin foils, information on e(q, @) for solids} 
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7.27 The angular momentum of a distribution of clectromagnetic fields in vacuum ; is 
given by 

: | L=—;] @xxx(ExB 
Bot? ) 

where the integration is over all space. 

(a) For fields produced a finite time in the past (and so localized to a finite region 
of space) show that, provided the magnetic ficid is climinated in favor of the 
vector potential A, the angular momentum can be written in the form 

1 : 
afer xA+ > E(x x vi 

The first term is sometimes identified with the “spin” of the photon and the 
second with its “orbital” angular momentum because of the presence of the 
angular momentum operator L,,, — —i(x x V). 

(b) Consider an expansion of the vector potential in the radiation gauge in terms 
of plane waves: 

awo= =f oe HF 

The polarization vectors €,(k) are conveniently chosen as the positive and 
negative helicity vectors €. = (1/V2)(e, + i€,) where €, and e€ are real 
orthogonal vectors in the plane whose positive normal is in the direction of k. 

Show that the time average of the first (spin) term of L can be written as 

2 ak kK boon = Sz J Gaye ll QP ~ |a-C9 FI 

7 fe(kja(kye™*" + cc] 

Can the term “spin” a momentum be justified from this expression? 
Calculate the energy of the ficld in terms of the plane wave expansion of A 
and compare. 

7.28 A circularly polarized plane wave moving in the z direction has a finite extent in 
the x and y dircetions. Assuming that the amplitude modulation is slowly varying 
(the wave is many wavelengths broad), show that the electric and magnetic fields 
are given approximately by 

E(x, y. 2,0) = [etx y)(e, + ies) + — i(@ + 1a ete 

B= FiVpeE 

where e;, €2, €; are unit vectors in the x, y, z directions. 

7.29. For the circularly polarized wave of Problem 7.28 with F(x, y) a real function of x 
and y, calculate the time-averaged component of angular momentum parallel to the 
direction of propagation. Show that the ratio of this component of angular mo- 
mentum to the cnergy of the wave in vacuum is 

Interpret this result in terms of quanta of radiation (photons). Show that for a 
cylindrically symmetric, finite plane wave, the transverse components of angular 
momentum vanish. 
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7.30 Starting with the expression for the total cnergy of an arbitrary superposition of 
plane electromagnetic waves (7.8, 7.11) in otherwise empty space, show that the 
total number of photons (defined for cach plane wave of wave vector k and polar- 
ization € as its energy divided by fick) is given by the double integral 

5 _ PEO EO) + 2 BO) + B.D) 
Ne ake Jes Jes [ | Ix-xF 



CHAPTER 8 

Waveguides, Resonant Cavities, 
and Optical Fibers 

Electromagnetic fields in the presence of metallic boundaries form a practical 
aspect of the subject of considerable importance. At high frequencies where the 

wavelengths are of the order of meters or less, the only practical way of gener- 

ating and transmitting electromagnetic radiation involves metallic structures with 

dimensions comparable to the wavelengths involved. At much higher (infrared) 

frequencies, dielectric optical fibers are exploited in the telecommunications in- 

dustry. In this chapter we consider first the ficlds in the neighborhood of a con- 
ductor and discuss their penetration into the surface and the accompanying re- 
sistive losses. Then the problems of waves guided in hollow metal pipes and 
of resonant cavities are treated from a fairly general viewpoint, with specific 
illustrations included along the way. Attenuation in waveguides and Q 

values of cavitics are discussed from (wo different points of view. The carth- 
ionosphere system as a novel resonant cavity is treated next. Then we discuss 
multimode and single-mode propagation in optical fibers. The normal mode 
expansion for an arbitrary ficld in a waveguide is presented and applicd to the 
ficlds generated by a localized source, with bricf mention of the use of the nor- 

mal mode expansion in the treatment of obstacles in waveguides by variational 

methods. 

8.1 Fields at the Surface of and Within a Conductor 

352 

In Section 5.18 the concept of skin depth and effective surface current was intro- 

duced by a simple example of a planar interface between conductor and vacuum, 

with a spatially uniform, time-varying magnetic ficld at the interface. Here we 

gencralize the circumstances, at least conceptually, even though the mathematics 

is much the same. 

First consider a surface with unit normal n directed outward from a perfect 

conductor on one side into a nonconducting medium on the other side. Then, 

just as in the static case. there is no electric field inside the conductors. The 

charges inside a perfect conductor are assumed to be so mobile that they move 

instantly in response to changes in the ficlds. no matter how rapid, and always 

produce the correct surface-charge density © (capital ¥ is used to avoid confusion 

with the conductivity v): 

n-D=> (8.1) 
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to give zero electric field inside the perfect conductor. Similarly, for time-varying 

magnetic fields. the surface charges move in response to the tangential magnetic 
ficld to produce always the correct surface current K: 

nxH=K (8.2) 

to have zero magnetic field inside the perfect conductor. The other two boundary 
conditions are on normal B and tangential E: 

n-(B-B)=0 (83) 
nx (E-E)=0 

where the subscript ¢ refers to the conductor. From these boundary conditions 
we see that just outside the surface of a perfect conductor only normal E and 
tangential H ficlds can exist, and that the ficlds drop abruptly to zcro inside the 

perfect conductor. This behavior is indicated schematically in Fig. 8.1. 
The fields in the neighborhood of the surface of a good, but not perfect, 

conductor must behave approximately the same as for a perfect conductor, In 

Section 5.18 we saw that inside a conductor the fields are attenuated cxponcn- 
tially in a characteristic length 6, called the skin depth, For good conductors and 
moderate frequencies, 8 is a small fraction of a centimeter. Consequently, bound- 
ary conditions (8.1) and (8.2) are approximately true for a good conductor, aside 
from a thin transitional layer at the surface. 

If we wish to examine that thin transitional region, however, care must be 

taken. First of all, Ohm’s law J = cE shows that with a finite conductivity there 
cannot actually be a surface layer of current, as implicd in (8.2). Instead, the 
boundary condition on the magnetic ficld is 

nx (H- H.) =0 (8.4) 

To explore the changes produced by a finite, rather than an infinite, conductivity, 
we employ a successive approximation scheme. First we assume that just outside 
the conductor there exists only a normal electric ficld E, and a tangential mag- 
netic ficld Hy, as for a perfect conductor. The values of these ficlds are assumed 
to have been obtained from the solution of an appropriate boundary-value prob- 
lem, Then we use the boundary conditions and the Maxwell equations in the 
conductor to find the fields within the transition layer and small corrections to 

the fields outside. In solving the Maxwell equations within the conductor we 
make use of the fact that the spatial variation of the ficlds normal to the surface 

fa) fb) 

Figure 8.1 Fields near the surface of a perfect conductor. 
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is much more rapid than the variations paralicl lo the surface. This means that 
we can safcly neglect al} derivatives with respect lo coordinates parallel to the 
surface comparcd to the normal derivative. 

If there exists a tangential Hj outside the surface, boundary condition (8.4) 
implics the same Hj, inside the surface. With the neglect of the displacement 
current in the conductor, the Maxwell curl equations become 

1 
o ° (8.5) 

where a harmonic variation e~“” has been assumed. If n is the unit normal our. 

ward from the conductor and é is the normal coordinate inward into the con- 

ductor, then the gradient operator can be written 

neglecting the other derivatives when operating on the ficlds within the conduc- 
tor. With this approximation the Maxwell curl equations (8.5) become 

ge clay 
on GE (8.6) 

dE, 

These can be combined to yield 

e 2i 
Fra (a x H,) + rat) x H) ~0 “as 

n:'H.=0 

where 6 is the skin depth defined previously: 

ae 
o= (a) eo 

The second equation in (8.7) shows that inside the conductor H is parallel to the 
surface, consistent with our boundary conditions. The solution for H, is 

H, = Hee? (8.9) 

where Hy is the tangential magnetic field outside the surface. From (8.6) the 
electric field in the conductor is approximately 

BO a - din x He ei (8.10) 

These solutions for H and E inside the conductor exhibil the properties discussed 
in Section 5.18: rapid exponential decay, phase difference, and magnetic field 
much larger than the clectric field. Furthermore. they show that, for a good con- 
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Figure 8.2. Fields near the suriace of a good, but not perfect, conductor. For € > 0, the 

dashed curves show the envelope of the damped osciliations of H, (8.9). 

ductor, the fields in the conductor are parallel to the surface* and propagate 
normal to it, with magnitudes that depend only on the tangential magnetic field 
H_ that exists just outside the surface. 

From the boundary condition on tangential E (8.3) we find that just outside 

the surface there exists a small tangential clectric field given by (8.10), evaluated 

algé= 0: 

se (1 -d(n x H) (8.11) 
\ 20 

In this approximation there is also a small normal component of B just outside 

the surface. This can be obtained from Faraday’s law of induction and gives B, 

of the same order of magnitude as E . The amplitudes of the fields both inside 

and outside the conductor are indicated schematically in Fig. 8.2. 
The existence of a small tangential component of E outside the surface, in 

addition to the normal £ and tangential H. means that there is a power flow into 

the conductor. The time-averaged power absorbed per unit area is 

IP, 1 =-= ‘ " a 5 Refn- E x HP] (8.12) 

*From the continuity of the tangential component of H and the equation connecting Eto V x Hon 
either side of the surface, one can show (hat there exists in the conductor a small normal component 
of electric field, F.-m = (wele}E_, but this is of the next order in small quantities compared with 
(8.10). Note that our discussion here presupposes a tangential component of H. In situations in which 
the lowest order approximation is essentially electrostatic. the present treatment is inapplicable. Dil- 
ferent approximations must be employed. See T. H. Boyer, Phys. Rev. A9. 68 (1974). 
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This result can be given a simple interpretation as ohmic losses in the body of 
the conductor. According to Ohm’s law, there exists a current density J near the 
surface of the conductor: 

J = 0E, = AC ~ Dn xX Hye #98 (8.13) 

The time-averaged rate of dissipation of energy per unit volume in ohmic losses 
is 34 -E* = (i/2e) |J[?, as written in (5.169). The integral of (5.169) in z leads 
directly to (8.12). 

The current density J is confined to such a smail thickness just below the 
surface of the conductor that it is cquivalent to an effective surface current Key: 

Kay = i Jdé=n x Hy (8.14) 

Comparison with (3.2) shows that a good conductor behaves effectively like a 
perfect conductor. with the idealized surface current replaced by an equivalent 
surface current, which is actually distributed throughout a very small, but finite, 
thickness at the surface. The power loss can be written in terms of the effective 
surface current: 

dP oe A Fe = 5g Ken (8.15) 

This shows that 1/76 plays the role of a surface resistance of the conductor." 
Equation (8.15), with Ke given by (8.14), or (8.12) will allow us to calculate 
approximately the resistive losses for practical cavities, transmission lines, and 
waveguides, provided we have solved for the fields in the idealized problem of 
infinite conductivity. 

8.2 Cylindrical Cavities and Waveguides 

A practical situation of great importance is the propagation or excitation of ele 
tromagnetic waves in hollow metallic cylinders. If the cylinder has end surfaces, 
it is called a cavity: otherwise, a waveguide. in our discussion of this problem the 
boundary surfaces are assumed to be perfect conductors. The losses occurring in 
practice can be accounted for adequately by the methods of Section 8.1. A cylin- 
drical surface S of general cross-sectional contour is shown in Fig. 8.3. For sim- 

plicity, the cross-sectional size and shape are assumed constant along the cylinder 
axis. With a sinusvidal time dependence e~ for the ficlds inside the cylinder, 
the Maxwell equations take the form 

VKE=i V-B=0 
1B : (8.16) Vx B=-ipeoE V-E=0 

*The coefficient of proportionality linking E_ and Ky is called the surface impedance Z,. For a good 
conductor (8.11) yields Z, = (1 — dfa8, but the concept of surface impedance obviously has wider 
applicability. 
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Figure 8.3. Hollow, cylindrical waveguide of arbitrary cross-sectional shape. 

where it is assumed that the cylinder is filled with a uniform nondissipative me- 

dium having permittivity «and permeability . It follows that both E and B satisfy 

(+ nea 5 =0 (8.17) 

Because of the cylindrical geometry it is useful to single out the spatial vari- 

ation of the ficlds in the z direction and to assume 

E(x, y, 2.) _ J EC, yes" 
Boxy. Of 7 [BQ yeti (8.18) 

Appropriate linear combinations can be formed to give traveling or standing 

waves in the z direction. The wave number & is, at present, an uaknown param- 

eter that may be real or complex. With this assumed z dependence of the ficlds 

the wave equation reduces to the two-dimensional form 

[V2 + (peo? — ents =0 (8.19) 

where V? is the transverse part of the Laplacian operator: 
2 

wav 5 (8.20) 

It is useful to separate the ficlds into components parallel to and transverse 

to the z axis: 

E=-E,+E, (8.21) 

where 

E, = 2£, (8.22) 

E,= (x E) xz 

and @ is a unit vector in the z direction. Similar definitions hold for the magnetic 

ficid B. The Maxwell equations (8.16) can be written out in terms of transverse 

and paralle] components as 

ak, 
<4 jot x B,= VE, 2+ (9, X E,) = iwB, (8.23) 
Oz 

B, . ; ste Se 7 ine XE, = VB. 2: (VX B) = —inewE, (8.24) 

aB. 
V,-E,= V,-B, =-— (8.25) 

a 

lt is evident from the first equations in (8.23) and (8.24) that if E, and B, are 

known the transverse components of E and B are determined, assuming the z 
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dependence is given by (8.18). Explicitly, assuming propagation in the positive 2 
direction and the nonvanishing of at least one of FE, and B., the transverse fields 
are 

i é. « EL = Goagp Ta AVE: — ot x V8) (8.26a) 

and 

~ Grek TaD VIB: + mew 8 x VEL] (8.26b) 

For waves in the opposite direction, change the sign of k. 
Before considering the kinds of field that can exist inside a hollow cylinder, 

we take note of a degenerate or special type of solution, called the transverse 
electromagnetic (TEM) wave. This solution has only ficld components transverse 
to the direction of propagation. From the second equation in (8.23) and the first 
in (8.25) it is seen that E. = 0 and B. = 0 imply that E, = Ejyyy; satisfies 

Vx Evem = 0, V+ Evem = 0 

This means that Ey), is a solution of an electrostatic problem in two dimensions. 
There are three main consequences. The first is that the axial wave number is 
given by the infinite-medium value, 

k = ky = oVpe (8.27) 

as can be scen from (8.19). The second consequence is that the magnetic field, 
deduced from the first equation in (8.24), is 

Brum = Vue @ x Evem (8.28) 

for waves propagating as e**. The connection between Bra and Eyyyy is just 

the same as for plane waves in an infinite medium. The final consequence is that 
the TEM mode cannot exist inside a single, hollow, cylindrical conductor of in- 

finite conductivity. The surface is an cquipotential; the electric field therefore 

vanishes inside, It is necessary to have two or more cylindrical surfaces to support 
the TEM mode. The familiar coaxial cable and the parallel-wire transmission line 
are structures for which this is the dominant mode. {See Problems 8.1 and 8.2.) 
An important property of the TEM mode is the absence of a cutoff frequency. 
The wave number (8.27) is real for all w. This is not true for the modes occurring 

in hollow cylinders (sce below). 

In hollow cylinders (and on transmission lines at high frequencies) there 
occur two types of field configuration. Their existence can be seen from consid- 

cring the wave equations (8.19) satisfied by the longitudinal components, F, and 
B., and the boundary conditions to be satisfied. Provided the ficlds are time- 
varying, perfect conductivity assures that both E (and D) and B (and H) vanish 

within the conductor. (For the latter, the skin depth is vanishingly small.) The 
presence of surface charges and currents at the interface allows the existence of 
a normal component of D at the boundary, and also a tangential component of 

H, but the tangential component of E and the sormal component of B must be 
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continuous across the boundary. Thus, for a perfectly conducting cylinder the 
boundary conditions are 

nxE=0, n-B=0 

where nis a unit normal at the surface S. [ is evident that the boundary condition 

on F, is 

EL (8.29) 

From the componcat of the first equation in (8.24) parallel to n it can be inferred 

that the corresponding boundary condition on B- is 

OB. 

an |, 
=0 (8.30) 

where 4/an is the normal derivative at a point on the surface. The two-dimensional 
wave equations (8.19) for E. and B., together with the boundary conditions (8.29) 

and (8.30), specify eigenvalue problems of the usual sort. For a given frequency 

@, only certain valucs of wave number & can occur (typical waveguide situation), 
or, for a given &, only certain w valucs are allowed (typical resonant cavity situ- 
ation). Since the boundary conditions on E, and B, are different, the eigenvalues 
will in general be different. The ficlds thus naturally divide themselves into two 
distinct categories: 

TRANSVERSE MAGNETIC (TM) WAVES 

B, = 0 everywhere; boundary condition, E.|5 = 0 

TRANSVERSE Er.kcrric (TE) WAVES 

OB; 
F,, = 0 everywhere: boundary condition, _ =0 

on |s 

The designations “electric (or E) waves” and “magnetic (or H) waves” are some- 

times used instead of TM and TE waves, respectively, corresponding to a spec- 
ification of the axial component of the fields. The various TM and TE waves, 
plus the TEM wave if it can exist, constitute a complete set of fields to describe 
an arbitrary electromagnetic disturbance in a waveguide or cavity. 

8.3 Waveguides 

For the propagation of waves inside a hollow waveguide of uniform cross section, 
it is found from (8.26a. b) that the transverse magnetic and electric ficlds for both 

TM and TE waves are related by 

H, = Zi xE, (8.31) 

where Z is called the wave impedance and is given by 

kk ip tok fe My) 
oe eo ky ye (832) 

° po _ ky |p Eee eae at {TE) 
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where ky ven by (8.27). The plus (minus) sign in (8.31) goes with z depen. 

dence, e** {e~**). The transverse fields are determined by the longitudinal fields, 
according to (8.26): 

TM Waves 

TE WAVES 

(8.33) 

where yes" is E.(/I.) for TM (TE) waves® and 7 is defined below. The scalar 
function & satisfies the two-dimensional wave cquation (8.19), 

(W+ Ye =0 (8.34) 

where 

y = pew? — k* (8.35) 

subject to the boundary condition. 

=0 (8.36) 

for TM (TE) waves. 
Equation (8.34) for y, together with boundary condition (8.36), specifies an 

eigenvalue problem. Jt is casy to see that the constant y? must be nonnegative. 
Roughly speaking, it is because y must be oscillatory to satisfy boundary condi- 
tion (8.36) on opposite sides of the cylinder. There will be a spectrum of cigen- 
values yi and corresponding solutions ys, A = 1, 2, 3,.... which form an or- 
thogonal set. These different solutions are called the modes of the guide. For a 
given frequency , the wave number k is determined for cach value of A: 

= pew ~ yh (8.37) 

If we define a cutoff frequency w,, 

Ya o = 8.38) 
“Ve ; 

then the wave number can be written: 

ky = VpeV (8.39) 

We note that, for @ > w,, the wave number &, is real: waves of the A mode can 

propagate in the guide. For frequencics less than the cutoff frequency, k, is imag- 
inary: such modes cannot propagate and are called cutoff modes or evanescent 
modes. The behavior of the axial wave number as a function of frequency is 
shown qualitatively in Fig. 8.4. We sce that al any given frequency only a finite 
number of modes can propagate. It is often convenient to choose the dimensions 

*We have changed from E and B to E and H as our basic fields to eliminate factors of x when using 
the wave impedances. (Like ordinary impedance, wave impedance involves voltage and current and 
so E and H.) 
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t 
Viiew 

| [ ip Figure 84 Wave number k, versus 
Pa rar Spa, frequency w for various modes A, an, 

> — is the cutoff frequency. 

of the guide so that at the operating frequency only the lowest mode can occur. 
This is shown by the vertical arrow on the figure. 

Since the wave number k, is always less than the free-space value Vzew, the 
wavelength in the guide is always greater than the free-space wavelength. In turn, 

the phase velocity v, is larger than the infinite space value: 

@ 1 1 1 ee 8.40 Y= hue Ie Vas (8.40) 

V7 Ve 
The phase velocity becomes infinite exactly at cutoff. 

84 Modes in a Rectangular Waveguide 

As an important illustration of the general features described in Section 8.3 we 
consider the propagation of TE waves in a rectangular waveguide with inner 
dimensions a, b, as shown in Fig. 8.5. The wave equation for y = /, is 

2 42 

(3 + ¥ + v) =0 (8.41) 

with boundary conditions éy/dn = 0 at x = 0, a and y = 0, b. The solution for # 
is consequently 

Yanks y) = Ho con(™) cos("22) (8.42) 

where 

(8.43) 

o 

Se Figure 8.5 
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The single index A that specified the modes carlicr is replaced by the two positive 
integers m, n. For there to be nontrivial solutions. 7 and # cannot both be zero, 
The cutoff frequency «,,,, is given by 

nw 
my ) (8.44) 

Ifa > d, the lowest cutoff frequency, that of the dominant TE mode, occurs for 
m=1n=90: 

7 
ow ea (8.45) 

This corresponds to half of a free-space wavelength across the guide. The explicit 

fields for this mode, denoted by TE, », are: 

XY age i 
= Hy cos{ — Je i 

a 

ika und (8.46) 

where k = ky, is given by (8.39) with @, = wo. The presence of a factor iin Hy 
(and £,) means that there is a spatial (or temporal) phase difference of 90° be- 
tween H, (and E,) and H, in the propagation direction. It happens that the TE, o 
mode has the lowest cutoff frequency of both TE and TM modes.* and so is the 
one uscd in most practical situations. For a typical choice a = 2b the ratio of 
cutoff frequencies @,,, for the next few modes to @,, are as follows: 

n 0 1 2 3 
m 

0 2.00 4.00 6.00, 

1 1.00 2.24 4.13 

2 2.00, 2.84 4.48 

3 3.00 3.61 5.00 

4 4.00 448 5.66 

s 5.00 5.39 

6 6.00 

There is a frequency range from cutoff to twice cutoff or to (a/b) times cutoff, 
whichever is smaller. where the TE; 9 mode is the only propagating mode. Bc- 
yond that frequency other modes rapidly begin to enter. The ficld configurations 

*This is evident if we note that for the TM modes £, is of the form 

mis (a=) . (2) 
Ko sini sin — 

a@ b 

while y’ is still given by (8.43). The lowest mode has m = 1 = 1. Its cutoff frequency is greater (han 
that of the TE, mode by the factor {1 + a7/b?)"?. 
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of the TE,, mode and other modes are shown in many books. for example. 
American Institute of Physics Handbook (ed. D. E. Gray, 3rd edition, McGraw- 
Hill, New York (1972). p. 5-54]. 

8.5 Energy Flow and Attenuation in Waveguides 

The general discussion of Section 8.3 for a cylindrical waveguide of arbitrary 
cross-sectional shape can be extended to include the flow of energy along the 
guide and the attenuation of the waves due to losses in the walls having finite 
conductivity. The treatment is restricted to one mode at a time: degenerate modes 

are mentioned only briefly. The flow of energy is described by the complex 

Poynting vector: 

= (E x H*) (8.47) 
whose real part gives the time-averaged flux of energy. For the two types of field 
we find, using (8.31) and (8.33): 

2 
2 IVP + a7 #4] 

s= (8.48) 
of in it ys va 

where the upper (lower) line is for TM (TE) modes, Since # is generally real,* 
we sce that the transverse component of § represents reactive energy flow and 
does not contribute to the time-averaged flux of energy. On the other hand, the 

axial component of § gives the time-averaged flow of energy along the guide. To 
evaluate the total power flow P we integrate the axial component of § over the 
cross-sectional area A: 

P= [,s-2do= 28 {6 if, (Vfi)* © (Vg) da (8.49) 

By means of Green’s first identity (1.34) applied to two dimensions. (8.49) can 
be written: 

pook ah HE ue ae a = i ye Py a (8.50) dy a 

where the first integral is around the curve C. which defines the boundary surface 
of the cylinder. This integral vanishes for both types of field because of boundary 
conditions (8.36). By means of the wave equation (8.34) the second integral may 
be reduced to the normalization integral for ¥. Consequently the transmitted 
power is 

2 12 1 fe B\"fe : , = to(2)(1-3)"[ [vow an 
*it is possible to excite a guide in such a manner that @ given mode or linear combination of modes 
has a complex ¢ Then a time-averaged Uansverse energy flow can occur. Since it is a circulatory 
flow, however, il really represents only stored energy and is not of great practical importance 



364 Chapter 8 Waveguides, Resonant Cavities, and Optical Fibers—SI 

where the upper (lower) line is for TM (TE) modes, and we have exhibited al] 
the frequency dependence explicitly. 

It is straightforward to calculate the field cnergy per unit length of the guide 
in the same way as the power Now. The result is 

2 
U= ; (2) 4 ie wy da (8.52) 

Comparison with the power flow P shows that P and U are proportional. The 
constant of proportionality has the dimensions of velocity (velocity of cnergy 
flow) and is just the group velocity: 

P_KL dey wo 
Sats j1- =u, (8.53) 
U wpe Vue ney o 

as can be verified by a direct calculation of v, = dw/dk from (8. 39). assuming 
that the dielectric filling the guide is nondispersive. We note that v, is always less 
than the velocity of waves in an infinite medium and falls to zero at cutoff. The 
product of phase velocity (8.40) and group velocity is constant: 

geal, é Udy = ae (8.54) 

an immediate consequence of the fact that w Aw « k Ak. 
Our considerations so far have applied to waveguides with perfectly con- 

ducting walls. The axial wave number &, was either real or purcly imaginary. If 
the walls have a finite conductivity, there will be ohmic losses and the power flow 
along the guide will be attenuated. For walls with large conductivity the wave 
number will have small additional real and imaginary parts: 

ky = KO + ay + iB, (8.55) 
where k{” is the value for perfectly conducting walls. The change a, in the real 
part of the wave number is generally unimportant except near cutoff when 
k{ > (). The attenuation constant f, can be found either by solving the bound- 

ary-value problem over again with boundary conditions appropriate for finite 
conductivity, or by calculating the ohmic losses by the methods of Section 8.1 
and using conservation of energy. We will first use the laticr technique. The 
power flow along the guide will be given by 

Plz) = Pye 208 (8.56) 
Thus the attenuation constant is given by 

B= -> > (8.57) 

where —dP/dz is the powcr dissipated in ohmic losses per unit length of the guide. 
According to the results of Section 8.1, this power loss is 

p 
-¢- a In x A? di (8.58) 
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where the integral is around the boundary of the guide. With ficlds (8.31) and 
(8.33) it is casy to show thal for a given mode: 

1 2 

ap (2) § Had 
dz 208\w,/ Je} 1 we we 

sans ( - “yin x Vu + Oo oP 
EW 

ayy 
an 

dl (8.59) 

where again the upper (lower) line applics to TM (TE) modes. 
Since the transverse derivatives of y are determined entirely by the size and 

shape of the waveguide, the frequency dependence of the power loss is explicitly 
exhibited in (8.59). In fact, the integrals in (8.59) may be simply estimated from 

the fact that for cach mode: 

(V2 + pew?) = 0 (8.60) 

This means that, in some average sense, and barring exceptional circumstances, 
the transverse derivatives of y must be of the order of magnitude of View, 

(2 
an 

Consequently, the line integrals in (8.59) can be related to the normalization 
integral of |p|? over the area. For example, 

2 |e 
© OK an 

where C is the circumference and A is the area of cross section, while & is a 
dimensionicss number of the order of unity. Without further knowledge of the 
shape of the guide we can obtain the order of magnitude of the attenuation 
constant B, and exhibit completely its frequency dependence. Thus, using (8.59) 
with (8.62) and (8.51), plus the frequency dependence of the skin depth (8.8), we 

find 

2 
) ~ ([n x Vip?) ~ wees H?) (8.61) 

a 
= React 2. dl = &ue™ i. |wl? da (8.62) 

a (5) wy \" 
By, = Vp 0, (S) (: : ay" [é + n(%2) | (8.63) 

where o is the conductivity (assumed independent of frequency), 6, is the skin 
depth at the cutoff frequency, and é,, 7, are dimensionless numbers of the order 

of unity. For TM modes, , = 0. 
For a given cross-sectional geometry it is a straightforward matter to calcu- 

late the dimensionless parameters €, and y, in (8.63). For the TE modes with 

n = 0 in a rectangular guide, the values are &,9 = aa + b) and 0 = 
2bi(a + b). For reasonable relative dimensions, these parameters are of order 

unity, as expected. 
The general behavior of f, as a function of frequency is shown in Fig. 8.6. 

Minimum attenuation occurs at a frequency well above cutoff. For TE modes 
the relative magnitudes of & and », depend on the shape of the guide and on a. 
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I 

as | TE 

I | Figure 8.6 Attcnuation constant B, 

ty as a function of frequency for 
1 oe typical TE and TM modes. For TM 
i i L 1 L modes the minimum attenuation 

t) 1 2 3 4 5 occurs at w/w, = V3, regardless of 
cross-sectional shape. 

Consequently no general statement can be made about the exact frequency for 
minimum attenuation. But for TM modes the minimum always occurs at @yin = 

V3e,. At high frequencies the attenuation increases as w!?. In the microwave 
region typical attenuation constants for copper guides are of the order 

By ~ 10~4,/c. giving Le distances of 200-400 meters. 
The approximations employed in obtaining (8.63) break down close to cutoff. 

Evidence for this is the physically impossible, infinite valuc of (8.63) al @ = w,, 

8.6 Perturbation of Boundary Conditions 

The use of energy conservation to determine the attenuation constant , is direct 

and has intuitive appeal, but gives physically meaningless results at cutoff and 

fails to yield a value for a,, the change in the real part of the wave number. Both 
these defects can be remedied by use of the technique called perturbation of 

boundary conditions. This method is capable, at least in principle, of obtaining 

answers to any desired degree of accuracy, although we shall apply it only to the 

lowest order. It also permits the treatment of attenuation for degencrate modes, 

mentioned briefly at the end of this section and in Problem 8.13. The effect of 

smail distortions of cross section can also be treated. See Problem 8.12. 

For definiteness we consider a single TM mode with no other mode (TE or 

TM) degenerate or nearly degenerate with it. The argument for an isolated TE 

mode is similar. To reduce the number of sub- and superscripts, we denote the 

(unperturbed) solution for perfectly conducting walls by a subscript zero and the 
(perturbed) solution for walls of finite conductivity by no sub- or superscript. 

Thus the unperturbed problem has a longitudinal electric field E. = yy, where 

(V2 + yo = 0, — Yols = 0 (8.64) 

and ¥f is real. For finite, but large, conductivity, E. = # is not zero on the walls, 
but is given by (8.11). To lowest order, the right-hand side of (8.11) is approxi- 
mated by the unperturbed fields. By usc of the first equation in (8.23) and (8.33), 
the perturbed boundary condition on y can be expressed as 

a pte 5 ws =f 50 u (8.65) 
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where the smail compicx parameter f is* 

BS fw ° “(2 os 
Here yw, and yt are the magnetic permeabilities of the conducting walls and the 
medium in the guide, respectively, 6 is the skin depth (8.8), and w is the cutoff 
frequency of the unperturbed mode. The perturbed problem, equivalent to 

(8.64), is thus 

f= 

obo 
an H+ Y= 0 als (8.67) 

s 

ff only the cigenvalue y’ is desired, Green's theorem (1.35) in two dimensions 

can be employed: 

2y — yw s a6 _ 4 f [b Vy — w V2b] da ¢ [o% os. | al 

where the right-hand side has an inwardly directed normal [out of the conductor, 
in conformity with (8.11) and (8.65)]. With the identifications, y = y and @ = 

wi. and use of the wave equations (8.64) and (8.67), and their boundary condi- 

tions, the statement of Green's theorem becomes 

(vf otwda = 54 | am (8.68) 

Since f is assumed to be a small parameter, it is normally consistent to approx- 
imate yin the integral on the left by its unperturbed value yo. This leads to the 
fina] result, 

[ey © | an 

* = 0% = gS (869) 
do? da 

From (8.51) and (8.59) of the preceding section onc finds that the ratio of integrals 

on the right-hand side of (8.69) enters a previous result, namely, 

t ar 2 s/o © | én 
ago = MeO lO) NU 2KB, = (<) ; (8.70) 

,, Wel? da 

where 8 is defined by (8.57) and (8.63). This means that (8.69) can be written 
as 

= KO + 2 + KO BO (8.71) 

a result that holds for both TM and TE modes, with the appropriate B“ from 
Section 8.5. For k >> g, (8.71) reduccs to the former expression (8.55) with 

‘More generally. f can be expressed in terms of the surface impedance Z, as f = (faluoi)Z.. 
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a = B. At cutoff and below, however. where the carlier results failed, (8.71) yields 
sensible results because the combination kB is finite and well behaved in the 
neighborhood of kK“ = 0. The transition from a propagating mode to a cutoff 
mode is cvidently not a sharp one if the walls are less than perfect conductors, 
but the attenuation is sufficiently large immediately above and below the cutoff 
frequency that little error is made in assuming a sharp cutoff. 

The discussion of attenuation here and in the preceding section is restricted 
to onc mode at a time. For nondegencrate modes with not too great losses this 
approximation is adequate. If. however, it happens that a TM and a TE mode 
are degenerate (as occurs in the rectangular waveguide for n # 0, m # 0), then 

any perturbation, no matter how small, can cause sizable mixing of the two 
modes. The methods used so far fail in such circumstances. The breakdown of 
the present method occurs in the perturbed boundary condition (8.65), where 
there is now on the right-hand side a term involving the tangential derivative of 
the unperturbed H-., as well as the normal derivative of E.. And there is, of 
course, a corresponding perturbed boundary condition for H_ involving both 
unperturbed longitudinal fields. The problem is one of degencrate-state pertur- 
bation theory, most familiar in the context of quantum mechanics. The perturbed 
modes are orthogonal linear combinations of the unperturbed TM and TE 
modes, and the attenuation constants for the two modes have the characteristic 
expression, 

B= 3(Brm + Bu) * 3V Br — Bre” + 4 TKI (8.72) 

where Bry and 8), are the values found above, and K is a coupling parameter, 
The effeets of attenuation and distortion for degenerate modes using per- 

turbation of boundary conditions are addressed in Problem 8.13. See also Collin. 

8.7 Resonant Cavities 

Although an clectromagnetic cavity resonator can be of any shape whatsoever, 
an important class of cavities is produced by placing end faces on a length of 
cylindrical waveguide. We assume that the end surfaces are plane and perpen- 
dicular to the axis of the cylinder. As usual, the walls of the cavity are taken to 
have infinite conductivity, while the cavity is filled with a lossless diclectric with 
constants gz, €. Because of reficctions at the end surfaces, the z dependence of 
the ficlds is that appropriate to standing waves: 

A sinkz + B coskz 

ff the plane boundary surfaces are at z = O and z = d, the boundary conditions 
can be satisfied at cach surface only if 

k=ps (p =0,1,2...) (8.73) 

For TM ficlds the vanishing of E, at z = 0 and z = d requires 

E = ute y} oos(22) (p =9.1,2,...) (8.74) 
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Similarly for TE ficlds, the vanishing of /7, at z = 0 and z = d requires 

H. = dx. y) sin( 222) (p = 1,23...) (8.75) 

Then from (8.31) and (8.33) we find the transverse fields: 

TM FIELDS 

pr . {prz 
E, = sin Zn(@7) va (8.76) 

baz) ax Wy 
d 

TE FIELDS 

iop puz\ . 
E, = ~— sinj —~} zx V, 

‘ ( d ) % (8.77) 
TZ 

The boundary conditions at the ends of the cavity are now explicitly satisticd. 
There remains the cigenvalue problem (8.34)-(8.36), as before. But now the 

constant ? is: 

Y = pew - (4) (8.78) 

For cach valuc of p the cigenvalue yj determines an cigenfrequency w,): 

ase} om 
and the corresponding ficlds of that resonant mode. The resonance frequencies 
form a discrete set that can be determined graphically on the figure of axial wave 
number & versus frequency in a waveguide (sec Fig. 8.4) by demanding that k = 
paid. It is usually expedient to choose the various dimensions of the cavily so 

that the resonant frequency of operation lies well separated from other resonant 
frequencies. Then the cavity will be relatively stable in operation and insensitive 
to perturbing effects associated with frequency drifts, changes in loading, etc. 

An important practical resonant cavity is the right circular cylinder, perhaps 
with a piston to allow tuning by varying the height. The cylinder is shown in Fig. 
8.7, with i nr Ele Rand length d. For a TM mode the transverse wave equa- 
tion for & = E., subject to the boundary condition E. = 0 at p = R, has the 

solution: 

W(p, 6) = Edn Younpye"* (8.80) 

where 
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Figure 8.7 

X, is the ath root of the equation, J,,(%) = 0. These roots were given carlier, 

following Eq. (3.92). The integers m and n take on the values m = 0, 1,2,..., 
andn = 1, 2.3,.... The resonance frequencies are given by 

= fim, it (881) Qrnp Vas \ R z . 

The lowest TM mode has m = 0,n = 1, p = 0, and so is designated TMg, y. 
Its resonance frequency is 

_ 2.405 
Mo VueR 

The explicit expressions for the fields are 

2.405, 
Fl = Ents 24922 erm 

fe 2.405, (88) Hy= =i on (29) 7 

The resonant frequency for this mode is independent of d. Consequently simple 
tuning is impossible. 

For TE modes, the basic solution (8.80) still applies. but the boundary con- 
dition on H.[(aw/ap) |x = 0| makes 

_ Xia 
Youn = R 

where x,,,, is the nth root of J,,(c) = 0. These roots, for a few valucs of mt and 
n, are tabulated below (for m # 1, x = Ois a trivial root): 

Roots of J,,(x) = 0 

Xin = 3.832, 7.016, 10.173, ... 

1, = 1.841, 5.331, 8.536.... 

X3y, = 3.054, 6.706, 9.970, . 

X3, = 4.201, 8.615, 11.336, ... 



Sect. 8.8 Power Losses in a Cavity; Q of a Cavity 371 

The resonance frequencies are given by 

1 (x2, pea? uz 
=e [SE + 8.83 une — Fine ( RR) @ ) (8.83) 

where m = 0,1, 2,.... but, p = 1, 2, 3,.... The lowest TE mode has m = 

n = p = 1, and is denoted TE, , ). Its resonance frequency is 
aii 2\ 2 

=, [1+ 2912-5 8.84 an = HE (1 +2908) i 
while the fields are derivable from 

1.841 : w= H.= Hah _ 2) cox sin( Je jen (8.85) 

by means of (8.77). For d large enough (d > 2.03R), the resonance frequency 

@), is smaller than that for the lowest TM mode. Then the TE, mode is the 

fundamental oscillation of the cavity. Because the frequency depends on the ratio 

diR it is possible to provide easy tuning by making the separation of the end 
faces adjustable. 

Variational methods can be exploited to estimate the lowest resonant fre- 
quencies of cavities. A variational principle and some examples are presented in 
the problems {Problems 8.9-8.11). 

8.8 Power Losses in a Cavity; Q of a Cavity 

In the preceding section it was found that resonant cavities have discrete fre- 
quencies of oscillation with a definite field configuration for each resonance fre- 
quency. This implies that, if one were attempting to excite a particular mode of 
oscillation in a cavity by some means, no fields of the right sort could be built up 
unless the exciting frequency were exactly equal to the chosen resonance fre- 
quency. In actual fact there will not be a delta function singularity, but rather a 
narrow band of frequencies around the eigenfrequency over which appreciable 
excitation can occur. An important source of this smearing out of the sharp fre- 
quency of oscillation is the dissipation of energy in the cavity walls and perhaps 
in the dielectric filling the cavity. A measure of the sharpness of response of the 
cavity to external excitation is the Q of the cavity, defined as 27 times the ratio 
of the time-averaged energy stored in the cavity to the energy loss per cycle: 

Stored energy 

Power loss (688) Q=a% 

Here wy is the resonance frequency, assuming no losses. By conservation of en- 
ergy the power dissipated in ohmic losses is the negative of the time rate of 
change of stored energy U. Thus from (8.86) we can write an equation for the 
behavior of U as a function of time: 

du WW _ wy 
dt Q 

with solution (8.87) 

UW) = Use 2 
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If an initial amount of energy U is stored in the cavity, it decays away exponen- 
tially with a decay constant inversely proportional to Q@. The time dependence 
in (8.87) implies that the oscillations of the ficlds in the cavity are damped as 
follows: 

E(t) = Eye (8 20¢ Heat dar (8.88) 

where we have allowed for a shift Aw of the resonant frequency as well as the 
damping. A damped oscillation such as this has not a pure frequency, but a 
superposition of frequencies around @ = w) + Aw. Thus, 

E() = oe a E(w)e"*" deo 

where (8.89) 
“ = 7 ‘ig eAt?2Q tw oxy Awad He) = xm J Ewe i omy Sede ay 

The integral in (8.89) is elementary and leads to a frequency distribution for the 
energy in the cavity having a resonant line shape: 

tie I 
LO =a Boy? + (a/20" 

The resonance shape (8.90), shown in Fig. 8.8, has a full width P at half-maximum 
(confusingly called the half-width) equal to w/Q. For a constant input voltage, 
the energy of oscillation in the cavity as a function of frequency will follow the 
resonazice curve in the ncighborhood of a particular resonant frequency. Thus, 
the frequency separation dw between half-power points determines the width 
and the Q of cavity is 

(8.90) 

@y _ W g-#-% (8.91) 
Q values of several hundreds or thousands are common for microwave cavities. 

To determine the Q of a cavity we can calculate the time-averaged energy 
stored in it and then determine the power loss in the walls. The computations 
are very similar to those done in Section 8.5 for attenuation in waveguides. We 
consider here only the cylindrical cavities of Section 8.7, assuming no degener- 

Figure 88 Resonance linc shape. The 
full width T at half-maximum (of the 

power) is equal to the unperturbed 
frequency wy divided by the Q of the 
cavity. 
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acies. The energy stored in the cavity for the mode A, p is, according to (8.74)— 

(8.77): 

_dje pT . 
uU= a ff: + (=) | I, jaf? da (8.92) 

where the upper (lower) line applies to TM (TE) modes. For the TM modes with 

p = 0 the result must be multiplied by 2. 
The power loss can be calculated by a modification of (8.58): 

i a 
Poss = (f aif dz \n X His, + 2 da |n x Hh | (8.93) 

208 [Je Jn A 

For I'M modes with p # 0 it is casy to show that 
2 

ie pT Cd 
Press = wn [! + 3) | + Ew cf) [, Jul? da (8.94) 

where the dimensionless number é, is the same one that appears in (8.62), C is 

the circumference of the cavity, and A is its cross-sectional areca. For p = 0, & 
must be replaced by 2,. Combining (8.92) and (8.94) according to (8.86), and 
using definition (8.8) for the skin depth 6, we find the Q of the cavity: 

td 
{1 +& <4) 

where 4, is the permeability of the metal walls of the cavity. For p = 0 modes, 
(8.95) must be multiplied by 2 and &, replaced by 2é,. This expression for Q has 
an intuitive physical interpretation when written in the form: 

(8.95) 

Qz=- #(z) x (Geometrical factor) (8.96) 

where V is the volume of the cavity, and S its total surface arca. The Q of a cavity 
is evidently, apart from a geometrical factor, the ratio of the volume occupied 
by the fields to the volume of the conductor into which the fields penetrate be- 
cause of the finite conductivity. For the TE, ,, mode in the right circular cylinder 

cavity, calculation yields a gcometrical factor 

( + 0.343 ol 
= ———— or 8.97 

( x) ( d a se70) 
1 + 0.209) + 0.244 =) 

that varies from unity for d/R = 0 to a maximum of 2.13 at d/K = 1.91 and then 

decreases to 1.42 as d/R > ~. 
Expression (8.96) for Q applies not only to cylindrical cavities but also to 

cavities of arbitrary shape, with an appropriate geometrical factor of the order 

of unity. 
‘The use of conservation of energy to discuss losses in a cavity has the same 

advantages and disadvantages as for waveguides. The Q values can be calculated, 
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but possible shifts in frequency lic outside the scope of the method. The technique 
of perturbation of boundary conditions, described in Section 8.6, again removes 
these deficiencics. In fact the analogy is so close to the waveguide situation that 
the answers can be deduced without performing the calculation explicitly. The 
unperturbed problem of the resonant frequencies of a cavity with perfectly con. 
ducting walls is specified by (8.64) or its equivalent for TE modes. Similarly, the 
perturbed problem involves solution of (8.67) or equivalent. A result equivalent 
to (8.69) evidently emerges. The difference (yp — y’) is proportional to (@} — «”) 
where now wy is the unperturbed resonant frequency rather than the cutoff fre- 
quency of the waveguide and » is the perturbed resonant frequency. Thus the 
analog of (8.69) takes the form, 

aw - wo =(1 + it (8.98) 

where / is the ratio of appropriate integrals. In the limit of / > 0, the imaginary 
part of w is —i//2w 9. From (8.88) this is to be identified with —/wp/2Q, and there- 
fore J = w/Q. Equation (8.98) can thus be written 

aed 
w= ait - ral (8.99) 

where Q is the quantity defined by (8.86) and (8.92), (8.93). Damping is scen to 
cause cqual modifications to the real and imaginary parts of w”. For large Q 
values, the change in the resonant frequency, rather than its square, is 

Ao = Imo =~ 
20 

The resonant frequency is always lowered by the presence of resistive losses, The 
near equality of the real and imaginary parts of the change in ” is a consequence 
of the boundary condition (8.11) appropriate for relatively good conductors. For 
very lossy systems or boundaries with different surface impedances, the relative 
magnitude of the real and imaginary parts of the change in w* can be different 
from that given by (8.99). 

In this section, as in Section 8.6, the discussion has been confined to non- 
degenerate modes. Generalization to degenerate modes is treated in Problem 
8.13. 

8.9 Earth and Ionosphere as a Resonant Cavity: 
Schumann Resonances 

A somewhat unusual example of a resonant cavity is provided by the earth itself 
as one boundary surface and the ionosphere as the other. ‘The lowest resonant 
modgs of such a system are evidently of very low frequency, since the character- 
istic wavelength must be of the order of magnitude of the earth’s radius. In such 
circumstances the ionosphere and the earth both appear as conductors with real 
conductivities. Seawater has a conductivity of ¢ ~ 0.1 Q 'm~), while the iono- 
sphere has o ~ 1077-10~* O-' m '. The wails of the cavity arc thus far from 
perfectly conducting, especially the outer one. Nevertheless, we idcalize the phys- 
ical reality and consider as a model two perfectly conducting, concentric spheres 



Sect. 8.9 Earth and Ionosphere as a Resonant Cavity: Schumann Resonances 375 

with radii a and 6 = a + A, where a is the radius of the earth (a = 6400 km) and 

his the height of the ionosphere above the earth (4 ~ 100 km). Furthermore, if 

we are concerned with only the lowest frequencies, we can focus our attention 

on the TM modes, with only tangential magnetic fields.* The reason for this is 

that the TM modes, with a radially directed electric field, can satisfy the boundary 

condition of vanishing tangential electric field at r = a and r without appre- 

ciable radial variation of the fields. On the other hand, the TE modes, with only 

tangential clectric fields, must have a radial variation of approximately half a 

wavelength between r = a and r = b. The lowest frequencies for the TE mades, 

are thercfore of the order of wy, ~ mc/h, whereas for the lowest TM modes 

wy ~ cla. 

The general problem of modes in a spherical geometry is involved enough 

that we leave it to Chapter 9. Here we consider only TM modes and assume that 

the fields are independent of the azimuthal angle @. The last is no real restriction; 

it is known from consideration of spherical harmonics that the relevant quantity 

is /, not m. If the radial component of B vanishes and the other components do 

not depend on 4, the vanishing of the divergence of B requires that only B, is 

nonvanishing if the fields are finite at @ = 0. Faraday’s law then requires E,, = 

0. Thus the homogeneous Maxwell equations specify that ‘TM modes with no ¢ 

dependence involve only E,, Ey, and By. The two curl] equations of Maxwell can 

be combined, after assuming a time-dependence of e~", into 

2 
SB-VKVxB=0 (8.100) 

where the relative permeabilities of the medium between the spheres are taken 

as unity. The & reas of (8.100) is 

@ af SB.) +S (ry) + + 5B [2S eine ra.) =o (8.101) 

The angular part of (8.101) can be transformed into 

® (sin @rBy i] = al 8 (sin 222) _ Ba 
sin 9 a0 06 sin"? 

a 

a6 | sin 606 

showing, upon comparison with (3.6) or (3.9), that the @ dependence is given by 

the associated Legendre polynomials P/"(cos 4) with m — +1. It is natural there- 

fore to write a product solution, 

Ba(r, 0) = “8 me Pi(cos 4) (8.102) 

Substitution into (8.101) yiclds as the differential equation for u(r). 

Puke) [s- + Yur y= 0 (8.103) 
re dr? 2 

with / = 1, 2.... defining the angular dependence of the modes. 

The characteristic frequencies emerge from (8.103) when the boundary con- 

"For a spherical geometry the notation TE (TM) indicates the absence of rudial clectric (magnetic) 
field components, 
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ditions appropriate for perfectly conducting walls at r = a and r = b are imposed, 
The radial and tangential electric fields are 

ee 
wr sin @ 36 

(sin @B,) = —= d+ 1) aa P(cos @) 

See: _ ic? aur) 
Ey = — 75, (rBa) = —— = Pi(cos 8) 

The vanishing of Ey at r = a and r = b implies that the boundary condition for 
u(r) is 

dur) _ 
adr 0 forr=a and r=b (8.104) 

‘The solutions of (8.103) are r times the spherical Bessel functions (see Section 
9.6). The boundary conditions (8.104) lead to transcendental equations for the 
characteristic frequencies. An example is left as a problem; for our present pur- 
poses a limiting case suffices. The height A of the ionosphere is sufficiently small 
compared to the radius a that the limit A/a << 1 can be assumed. The i(/ + ir? 
term in (8.103) can be approximated by its value at r = a. The solutions of (8.103) 
are then sin(gr) and cos(qr), where q° is given by the square bracket in (8.103) 
evaluated at r = a. With the boundary conditions (8.104), the solution is 

ur) = A cos [g(r — a)] 

where gh = n7,n = 0,1,2,.... Form = 1,2,... the frequencies of the modes 
are evidently larger than w = nac/h and are in the domain of frequencies of the 
‘TE modes, Only for n = 0 are there very-low-frequency modes. The condition 
q = 0 is equivalent to u(r) = constant and 

oy, ~ VIF He (8.105) 

where the equality is exact in the limit A/a > 0. The exact solution shows that to 
first order in A/a the correct result has a replaced by (a + 3h). The fields are 
Fy = 0, PE, & PXcos 8), rBy © P}(cos 8). 

The resonant frequencies (8.105) are called Schumann resonances." They are 
extremely low frequencies: with a = 6400 km, the first five resonant frequencies 
are w,/27 = 10.6, 18,3, 25.8, 33.4, 40.9 Hz. Schumann resonances manifest them- 
selves as peaks in the noise power spectrum of extremely low frequencies prop- 
agating around the earth. Lightning bolts, containing a wide spectrum of fre- 
quencies, act as sources of radial clectric fields. The frequency components near 
the Schumann resonances are propagated preferentially because they are normal 
modes of the earth-ionosphere cavity. The first definitive observations of these 
peaks in the noise power spectrum were made in 1960," although there is evidence 
that Nikola Tesla may have observed them before 1900.7 A typical noise power 

*W. O. Schumann, Z. Naturforsch. 72. 149, 250 (1952). 
'M. Balser and C. A. Wagner, Nature 188, 638 (1960). 
‘in U.S, patent 787,412 (April 18, 1905), reprinted in Nikola Testa, Lectures and Patents and Artis 
Nikola Testa Muscum, Beograd, Yugostavia (1956). this remarkable genius clearly outlines the ide: 
of the earth as a resonating circuit (he did not know of the ionosphere), estimates the lowe 
frequency as 6 Hz (close to the 6.6 Hz for a perfectly conducting sphere), and describes ge 
and detection of these low-frequency waves. I thank V. L. Fitch for this fascinating piece of history. 
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Figure 8.9 Typical noise power spectrum at low frequencies (integrated over 30 s), 
observed at Lavangsdalen, Norway on June 19, 1965. The prominent Schumann 
resonances at 8, 14, 20, and 26 Hz, plus peaks at 32, 37. and 43 Hz as well as smaller 
structure are visible. [After A. Egeland and T. R. Larsen. Phys. Norv, 2, 85 (1967), 

spectrum is shown in Fig. 8.9. The resonances are clearly visible. They shift 
slightly and change shape from day to day, but have average linear frequencies 
of 8, 14, 20, 26, 32, 37, and 43 Hz for the first seven peaks, These frequencies 
are given quite closely by 5.8Vi(/ + 1) Hz, the coefficient being 0.78 times 
c/2mu(= 7.46 Hz). The lack of precise agreement is not surprising, since, as al- 
ready noted, the assumption of perfectly conducting walls is rather far from the 
truth. The Q values are estimated to be of the order of 4 to 10 for the first few 

resonances, corresponding to rather heavy damping. The effect of the damping 
on a resonant frequency is in the right direction to account for the differences 
between the observed values and (8.105), but the simple shift implied by (8.99) 
is only about half of what is observed. The Vi{/ + 1) variation of the resonant 

frequencies is, however, quite striking. 
The simple picture of a resonant cavity with well-defined, but lossy, walls 

accounts for the main features of the Schumann resonances, although failing in 
some quantitative aspects. More realistic and detailed models and discussion of 
the observations can be found in a review by Galejs.* as well as his monograph, 
Galejs. The use of waveguide and resonant cavity concepts in the treatment of 
propagation of electromagactic waves around the earth is discussed in the books 
by Budden and Wait listed at the end of this chapter. Two curiositics may be 

*J. Galejs, J. Res. Nat. Bur. Stand. (U.S.} 69D, 1043 {1965}. Sce also T. Madden and W. Thompson, 

Rev, Geophys. 3, 211 (1965) and F. W. Chapman. D. L. Jones. J. D. W. Todd, and R. A. Challinor, 

Radio Sci. 1, 1273 (1966). 
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permitted here. On July 9. 1962, a nuclear explosion was detonated at high alti. 
tude over Johnston Island in the Pacific. One consequence of this test was to 
create observable alterations in the ionosphere and radiation belts on a world. 
wide scale. Sudden decreases of 3-5% in Schumann resonant frequencies were 
observed in France and at other stations immediately after the explosion, the 
changes decaying away over a period of several hours. This is documented in 
Fig. 17 of the paper by Galejs. 

The second curiosity is the proposal* that Schumann resonances can serve 
as “a global tropical thermometer.” The average magnetic ficid intensity of the 
fundamental Schumann resonance is expected to be strongly dependent on the 
frequency of lightning strikes around the world (which are sccn from satellite 
observations to peak strongly in the tropics, +23° latitude). The frequency of 
lightning strikes at a number of sites in the tropics is known to be dramatically 
correlated to the average temperature. This lightning-temperature relation pro- 
vides the physical understanding of the remarkably close correlation of 
Schumann resonance monthly mean magnetic field strength and monthly mean 
surface temperature observed at Kingston, Rhode Island, over a 5.5-year period 
and suggests that the Schumann resonances can serve as a global thermometer! 

8.10 Multimode Propagation in Optical Fibers 

Optical fibers lie at the heart of high-speed, high-capacity telecommunications. 
Visible or infrared light, modulated with the signal, is transmitted with little loss 
through small silica fibers. The very great frequency of the carricr light means 
that very large bandwidths are available for the signals. The technology has ad- 
vanced rapidly in the past 25 years; a voluminous technical literature continues 
to grow. We can discuss only some of the basic principles. ‘The reader wishing 
more can consult the references given at the end of the chapter. 

Transmission via optical fibers falls approximately into two classes—multi- 
mode or single-mode propagation. “Cores” (the region where most of the energy 
flow is located) are typically 50 ym in diameter for multimode propagation, com- 
pared to a wavelength of the order of 1 zm, while 5 jam diameters are typical of 
single-mode fibers. We first consider multimode transmission for which the se- 
migeometrical cikonal or WKB approximation is appropriate. Single-mode prop- 
agation is best described in waveguide terms. These concepts are treated in the 
following section. 

Optical fiber cables, of the order of 2 cm in diameter, are actually nests of 
smaller cables cach containing six or eight optical fibers protected by secondary 
coatings and buffer layers. The operative fiber consists of a cylindrical core of 
radius a [2a = O(50 wm)] and index of refraction n,. surrounded by a cladding 
of outer radius b (2b = O(150 ym)] and index of refraction ny < m,, as shown in 
Fig. 8.102. Since the wavelength of the light is O(1 wm), the ideas of geometrical 
optics apply; the interface between core and cladding can be treated as locally 
flat. If the angle of incidence / of a ray originating within the core is greater than 
iy, where iy = sin7 (n/m) is the critical angle for total internal reficction, the ray 
will continue to be confined—it will propagate—as shown in Fig. 8.10 and 8.10¢. 

“f.. R. Williams, Science 256, 1184-1187 (1992). 
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Figure 8.10 Optical fiber core and cladding, with inner cylinder of index of refraction 

ny and cladding of index no (1, > Mo): (a) cross section of fiber, {b) longitudinal 

section, showing « total internally reficcted ray; (c) longitudinal section of the core, 

showing meridional propagating rays with complementary angles of incidence 

0< nix = COS” (noi), the critical angle for total internal reflection. 

It is convenient to use the complementary angle of incidence #, measured from 

the cylinder axis. Propagation occurs for rays with 6 < Aya, = COS” '(ng/iny). It is 

also convenient to use the parameter 

(8.106) 
ny 

Typical operation has A S 1%. Then Onax © V2A = 0.14 radian (8 degrees). 

The system is, of course, a waveguide with discrete modes, as discussed in 

Section 8.11, Simple phase-space arguments allow us to estimate the number of 

propagating modes. The transverse wave number k, ~ k@ is limited because 

4 < @ nay. TWO-dimensional phase-space number density dN is 

dN = ma? Gar 

where the first factor is the spatial area, the second the wave-number volume 

element, and the factor 2 is for two states of polarization. With a?k = 27k, dk, = 

2k" 4 dO, we have 
4, 

N~ ak? [ * 9 de ~ MkaV2A)? = $V? (8.107) 
0 

Here V = kaV28, called the fiber parameter in the literature. Typical numbers 

are A = 0.85 pm, a = 25 um. n, ~ 1.4 (ka ~ 260), and A = 0.005, Jeading to 

N = 335. In contrast, single-mode propagation has a = O(2.7 pm) and A = 

O(0.0025). Then N = O(2), one for each state of polarization. Such a phase-space 

estimate is, of course, is only qualitative. 

A core with a single coating is the simpiest configuration, but multilayer 

geometries are possible. Consideration of Snell's law at successive interfaces 



380 Chapter 8 Waveguides, Resonant Cavities, and Optical Fibers—SI 

shows that if the indices of refraction decrease from layer to layer out from the 
center, a ray leaving the axis at some angie is bent successively more toward the 
axis until it is totally reflected. In fact, for an arbitrary number of layers outside 
the core, the critical angle @pay = COS" (Poures/M just as for the simple two- 
index fiber. The limit of many layers is a “graded” index fiber in which the index 
of refraction varies continuously with radius from the axis. Grading addresses 
the problem of distortion caused by different optical path lengths for different 
angles of launch, as we discuss below. 

For multimode propagation. especially in graded fibers, the quasi-gcomet- 
rical description called the cikonal approximation is appropriate. We assume that 
the medium of propagation is a linear, nonconducting, nonmagnetic material with 
an index of refraction n(x) = Ve(x)/é, that varies in space slowly on the scale of 
the local wavelength of the wave. With fields varying in time ase “”, the Maxwell 
equations for E and H can be combined to give Helmholtz wave equations of 
the form 

WE + powe(x)E + v(t E- ve) =0 
€ (8.108) 

WH + pow'e(x)H — iw(Ve) x E = 0 

‘The assumption that e(x) changes little over a wavelength allows us to drop the 
terms involving the gradient of € as the next order of smallness. ‘Then the com- 
ponents of the electric and magnetic fields satisfy 

wi 

[e + a weap = (8.109) 

Locally, the basic solutions are “plane” waves: that is, there is a local wave num- 
ber [A(x)| = wn(x)/c. It is suggestive to write, without approximation to (8.109) 
as yet, 

ay = elesonve (8.110) 

where the function S(x) is called the eikonal. Insertion of (8.110) into (8.109) 
leads to an equation for S, 

2 
S (n(x) — VS- VS] +12 V5 =0 
c c 

Consistent with the hypothesis of slow variation of n(x) on the scale of a wave- 
icngih (and thus small change in S on the same scale), we neglect the last term 
as higher order. We then have the eikonal approximation of quasi-geomcetrical 
optics, 

VS - VS = n°(x) (8.111) 

To interpret the cikonal S and connect it to geometric ray tracing, we first 
consider the expansion of S(x) in a Taylor series around some point x): 

S(x) = SO) + (4 — Xq) + VSG) + +> 
The wave amplitude #is then 

wx) = cxpiasteaenp — x) + sea) 
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The form of eis that of a plane wave with wave vector k(x) = @VS(xa)/ic = 

nxp)wk(Xo/e. where K (xo) is a unit vector in the direction of VS(x,). In general 

we define k(x) by 

= n{x)k(x) (8.112) 

The amplitude w(x) describes a wave front that is jocally planc and is propagating 
in the direction defined by K(x). If we imagine advancing incrementally in the 

direction of k, we trace out a path that is the geometrical ray associated with the 
wave. Figure 8,1 la sketches such a path. If the distance along the path is labeled 
by the variable s, the incremental change Ar has associated with it an incremental 

distance As along the path. In the limit of vanishing increments, the ratio Ar/As 
becomes dr/ds = k. We therefore can write a result equivalent to (8.112) to 

describe the optical ray path r(s), 

n(x) =VvS (8.113) 

Consider now the change in the left-hand side with s along the path, 

d dr d dS 
a [ns *| =i W=V ds 

But d/ds = K+ V, so that, from (8.112), dSids = kK -Rn(r) = n{r). We thus obtain 

an equation relating the coordinate r(s) along the ray to the gradient of the index 

of refraction, a generalization of Snell's law, 

4 [10 | = Vni(r) (8.114) 

Rays in a circular fiber fall into two classes: 

1. Meridionat rays: rays that pass through the cylinder axis: they correspond 

to modes with vanishing azimuthal index »: and nonvanishing intcasity at 
p= 0. 

2. Skew rays: rays that originate off-axis and whose path is a spiral in space with 

inner and outer turning points in radius; they correspond to modes with non- 

vanishing azimuthal index m and vanishing intensity at p = 0. 

kz. x), 

atx) f 
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Figure 8.11 (a) Path of wave front defined by ray unit vector k. (b) Propagation in the 
z direction with index of refraction graded in the x direction. 
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For simplicity. we apply (8.114) only to the transmission of meridional rays in aa 
optical fiber, or equivalently to rays in a “slab” geometry. Let the propagation 
of radiation be in the x-z plane, generally in the z direction with an index of 
refraction that is “graded” in the x direction, i.c., n = n(x), as indicated in Fig. 
8.115. Suppose that a ray leaves the origin at an angle 6(0) with Tespect to the z 
axis, as shown, A distance s along the ray (at the point P) the unit vector k makes 
an angle @(x) with the z axis. Note that we write @(x), not @(x, z), because the 
coordinate x of the point P on the ray determines the value of z, modulo multiple 
values if the ray bends back toward the z axis. In terms of (x), the derivatives 
in (8.114) are dx/ds = sin @(x) and dz/ds = cos @(x). Then the vector equation 
(8.114) has as its two components, 

da(x) d 
pore and a (n(x) cos @{x)] = 0 

d & sin @(x)) = a [A(a) sin (x) 

The second equation has as its integral, n(x) cos @(x) = n(0) cos (0). If n(x) is 
a monotonically decreasing function of |x], for any given @(0) there is a maximum 
{and a minimum) value of x attained by the ray, namely, when cos @(Xmax) = 1. 
The index of refraction at |x| = Xray iS 

A = (Xm) = n(0) cosfa(O)] (8.115) 
The parameter 7 is a characteristic of a given ray or trajectory (specified by 0(0)]. 
From n(x) we can deduce X,y4, and so delimit the lateral extent of that trajectory, 

To find the actual path x(z) or z(x) of the ray we must return to the equations 
for x and z in terms of s. The first integral of the z component of (8.114) is, as 
we have just seen, n(dz/ds) This means that we can replace d/ds in the x 
component of (8.114) by d/ds = (vi/n)d/dz. The equation then reads 

4 (nH) 
n{x) dz dz dx 

or 

@x_id 
WS = = = [n? 8.116 Peg Ol (8.116) 

Equation (8.116) has the structure of Newton's equation of motion of a particle 
of mass m in a potential V(x), with t> z,m +7", and V(x) > —n?(x)/2. Just as 
in mechanics, use of the “velocity” x‘ = dx/dz allows one to write d2x/dz? = 
d(x’*/2)idx and find a first integral (conservation of energy in mechanics), 

Wx"? = n(x) — (8.117) 

the constant of integration being determined by the condition that x’ = 0 when 
n(x) = A. The trajectory 2(x) is found from the integral, 

lie ax 

20) rl, Viti) — 7 

Here it is assumed that the ray began at the origin with angle @(0). For x = Xinaxs 
the path represents one-quarter of a cycle of oscillation back and forth across 
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the x = 0 line, as shown in Fig. 8.12¢. The half-period of the ray (from one 

crossing of the z axis to the next) is 

yee: zem{ WatF (8.118) 

To discuss the transit time of a wave along an optical fiber, we need to 
examine the physical and optical path lengths along the ray. These path lengths 

from A to B are 

a B 
Lony = | ds and Loge = ) n(xjds 

"da A 

With ds = (n/n) dz = (nln)(dzldx) dx = [n(x (x) — F°] dx, we find the 
physical and optical path lengths for half a period to be 

ina dx s(x) dx 
Luyy = 2 f ante) ae Lom = 2 [ YS 
y= 2], ayo Md bom b Va ae SHI) 

The transit time of a ray of a given launch angle 6(0) is given by the optical path 
divided by c. For a length of fiber z >> Z, the transit time 7(z) is 

Lo 
72) => Z (8.120) 

Different rays, defined by different 6(0) or 7, have different transit times, a form 

of dispersion that is geometrical. {Note that cZ/L,,, is the ray equivalent of the 
group velocity within the fiber.) A signal launched with a nonvanishing angular 
spread will be distorted unless n(x) is chosen to make the transit time largely 

independent of 7. With a graded profile that decreases monotonically with ||, 

rays with larger initial angles and so larger Xm Will have longer physical paths, 

but will have larger speeds (phase velocities) c/n(x) in those longer arcs. There 

is thus an inherent tendency toward equalization of iransit times. The grading 

can in fact be chosen to make all transit times equa] (see Problem 8.14). A simple 

example is shown in Fig. 8.125. The fractional increase in optical path length Lop 

[divided by n(0)] relative to Z as a function of @ is shown for a simple two-index 

fiber and a Gaussian-graded fiber with the same values of m, = n(0) and no 

{A = 0.01). For 0 < @< Oya, * 0.1414, the graded fiber has a fractional change 

of less than 107°; for the simple fiber, the spread is 1%. 
The geometrical dispersion resulting from different launch angles @(0) has 

its counterpart as intermodal and intramodal dispersion when the propagation is 

described by discrete modes, as in the next section (see Problem 8.16). There is 

also material dispersion from the optical properties of the dielectrics. The optical 

path length L,,,, (8.119) is then modified by having one of the factors of n(x) in 

the integrand of (8.119) replaced by d[wn{, x)|/de. For silica, the group velocity 

in the infinite medium is stationary at A ~ 1.3 wm; very large bandwidths and 

very high information transmission rates are possible there. Absorption is a min- 

imum at A ~ 1.55 ym; losses are of the order of 0.2 dB/km (see Section 9.7 for 

the Rayleigh scattering limit). 
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Figure 8.12 (a) Rays at critical angles jay ANG Opay/2 in a simple fiber with A = 0.01 
(dashed curves) and a graded fiber of the same radius a, critical angle, and central 
index, but with a Gaussian profile, n(x) = 2, e7*" for 0 <x < a, (b = af VA) and n(x) 
= ng for x > a. Note the difference in scales. Units are such that @ = @un © V2/10. 
(b) Differences in optical path length (divided by the axial index of refraction) and 
actual lengih along a fiber, [L.,/1(0)Z — 1], fora simple two-index fiber with A = 0.01 
and the Gaussian-graded fiber of (4); &pax = V2/10. The compensation from faster 
phase velocity at larger excursions away from the axis in the graded fiber is striking. 
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8.11 Modes in Dielectric Waveguides 

While the gcometrical ray description of propagation in optical fibers is appro- 
priate when the wavelength is very short compared to the transverse dimensions 
of the guiding structure, the wave nature of the fields must be taken into account 
when these two scales are comparable. Just as in a metallic waveguide, propa- 
gation at a given frequency can occur only via certain discrete modes, each with 
unique transverse field configurations and axial wave numbers. The bound rays 
(8 < max) in the geometric description have their counterparts as bound modes, 

with fields outside the core that decrease exponentially in the radial direction. 
Unbound rays (8 > @nax) correspond to the radiating modes, with oscillatory 

fields outside the core. Not surprisingly, single-mode propagation is important 
in optical communication, just as it is in microwave transmission in metallic 
guides, We now discuss modes in a planar guide and then introduce the circular 

fiber. 

A. Modes in a Planar Slab Dielectric Waveguide 

To examine the existence of discrete modes in an optical fiber, we consider 
the simple situation of a “step-index” planar fiber consisting of a dielectric slab 
of thickness 2a in the x direction and infinite in the other two directions. We look 

for waves that are traveling in the z direction and are independent of y. The 

indices of refraction are m, and x, for the slab and its surrounding medium (clad- 

ding), respectively. The surfaces of the slab are at x = +a, as shown in Fig. 8.13. 

Geometrically, any ray that makes an angle @ with respect to the z axis fess than 

Omax is totally internally reflected; the light is confined and propagates in the z 

direction, as discussed in the preceding section. The discrete mode structure oc- 

curs when we consider the wave nature of the light. Instead of solving the bound- 

ary-value problem, as for metallic waveguides, we keep to the optical description 

(but see Problem 8.15). The path shown in Fig. 8.13 can be thought of as the 

normal to the wave front of a plane wave, reflected back and forth or alternatively 

as two plane waves, one with positive x component of wave number, k, = 

k sin @, and the other with k, = —k sin @ To have a stable transverse field con- 

figuration and coherent propagation in the z direction, the accumulation of trans- 

verse phase on the path from A to just beyond B (with two internal reflections) 

must be an integer multiple of 277: 

4ka sin @ + 26 = 2pw (8.121) 

mg 

my 

A B 

Figure 8.13 Slab dielectric waveguide. Ray or normal to wave front at angle @ shown. 
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where p is a nonnegative integer, & = nw/c. and ¢ is the phase associated With 
the total internal reflection, according to the Fresnel formulas (7.39) and (7.42), 
These phases are easily found to be 

2a 1 
ory = —2 arctan 

(8.122) 

dim = —2 artan( 
L 

1 — 2A ysin’@ :) 

where A = (nj — n3)/2n}. The subscripts TE and TM in waveguide language 
correspond to the electric field being perpendicular and parallc! to the plane of 
incidence in the Fresnel equations. Introducing the fiber parameter (frequency 
variable) V = kaV2A and transverse variable & = sin 6/V/2A, (8.121) can be 
written 

— 
tan( Ve ~ 22) Spitica (8.123) 

where f = 1 for TE modes and f = i/{1 — 2A) for TM modes. 
The two sides of (8.123) are plotted in Fig, 8.14 for V = | and V = 10. There 

are seven TE and seven TM modes for V = 10. For small A the TE and TM 
modes are almost degenerate. The left-hand side of (8.123) shows that there are 
roughly N = 4V/a modes in ail, a number that follows from the one-dimensional 
phase-space estimate, 

Kenan Ne = Nig = 2a f°" the = 2k Via an Vv 
eee a [ d(sin 8) = = 

An appropriate expression for the roots of (8.123) for TE modes is given 
in Problem 8.15, The lowest approximation, valid for V >> 1 and small p, is 
§ (TE) = (p + 1)w/2(V + 1), showing equal spacing in p, as implied by the 
phase-space argument. 

Although our phase coherence argument relied only on the wave in the 
interior of the slab, fields exist outside, too. Their influence is expressed in 
the phases . From (7.46) we find that the fields outside the slab vary in x as 
e-#*), where 

B= kV28 — sin’ = Yi -= (8.124) 

Fora fixed V_ as the mode number p increases (> 1), 8 gets smailer and smaller; 
the fields extended farther and farther into the cladding. For angles @ > @max 
(€> 1), 8 becomes imaginary, corresponding to unconfined transverse fields. The 
slab radiates rather than confines the fields. In the waveguide regime. part of the 
power propagates within the core (slab) and part outside (see Problem 8.15). For 
V = 1, roughly two-thirds of the power of the TE, mode is carried within the 
core. When V >> 1, the lower modes are almost totally confined. Only for p = 
Pax does any appreciable power travel outside the core. 

Note that if A is very small, @,,,, ~ V2A is small. The longitudinal propa- 
gation constant k, = k cos @ = k for all the waveguide modes, as we saw in the 
geometrical optics approach. For the TM modes. in which there is a longitudinal 
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l x 
0.1 

Figure 8.14 Graphic determination of eigenvalues for planar slab optical fiber: 
tan(Vx — pmi2) = fV1Re — Tx = sin OV 2A ~ Ona V A (f = 1 for 
TE modes, f = 1 t 2A for M modes); dashed curves have f = 1.04. (a) V = 1. 

x = 0.739 (TE), 0.747 (TM). (6) V = 10, seven roots for TE and for TM (p = 0..... 6) 

component of electric field E., we have |EJE,| = tan @ = Oyox = \V/24 for small 

A. Thus, to zeroth order in A, the TM modes have transverse electric fields and 

are degenerate with the TE modes. Appropriate lincar superposition of two such 

degenerate modes gives a mode with arbitrary direction of polarization in the 

x-y plane. Such modes are labeled LP (for linearly polarized, although they can 

be circularly or elliptically polarized as well). LP modes are approximate descrip- 

tions in other geometries, such as circular, provided A << 1, as is mentioned at 

the end of this section. 

B. Modes in Circular Fibers 

Optical fibers come in a wide variety of cross-sectional shapes, many analy2- 

able only by numerical mcthods. The circular fiber with an index of refraction 

that is azimuthally symmetric is one of the simplest to discuss, but even it is more 

complicated than the one-dimensional slab geometry of the preceding section. 
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We give only an introduction here. The reader wishing to go into more details 
may consult the references cited at the end of the chapter. 

We consider a fiber of uniform cross section with unit relative maguetic per. 
meability and an index of refraction that does not vary along the cylinder axis 
but may vary in the transverse directions. For the present we do not restrict the 
problem to a circular cylinder. The Maxwell equations can be combined, as in 
Section 8.2, with assumed propagation as e’~“*", to yicld the Helmholtz wave 
equations for H and E, 

2 vee i 2 VH + 2H = iweg( Vr?) x E se 
242 

VE+ R= -v] 2 (Vr?) + e| 
rod n 

where we have written € = «9. Just as in Section 8.2. the transverse components 
of E and H can be expressed in terms of the longitudinal ficlds E, and A. 
Explicitly, the connections are 

— wpot X V,H,] 

and (8.126) 

3k VH, + went X V,E,] 

where ¥° = n°w'/c” — k? is the radial propagation constant, as for metallic wave- 
guides. If we take the z component of the equations (8.125) and use (8.126) to 
eliminate the transverse field components (and assume that an?/az = 0), we find 
generalizations of the two-dimensional scalar wave equation (8.34). 

2 

WH, + PH. - (2) (Vin) V.H, = — 4-(Vn? x VE] 

and (8.127) 
Bi ae FN iO ok:te 5 og 2 VE. + PE. - oA (Vi) - VE, = ape (Vie? x ¥,H,] 

Our first observation is that, in contrast to (8.34) for ideal metallic guides, 
the equations for £, and H, are coupled. In general there is no separation into 
purely TE or TM modes. We restrict further comments to the simple situation 
of a core that is a circular cylinder of radius a with an azimuthally symmetric 
index n(p). The cross products on the right-hand sides in (8.127) are proportional 
to (dn*/0p)(0/pad)[ E.. H-]. Only if the ficlds have no azimuthal variation are these 
right-hand sides zero: only in such circumstances are there separate TE and ‘1M 
modes. One might think that for a step-index fiber the transverse gradient of 1” 
would vanish, ai least for p < a and for p > a; but there’s the rub. The change 
from n = n, inside to n = n, outside implies a transverse gradient, 

Vin? = -2njdS(p ~ ap 

The equations are coupled, unless the fields are independent of azimuth. The 
modes with both EF. and H, nonzero are known as HE or EH hybrid modes. In 
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practice. the solution is found by requiring continuity for normal D and B and 
tangential E and H across p = a. Separation of variables in cylindrical coordi- 
nates, assuming variation in azimuth of the form e””* leads to solutions for E, 

and H.. 

{ a = {4 |sacroem p<a 

and (8.128) 

(E}=[Plmtoom, me 
with the z and ¢ dependences understood. Here y? = njw%/e? — k2 and B? = 
k2 — n3w°/c?. Matching boundary conditions at p = a, with the transverse com- 
ponents computed from (8.126), leads to a determinantal cigeavalue equation 
for the various modes (see Problem 8.17). One finds that the TE and ‘I'M modes 
have nonvanishing “cutoff” frequencies, with the lowest corresponding to V = 

nywaV 2Ale = 2.405, the first root of Jo(x). In contrast, the lowest TE mode 

(HE),) has no “cutoff” frequency. For 0 < V < 2.405, it is the only mode that 
propagates in the fiber. 

‘The azimuthally symmetric TE or TM modes correspond to meridional rays; 
the HE or EH modes, which have azimuthal variation, say, as sin(m) or 
cos(m@). correspond to skew rays. That “skew ray” modes have longitudinal 
components of both E and H can be understood physically by considering the 
total internal reflection of such a ray at p = a. Since the plane containing such a 
ray and the normal to the surface docs not contain the z axis, the electric field 
vector after reflection will have a different projection on the z axis than before, 
as will the magnetic ficld vector. Successive reflections therefore mix TE and ‘tM. 
waves; the eigenmodes have both E, and H- nonvanishing. 

In fibers with very small A, called “weakly guiding waveguides” in the lit- 
erature, the fields are found to have very small longitudinal components and are 
closely transverse. The language of plane light waves can be employed. For ex- 
ample, an HE,, mode, with azimuthal dependence for E. of cos @, has fields that 
are approximately lincarly polarized and vary as Jo(yp) in the radial direction. 
In the “weakly guided” approximation, this mode is labeled LPy,. 

The discussion so far (and some further aspects addressed in the problems) 

provide a brief introduction to the subject of optical waveguides. The literature 
is extensive and growing. The interested reader may gain entréc by consulting 
one of the references at the end of the chapter. 

8.12 Expansion in Normal Modes; Fields Generated 

by a Localized Source in a Hollow Metallic Guide 

For a given waveguide cross section and frequency «, the electromagnetic fields 

in a hollow guide are described by an infinite set of characteristic or normal 

modes consisting of TE and TM waves, cach with its characteristic cutoff fre- 

quency. For any given finite frequency, only a finite number of the modes can 

propagate: the rest are cutoff or evancscent modes. Far away from any source, 
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obstacle, or aperture in the guide, the fields are relatively simple, with only the 
propagating modes (often just one) present with appreciable amplitude. Near g 
source or obstacle, however, many modes, both propagating and evanescent, 
musi be superposed in order to describe the fields correctly. The cutoff modes 
have sizable amplitudes only in the neighborhood of the source or obstacle: their 
effects decay away over distances measured by the reciprocal of the imaginary 
part of their wave number. A typical practical problem concerning a source, 
obstacle, or aperture in a waveguide thus involves as accurate a solution as is 
possible for the fields in the vicinity of the source, etc., the expansion of those 
fields in terms of all normal modes of the guide. and a determination of the 
amplitudes for the one or more propagating modes that will describe the fields 
far away. 

A. Orthonormal Modes 

‘Yo facilitate the handling of the expansion of fields in the normal modes, it 
is useful to standardize the notation for the ficlds of a given mode, treating TE 
and TM modes on an equal footing and introducing a convenient normalization. 
Let the subscript A or ¢ denote a given mode. One may think of A = 1, 2.3... 
as indicating the modes arranged in some arbitrary order, of increasing cutoff 
frequency, for example. The subscript A also conveys whether the mode is a TE 
or TM wave. The fields for the A mode propagating in the positive z direction 
are written 

EXP, yz) = [Este y) + Ents, ye (8.129) 
HYMG. y. 2) = [AAG y) + Hate, ye 

where E,, H, are the transverse fields given by (8.31) and (8.33) and E,,, H., 
are the longitudinal fields. The wave number k, is given by (8.37) and is taken 
to be real and positive for propagating modes in lossless guides (and purely imag- 
inary, k, = ix,, for cutoff modes). A time dependence e “" is, of course, under- 
stood. For a wave propagati the negative z direction the fields are 

EY) = [E, — E,,Je** (8.130) 
HU) = [-H, + Ha Je 

‘The pattern of signs in (8.130) compared to (8.129) can be understood from the 
need to satisfy V-E = V-H = 0 for each direction of propagation and the 
requirement of positive power flow in the direction of propagation. The overall 
phase of the fields in (8.130) relative to (8.129) is arbitrary. The choice taken 
here makes the transverse electric ficid at z = 0 the same for both directions of 

propagation, just as is done for the voltage waves on transmission lines. 
A convenicnt normalization for the fields in (8.129) and (8.130) is afforded 

by taking the transverse electric fields E,{x, y) to be real, and requiring that 

E, +E, da = 6, (8.131) a “ 
where the integral is over the cross-sectional area of the guide. [The orthogonality 
of the different modes is taken for granted herc. The proof is left as a problem 
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(Problem 8.18), as is the derivation of the other normalization integrals listed 
below.] From the relation (8.31) between electric and magnetic fields it is evident 

that (8.131) implies 

| Hy: H, da = bap (8.132) z 

and that the time-averaged power flow in the Ath mode is 

sf (E, x H,) +2 da = > Sy (8.133) 1 
2Zy 

It can also be shown that if (8.131) holds, the longitudinal components are nor- 

malized according to 

TM Waves 

TE WAVES 
a 

i H.sH., da = > ,, (8.134) 
3Zi 

As an explicit example of these normalized fields we list the transverse elec- 
tric fields and also H, and E, of the TE and TM modes in a rectangular guide. 
The mode index A is actually two indices (nm, ). The normalized fields are 

TM Waves 

ca Bae) 
Eos = Ne sin") cos ur) (8.135) 

Exim = wes sin ("2) sin("22) 

TE WAVES 

= —2an - ("=) sin(*22) 
smn = ——_F—= Cos| — — } sin| 

Yond V ab a 6 
2am. {max nay 

Em = —— = sin| —— } cos| — = 8.136. sea ae 
Sie maxX any 

Hin = cos! cos} —— 
in NAN ( a ) ( b ) 

with y,,,, given by (8.43). The transverse magnetic field components can be ob- 
tained by means of (8.31). For TM modes, the lowest value of m and n is unity, 

bul for TE modes, m = 0 orn = (is allowed. If m: = 0 or n = 0, the normalization 

must be amended by multiplication of the right-hand sides of (8.136) by v2. 



392 Chapter 8 Waveguides, Resonant Cavities, and Optical Fibers—SI 

B. Expansion of Arbitrary Fields 

An arbitrary clectromagnetic field with time dependence e ‘” can be ex. 
panded in terms of the normal mode fields (8.129) and (8.130).* It is useful to 
kecp track explicitly of the total fields propagating in the two directions. Thus 
the arbitrary fields are written in the form 

E=EY+E. =H +H (8.137) 

where 

BE?) = FADES, Be) = SAKE? (8.138) 
* x 

Specification of the expansion coefficients A{~) and A{ ) determines the fields 
everywhere in the guide. These may be found from boundary or source condi- 
tions in a variety of ways. Here is a useful theorem: 

The ficlds everywhere in the guide are determined uniquely by specification 
of the transverse components of E and H in a plane, z = constant. 

Proof: There is no loss in generality in choosing the plane al z = 0. Then from 
(8.137), (8.138), and (8.129), (8.130), the transverse fields are 

BE, = 3 (AN) + ADE, 
a (8.139) 

H, = 3 (AW? - AYA 
x 

If the scalar product of both sides of the first equation is formed with E, and an 
integration over the cross section of the guide is performed, the orthogonality 
condition (8.131) implies 

ALO + AL? = [ B-B ae 

Similarly the second equation, with (8.132), yields 

AX? = AS = 23 f HH, da 

‘The coefficients A\”) are therefore given by 

1 
AYO = fe +E, + ZH, H,) da (8.140) 

This shows that if E, and H, arc given at z = 0, the coefficients in the expansion 
(8.137) and (8.138) are determined. The completeness of the normal mode ex- 
pansion assures the uniqueness of the representation for all z. 

C. Fields Generated by a Localized Source 

The fields in a waveguide may be generated by a localized source, as shown 
schematically in Fig. 8.15. The current density J(x, £) is assumed to vary in time 
as e-'. Because of the oscillating current, fields propagate to the left and to the 

*We pass over the mathematical problem of the completeness of the set of normal modes, and also 
only remark that more general time dependences can be handled by Fourier superposition 
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\ | Figure 8.15 Schematic representation of a 
i I localized source in a waveguide. The walls 
1 2—> | of the guide, together with the planes S$, 
1 1 and § , define the volume containing the 
8 8, source. + 

right. Outside the source, at and to the right of the surface S,, say, there will be 
only fields varying as e“* and the electric field can be expressed as 

E=E° = > AWE (8.141) 
* 

with a corresponding expression for H. On and to the left of the surface S$. the 
fields all vary as e° “* and the electric field is 

E=E = 3 AWE? (8.142) “s 

To determine the coefficients A{”’ in terms of J, we consider a form of the 
energy flow equation of Poynting's theorem. The identity 

V-(E x HY) — EY’ x H) = J- EY (8.143) 

follows from the source-free Maxwell equations for E\”’, H\’, and the Maxwell 
equations with source satisfied by E and H. Integration of (8.143) over a volume 
V bounded by a closed surface S leads, via the divergence theorem. to the result, 

I (E x HY — EY’ x H)- nda = i JEW aby (8.144) 

where nis an outwardly directly normal. The volume V is now chosen to be the 
volume bounded by the inner walls of the guide and two surfaccs S$, and S_ of 
Fig. 8.15. With the assumption of perfectly conducting walls containing no sources 

or aperlures, the part of the surface integral over the walls vanishes. Only the 
integrals over $, and § contribute. For definiteness, we choose the /ower sign 
in (8.144) and substitute from (8.141) for the integral over S,: 

i = Day { 2+ (EV!) x HY? — EX x HY?) da 
eT S, 

With the fields (8.129) and (8.130) and the normalization (8.133), this becomes 

2 = -t AW 145 fe Zz, AS (8.145) 

The part of the surface integral in (8.144} from S$ is 

f = “Say f 2+ (EY) x HY?) — ED? x HY) da 
4 Is 
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which can easily be shown to vanish. For the choice of the lower sign in (8.144), 
therefore, only the surface S. gives a contribution to the left-hand side. $ milarly, 
for the upper sign, only the integral over S contributes. It yields (8.145), but 
with A{”) instead of AX”). With (8.145) for the left-hand side of (8.144). the 
coefficients AS“) are determined to be 

Z, ? 
AD = -2 [oa EY Ox (8.146) 

where the field E\”’ of the normal mode A is normalized according to (8.131), 
Note that the amplitude for propagation in the positive z direction comes from 
integration of the scalar product of the current with the mode ficld describing 
propagation in the negative z direction, and vice versa. 

It is a simple matter to allow for the presence of apertures (acting as sources 
or sinks) in the walls of the guide between the two planes S, and S$. Inspection 
of (8.144) shows that in such circumstances (8.146) is modified to read 

4 
2 Sopertuses 

AY? = (E x H\Y)- nda - a [ J-E\) d’x (8.147) 

where E is the exact tangential electric field in the apertures and n is outwardly 
directed. 

The application of (8.146) to examples of the excitation of waves in guides 
is left to the problems at the end of the chapter. In the next chapter (Section 9.5) 
we consider the question of a source that is small compared to a wavelength and 
derive an approximation to (8.146): the coupling of the electric and magnetic 
dipole moments of the source to the electric and magnetic fields of the Ath mode. 
The coupling of waveguides by small apertures is also discussed in Section 9.5, 
‘The subject of sources and excitation of oscillations in waveguides and cavities 
is of considerable practical importance in microwave engineering. There is a vo- 
luminous literature on the topic. One of the best references is the book by Collin 
(Chapters 5 and 7). 

D. Obstacles in Waveguides 

Discontinuities in the form of obstacles, dielectric slabs, diaphragms, and 
apertures in walls occur in the practical use of waveguides as carriers of electro- 
Magnetic energy and phase information in microwave systems. The expansion of 
the fields in normal modes is an essential aspect of the analysis. In the second 
(1975) edition of this book we analyzed the effects of transverse planar obstacles 
with variational methods (Sections 8.12 and 8.13). Lack of space prevents inclu- 
sion of the material here. The reader interested in pursuing these questions can 
refer to the second edition or the references mentioned below and in the Ref- 
erences and Suggestcd Reading. 

‘Theoretical and experimental study of obstacles, etc. loomed large in the 
immense radar research effort during the Second World War. The contributions 
of the United States during 1940-45 are documented in the Massachusetts Insti- 
lute of Technology Radiation Laboratory Series, published by the McGraw-Hill 
Book Company, Inc., New York. The general physical principles of microwave 
circuits are covered in the book by Montgomery, Dicke, and Purcell, while a 
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compendium of resuits on discontinuities in waveguides is provided in the volume 
by Marcuvitz. Collin, already cited, is a textbook source. 
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tinuities, are covered in detail. The original work on variational methods for discontinu- 
ities is summarized in 

J. Schwinger and D. S. Saxon, Discontinuities in Waveguides, Notes on Lecnures 
by Julian Schwinger. Gordon & Breach, New York (1968). 

Variational principles for cigenfrequencies, etc., as well as discontinuities, are sur- 
veyed in 

Cairo and Kahan 
and also discussed by 

Harrington, Chapter 7 
Van Bladel, Chapter 13 

Waldron, Chapter 8 

The definitive compendium of formulas and numerical results on discontinuities, 
junctions, etc., in waveguides is 

Marcuvitz 

‘The mathematical tools for the treatment of these boundary-value problems are pre- 
sented by 

Morse and Feshbach, especially Chapter 13 
Perturbation of boundary conditions is discussed by Morse and Feshbach (pp. 1038 ff). 
Information on special functions may be found in the ever-reliable 

Magnus, Oberhettinger, and Soni, and in encyclopedic detail in 
Bateman Manuscript Project, Higher Transcendental Functions. 
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Numerical values of special functions, as well as formulas, are given by 
Abramowitz and Stegun 
Jahnke, Emde, and Lésch 

Two books dealing with propagation of clectromagnetic waves around the earth and 
in the ionosphere from the point of view of waveguides and normal modes are 

Budden 
Wait 

See also 

Gaiejs 
Schumann resonances are also described in detail in 

P. V. Bliokh, A. P. Nicholaenko, and Yu. F. Filtippov, Schwmann Resonances in 

the Earth-lonosphere Cavity, transl. $. Chouct, ed. D. L. Jones, IEE Electro- 
magnetic Wave Series, Vol. 8, Peter Peregrinus, London (1980). 

There is a huge literature of the theory and practice of optical fibers for communi- 

cations. Our discussion in Sections 8.10 and 8.11 has benefited from the comprehensive 
book 

A.W. Snyder and J. D. Love, Optical Waveguide Theory, Chapman & Hall, New 
York (1983). 

Books with discussions of the waveguide aspects, as well as much practical detail, are 
J. M. Senior, Optical Fibre Communications, 2nd ed., Prentice-Hall, New York 
(1992). 

C. Vassallo, Optical Waveguide Concepts, Elsevier, New York (1991). 
Numerical methods are often required for optical waveguide geometries. A useful refer- 
ence is 

F. A. Fernéndez and Y. Lu, Microwave and Optical Waveguide Analysis by the 
Finite Element Method, Res s Press & Wiley, New York (1996), 

Problems 

8.1 Consider the clectric and magnetic ficlds in the surface region of an excellent con- 
ductor in the approximation of Section 8.1, where the skin depth is very small 
compared to the radii of curvature of the surface or the scale of significant spatial 
variation of the fields just outside. 

(a) For a single-frequency component. show that the magnetic field H and the 
current density J are such that f, the time-averaged force per unit area at the 
surface from the conduction current, is given by 

He f= -0 S| P 

where Hy is the peak parallel component of magnetic field at the surface. 44, 
is the magnetic permeability of the conductor. and n is the outward normal at 
the surface. 

() if the magnetic permeability yz outside the surface is different from y.,, is there 
an additional magnetic force per unit area? What about electric forces? 

{e) Assume that the fields are a superposition of different frequencies (all high 
enough that the approximations still hold). Show that the time-averaged force 
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takes the same form as in part a with [H |’ replaced-by 2(|H,|?), where the 
angle brackets (- - -) mean time average. 

A transmission line consisting of two concentric circular cylinders of metal with 
conductivity o and skin depth 6, as shown, is filled with a uniform lossless dielectric 

(uw. €). A TEM mode is propagited along this linc. Section 8.1 applies. 

(a) 

(b) 

{c) 

(d) 

Show that the time-averaged power flow along the line is 

where Hy is the peak value of the azimuthal magnetic field at the surface of 
the inner conductor. 

Kb 
I 
1 

1 
stake ' 

© 

Show that the transmitted power is attenuated along the line as 

Problem 8.2 

P(z) = Poe 2” 

where 

The characteristic impedance Z,, of the line is defined as the ratio of the voltage 
between the cylinders to the axial current flowing in one of them at any 

position z. Show that for this line 
ia 

b e in(2) 
e \a 

Show that the series resistance and inductance per unit length of the line are 

afe (2), #8 (t,l 
fe {#10(2) ars (: 1)} 

where 2, is the permeability of the conductor. The correction to the induc- 
tance comes from the penetration of the flux into the conductors by a distance 
of order 8. 

Zo “any 
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83 

84 

8.5 

(a) 

(b) 

A transmission line consists of two identical thin strips of metal, shown jn 

cross section in the sketch. Assuming that 6 >> a, discuss the propagation of 
a TEM mode on this line, repeating the derivations of Problem 8.2. Show that 

at fee aD eine 

fe 
© 408 Vu 

_ (wat 26 rae 

Problem 8.3 

where the symbols on the left have the same meanings as in Problem 8.2. 

The lower half of the figure shows the cross section of a microstrip line with 
astrip of width b mounted on a dielectric substrate of thickness A and dielectric 
constant ¢, all on a ground plane. What differences occur here compared to 
partaifb >> A? Ib <h? 

Transverse electric and magnetic waves are propagated along a hollow, right cir- 
cular cylinder with inner ra 

(a) 

(b) 

1s R and conductivity o. 

Find the cutoff frequencies of the various TE and TM modes. Determine 

numerically the lowest cutoff frequency (the dominant modc) in terms of the 
tube radius and the ratio of cutoff frequencies of the next four higher modes 
to that of the dominant mode. For this part assume that the conductivity of 
the cylinder is infinite. 

Calculate the attenuation constants of the waveguide as a function of fre- 
quency for the lowest two distinct modes and plot them as a function of 
frequency. 

A waveguide is constructed so that the cross section of the guide forms a right 

triangle with sides of length a. a, V2a, as shown. The medium inside has 4, = 
eS 13 
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(a) Assuming infinite conductivity for the walls, determine the possible modes of 
propagation and their cutoff frequencies. 

Problem 8.5 

(b) For the lowest modes of each type calculate the attenuation constant, assuming 

that the walls have large, but finite, conductivity. Compare the result with that 
for a square guide of side a made from the same material. 

A resonant cavity of copper consists of a hollow, right circular cylinder of inner 
radius R and length L, with Nat end faces. 

(a) Determine the resonant frequencies of the cavity for all types of waves. With 
(/V ye R) as a unit of frequency. plot the lowest four resonant frequencies 
of each type as a function of R/L for 0 < R/L < 2. Does the same mode have 
the lowest frequency for all R/L? 

(b) If R = 2 cm, L = 3 cm, and the cavity is made of pure copper, what is the 
numerical value of Q for the lowest resonant mode? 

A resonant cavity consists of the empty space between two perfectly conducting, 
concentric spherical sheils, the smaller having an outer radius @ and the larger an 
inner radius 6. As shown in Section 8.9, the azimuthal magnetic field has a radial 
dependence given by spherical Bessel functions, j,(kr) and n(kr), where k = alc. 

(a) Write down the transcendental equation for the characteristic frequencies of 

the cavity for arbitrary J. 

(b) For / = { use the explicit forms of the spherical Bessel functions to show that 
the characteristic frequencies are given by 

(e + 
tankh _ a 

kh 
kt abl - 

where fh = b — a. 

(c) For A/a << }, verify that the result of part b yields the frequency found in 

Section 8.9, and find the first order correction in A/a, [The result of part b 
seems to have been derived first by J. J. Thomson and published in his book 

Recent Researches in Electricity and Magnetism, Oxford Clarendon Press, 

1893, pp. 373 ff] 
For the Schumann resonances of Section 8.9 calculate the Q values on the assump- 
tion that the earth has a conductivity «, and the ionosphere has a conductivity «, 

with corresponding skin depths 8, and 8,. 
(a) Show that to lowest order in h/a the Q value is given by Q = NA/(8. + 8) and 

determine the numerical factor N for ail 4. 

(b) For the lowest Schumann resonance evaluate the Q value assuming o, — 0.1 

(Om)! 6; = 1075 (Om)! kh = 10? km. 



400 Chapter 8 Waveguides, Resonant Cavities, and Optical Fibers—SI 

8.9 

8.10 

(ce) Discuss the validity of the approximations used in part a for the range of 
parameters used in part b. 

A hollow volume V containing a uniform isotropic linear medium (e, 42) is bounded 
by a perfectly conducting closed surface § (which may have more than one discon. 
nected part). A harmonic electric field inside the cavity satisfies the vector 
Helmholtz equation, 

VX(VXE)= RE with b= ope 

‘The boundary condition is a X E = 0 (and n-B = 0) on S. 
fa) Show that 

[ee siv xox E)] dx 
psa 

[et eay 
v 

is a variational principle for the eigenvalue 4? in the sense that a change of 
E~>E + dE, where both E and 4€ satisfy the boundary conditions on S, leads 
to only second-order changes in k?. 

(b) Apply the variational principle to the TMjy mode of a right cylindrical cavity 
of radius R and length d, using the trial longitudinal electric field £, = 
Ey cos( mp/2R) [no variational parameters]. Show that the estimate of the ci- 
genvalue is 

mw ire 4 

ARo op o4 
Compare numerically with the known eigenvalue, the root xo; of Ja(x). 

{c) Repeat the calculation of part b with E, = Ey [lL + a(p/R)? — (1 + @)(p/R)'). 
where a is a variational parameter. Show that for this trial function the best 
estimate is 

17 - 2V34\]'" kR =| 80- (7**)| 
68 + V34 

How much better is this truly variational calculation than part b? 

Use the variational principle of Problem 8.9 in terms of the electric field E to find 
an estimate of the eigenvalue for k? for the TE;,, mode in a right circular cylinder 
cavity of radius & and length d with perfectly conducting walls. Use as a trial fune- 
tion B, = By(p/R) (1 — p/2R) cos o sin(rz/d). (This function satisfies the boundary 
conditions of B. = Oat z = Qand z = d. and aB.Jap = Oat p = R.] 
(a) First show that the variational principle can be reexpressed as 

ik (Vx E)-(V xX E) dy 
pS 

i E*-E dx 
v 

{b) Show that the (transverse) components of the (trial) electric field are 

E, = E(t — pl2R) sind sin(wz/d); Ey = Eq(1 — piR) cos $ sin(azid) 

(ce) Calculate the curl of E and show that the approximation for k* is 

4 18 wr 
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Compare with the exact result. For smaii enough d/R, this mode has a larger 

eigenvalue than the [Moyo mode. Why should the present variational estimate 

be at all reliable? 

(4) The original variational expression in Problem 8.9 has an equivalent integrand 
in the numerator, E* -{¥(¥-E) — V’E]. Discuss the relative merits of this 
integrand compared with the square of the curl of E in part a for the present 
problem. 

Apply the variational method of Problem 8.9 to estimate the resonant frequency of 
the lowest ‘IM mode in a “breadbox” cavity with perfectly conducting walls, of 
length ¢ in the z direction, radius R for the curved quarter-circle “front” of the 
breadbox, and the “bottom” and “back” of the box defined by the plane segments 

(y = 0,0 << R) and (x = 0.0 < y < R), respectively. Use the trial function, 

E, = Eg(piRY"(1 — piR)sin2o 

for the only component of clectric field present. This function gives vanishing tan- 
gential component of E on the boundary surfaces: the index y is a variational pa- 

rameter. Show that 

_ (V+ 2)Qv + 37 + w+ 4) 

v(2v + 1) 

Minimize with respect to v to find the best estimate of AR from the given trial 
function, Compare with the exact answer, KR = 5.13562, the first root of Jo(x). 

RR 

A waveguide with lossless dielectric inside and perfectly conducting walls has a 
cross-sectional contour C that departs slightly from a comparison contour C, whose 
fields are known. The difference in boundaries is described by 8(x, y). the length 
measured from Cy to C along the normal to C, at the boundary point (x, y). The 
derivative dé/ds along the boundary is higher order in small quantities. 

(a) Ifthe eigenvalue parameters and solutions for C and Cyare (y*, #) and (yi. do). 
respectively, without degencracy, show that to first order in 5 

2 2, 

$ a, v[ - yt “4 dl 
cy on rv 

hy = 

[ilar ar ay 
where only the first (second) term in the numerator occurs for TM (TE) 
modes. [Hint: Follow the same general approach as used in Section 8.6 for the 

effects of finite conductivity.) 

{b) Determine the perturbed value of + for the lowest TE and TM modes (TE; 
and IM,,) in a rectangular guide if the change in shape is as shown in the 
accompanying sketch. 

— New —— 
boundary 

«Problem 8.12 
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8.13 To treat perturbations if there is a degeneracy of modes in guides or cavities under 
ideal conditions, one must use degenerate-state perturbation theory. Consider the 
two-dimensional (waveguide) situation in which there is an N-fold degeneracy in 
the ideal circumstances (of perfect conductivity or chosen shape of cross section), 
with no other nearby modes. There are N linearly independent solutions 44, chosen 
to be orthogonal, to the transverse wave equation, (V7 + ya)uf? = 0.7=1,2...., 
N. In response to the perturbation, the degeneracy is in general lifted. There is q 
set of perturbed eigenvalues, y3. with associated eigenmodes. 4. which can be 
expanded (in lowest order) in terms of the N unperturbed eigenmodes: % = 
LDaw?. 

(a) Show that the generalization of (8.68) for finite conductivity (and the corre. 
sponding expression in Problem 8.12 on distortion of the shape of a wave- 
guide) is the set of algebraic equations. 

N 
> {o - YNy + Aas =O (GF = 1.2... N) 

where 

ay” ai yi? 

N, fer au and ash eo dt 
con an 

for finite conductivity, and 

OO oy ti a 
¢ a(x. »[ae BU yon Ta | dt 

4 on an 

for distortion of the boundary shape. 
(b) The Jowest mode in a circular guide of radius R is the twofold degenerate TE,, 

made, with fields given by 

W = B, = Bol (yop) exp(tid) exp(ikz — ier) 

The eigenvalue parameter is y = 1.84)/R, corresponding to the first root of 
aJ\(x)/dx. Suppose that the circular waveguide is distorted along its length 
into an elliptical shape with semimajor and semiminor axes, a = R + AR, 

= R — AR, respectively. To first order in AR/R, the area and circumfer- 
ence of the guide remain unchanged. Show that the degeneracy is lifted by 
the distortion and that to first order in AR/R, yj = yo(1 + AAR/R) and ¥ = 
ya(] — AAR/R). Determine the numerical value of A and find the eigenmodes 
as linear combinations of y?. Explain physically why the cigenmodes tum 
out as they do. 

8.14 Consider an optical fiber with a graded index of refraction for rays confined to the 

x-z plane, n(x) = n{(0) sech(ax). The fiber has large cnough transverse dimensions 
{x) to contain all rays of interest, which are evidently symmetric about x = 0, The 
invariant W = (Xa) = (0) cos (0). 
(a) Solve the eikonal equations for the transverse coordinate x(z) of the ray and 

show that 

ax = sinh” '[sinh(expax) sin{ez)} 

where the origin in z is chosen when the ray has x = 0. Sketch rays over one 
half-period for “launch angies” 4(0) = w/6, w/4, and w/3. 

{b) Find the half-period Z of the ray. Does it depend on #7? 
{©) Show that the optical path length for a half period, Loy, = Jn(x) ds is Lop = 

n(0}Z. Comment on the effectiveness of this particular grading of the index. 
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Hint In the computation of L£,,., @ useful change of variables is sinh(ax 
sinh(ax,,,,) sin t. The resulting integral can be done by contour integration: 

(e dat 
in Lt a sin’e 21+ a? 

Discuss the TE and TM modes in the dielectric slab waveguide of Section 8.11.A 
as a boundary-value problem. 
(a) Show that (8.123) emerges as the determining relation for both even and odd 

modes (in x) and that even or odd p goes with the evenness or oddness of the 
mode, defined by the symmetry in x of the transverse fields. 

(b) Show that the eigenvalues of £ for the TE modes are given approximately by 

(p + 1)7 ee (p + 1p-a? 

V+ 1) 2a(V + 18 € 

The lowest order result is accurate for Y >> | and small p. Check the accuracy 

of the full expression against solution of (8.123) by Newton's method for 

V=1,2.3. 

(c) Calculate the power flow in the z direction (per unit length in the y direction) 
within the core (|x| <a) and in the cladding (|x| > a) for the even TE modes 
and show that the fractions are 

Fue = tt + SCE] and Fan = $f SOLE] 

[1 4 inv] [ cos*(Vé) | 
2VE Wi = & 

where éis the root of (8.123) for the pth mode. Find corresponding expressions 
for the odd TE modes. 

The longitudinal phase velocity in the dielectric slab waveguide of the preceding 
problem is v, = wk. = c/(n cos 4,). Intermodal dispersion occurs because the 
dielectric media have dispersion and also because the group velocity differs intrin- 
sically for different modes. 

(a) Making the approximation that the dielectrics’ dispersion can be neglected, 
show that the group velocity v, = dw/dk, for the TE, mode is 

coos, [1+ Ba 
ny Lcos8, + Bye 

cre 9, is the eigenangle of the pth mode (cos #4, = V1 — 2A€)) and 8, is 
given by (8.124). Interpret the departure from u,v, = C/nj (as in metallic 
waveguides; 8, —> %) in terms of the Goos-Hiinchen effect and ray-like prop- 
agation at the simple phase speed c/m,. [Hint: Write the eigenvalue relation 
(8.121) in terms of the independent variable w and the dependent variable k, 

and differentiate with respect to} 
(b) Write a program to evaluate v, versus V/V,, where V, = pa? is the threshold 

frequency variable for the p mode. Make a plot of u,/c for ny = 1.5.2 = 1.0 
for p = 0.1, 2..... 6 as a function of V/V,{p = 1) on the range (0, 10). 

{c) Relate the results of part b to the optical path length difference for the step- 
index fiber shown in Fig. 8.125. Can you generate a plot from the results for 
u,(p) at fixed V for m = 1.01, 2, = 1.0 to compare with the “classical” ray 
result? 
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8.17 

8.18 

Consider the propagating modes in a cylindrical optical fiber waveguide of radius 
a with a step index of refraction, 2, in the core (p < a) and 7, <n, in the cladding 
(p> a). Assume that the fields vary as e””***"-, For bound modes, the fields in 
the core (cladding) are proportional to ordinary (modified) Bessel functions J,(K,) 
with appropriate values of » and argument, as in (8.128). 
(a) Show that for m # 0 the eigenvalue relation for the transverse parameter y,,, 

(and Bn) is 

WI BK Nfl si, 1 ki) mi? {ne “)( ! i 
+ =+s = st +s 

YIm  BKm})\¥4n  BKm}d oa NY BY B 

where ¥’ = noc? — K2 and B” = nw%/c?, while primes indicate deriv. 
atives with respect to the argument, and the argument of J, (K,,) is ya (Ba). 
The first subscript on y is the azimuthal index mm; the second designates the 
nth root of the eigenvalue equation for fixed m. 

(b) Determine the eigenvalue equation for the m = 0 modes (TE and TM) and 
show that the lowest “cutoff” frequency corresponds to V = 2.405, the first 
root of Ja(x), where “cutoff” is the frequency below which the guide radiates 
rather than confines. 

({c) Show that the lowest HE mode (HF,,) has no cutoff frequency and that 
for V << | the decay parameter Bu ~ Ae “”, Find A and B in terms of n, 
and 2. 

(a) From the use of Green's theorem in two dimensions show that the ‘IM and 
TE modes in a waveguide defined by the boundary-value problems (8.34) and 
(8.36) are orthogonal in the sense that 

E,Fxda=0 fork tp A 

for TM modes, and a corresponding relation for H, for TE modes. 

(b) Prove that the relations (8.131)-{8.134) form a consistent set of normalization 
conditions for the fields, including the circumstances when A is a TM mode 
and w is a TE mode. 

The figure shows a cross-sectional view of an infinitely long rectangular waveguide 
with the center conductor of a coaxial line extending vertically a distance A into its 
interior at ¢ = 0. The current along the probe oscillates sinusoidally in time 
with frequency w, and its variation in space can be approximated as I(y) = 
1, sin[(«le)(h — y)]. The thickness of the probe can be neglected. The frequency is 
such that only the TE,, mode can propagate in the guide. 

Problem 8.19 

(a) Calculate the amplitudes for excitation of both TE and TM modes for all 

(m,n) and show how the amplitudes depend on m and for m,n >> | for a 
fixed frequency w. 
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(b) For the propagating mode show that the power radiated in the positive z 
direction is 

_ OK of aX\  foh p= BP sin’ =) sint{ 5 

with an equal amount in the opposite direction. Here k is the wave number 
for the TE, mode. 

(c) Discuss the modifications that occur if the guide, instead of running off to 
infinity in both directions, is terminated with a perfectly conducting surface at 
z = L, What values of L will maximize the power flow for a fixed current J? 

What is the radiation resistance of the probe (defined as the ratio of power 
flow to one-half the square of the current at the base of the probe) at 

maximum? 

An infinitely long rectangular waveguide has a coaxial line terminating in the short 
side of the guide with the thin central conductor forming a semicircular loop of 
tadius R whose center is a height & above the floor of the guide, as shown in the 
accompanying cross-sectional view. The half-loopis in the plane z = and its radius 
R is sufficiently small that the current can be taken as having a constant value Jy 

everywhere on the loop. 

ey 
os 

| Problem 8.20 

—2R —* 

h 

(a) Prove that to the extent that the current is constant around the half-loop, the 
TM modes are not excited. Give a physical explanation of this lack of 
excitation. 

ar 

(b) Determine the amplitude for the lowest TE mode in the guide and show that 

its value is independent of the height 4. 

(c) Show that the power radiated in either direction in the lowest TE made is 

Roa {aR\ pli ga (aR Peeals) 
where Z is the wave impedance of the TE,, mode. Here assume R < a, b. 

A holiow metallic waveguide with a distortion in the form of a localized bend or 

increase in cross section can support nonpropagating (“bound state”) configura- 
tions of fields in the vicinity of the distortion. Consider a rectangular guide that has 
its distortion confined to a plane, as shown in the figure, and TE 1, as its lowest 

propagating mode, with perpendicular electric field E_ = . On either side of 
the distortion the guide is straight and of width a. Without distortion, g = 

Ey sin( nyla) exp(+ikz), where k? = (w/c)? - (a/a}’. The distortion is described by 
a curvature x(s) = 1/R(s) and a width w(s). Locally the element of area in the plane 
is dA = h(s. 1) ds dt, where s is the length along the guide wall and ¢ the transverse 
coordinate, as shown in the figure, and f(s, 1) = | — x(s). In terms of s and ¢ the, 
Laplacian is 

taf, as\ la (lop Pye Rees Sees 
ae (. =) "has j as 
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If the distortions are very small and change slowly in s on the scale of the width 
4, an ansatz for the solution is 

ufs) mt 
(s, f) = == - sin] —— w.0 = ey 05] 

[The factor in the denominator is equivalent to the factor p '* familiar from Besse 
functions that converts the radial part of the Laplacian in polar coordinates to a 
simple second partial derivative (plus an additional term without derivatives).| 

(a) Show that substitution of the ansatz into the two-dimensional wave equation, 
(+ wee = 0, leads to the equation for u(s), 

i u ) - i Xs) 7 [k? — v(s)Je = 0 with v(s) = (ss ze 
ast 

if small terms are neglected. Interpret v(s) in analogy with the Schrédinger 
equation in one dimension. 

(b) If the distortion is in the form of a bend through an angle @ with constant 

radius of curvature R >> a, show that for #a/R <1 there is a “bound state" 

“(Yl a) | 
at frequency w where 

a 

References: J. Goldstone and R. L. Jaffe, Phys. Rev. B 45, 14100 (1992): J. P, 
Carini, J. T, Londergan, K. Mullen, and D. P. Murdock, Phys. Rev. B 48, 4503 
(1993). 

x(s) = MRIs} 



CHAPTER 9 

Radiating Systems, Multipole Fields 
and Radiation 

In Chapters 7 and 8 we discussed the properties of clectromagnetic waves and 

their propagation in both bounded and unbounded geometries, but very little 
was said about the generation of such waves. In the present chapter we turn to 
this question and discuss the emission of radiation by localized systems of oscil- 
lating charge and current densitics. The initial treatment is straightforward, with- 
out elaborate formalism. It addresses simple systems in which electric dipole, 

magnetic dipole, or electric quadrupole radiation dominates, or the sources are 
sufficiently simple that direct evaluation of the radiation fields is casy. The simple 
multipole expansion of a source in a waveguide is also treated, and the effective 
multipole moments of apertures. These “clementary” discussions are followed 
by the systematic development of multipole ficlds of arbitrary order (/, m) and 
the derivation of exact formulas for multipole radiation of any order by localized 
harmonic systems. Some comparisons of the simple and systematic approaches 
are made. Applications to scattering are presented in Chapter 10, along with 
diffraction and the optical theorem. Considerations of the relativistic Lignard— 
Wicchert ficlds and radiation by rapidly moving charged particles are deferred 
to Chapters 14 and 15. 

9.1 Fields and Radiation of a Localized Oscillating Source 

For a system of charges and currents varying in time we can make a Fourier 

analysis of the time dependence and handle each Fourier component separately. 

We therefore lose no generality by considering the potentials, ficlds, and radia- 

tion from a localized system of charges and currents that vary sinusoidally in 

time: 

= - ior (x, t) one" 6.1) 
dix. = Iie" 

As usual, the real part of such expressions is to be taken to obtain physical 

quantities.* The electromagnetic potentials and fields are assumed to have the 

same time dependence. The sources arc located in otherwise empty spacc. 

*See Problem 9.3 for some of the subtleties that can arise over factors of 2. There are also factors of 

2in the correspondence between classical and guantum-mechanical quantities. For example, in a one- 
electron atom our classical dipole moment p is replaced by 2e(f|r|é for a transition [rom state i to 

state f. 

407 
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It was shown in Chapter 6 that the solution for the vector potential A(x, 1) 
in the Lorenz gauge is 

be Mx’) x -x'| nent fare far feel) 6 (x, 1} ae x | de’ ix—*'l t 3 (9.2) 

provided no boundary surfaces are present. The Dirac delta function assures the 
causal behavior of the fields. With the sinusoidal time dependence (9.1), the 
solution for A becomes 

une 
A(x) = - | I(x’) Eo¥l Bx! (9.3) 

where k = w/c is the wave number, and a sinusoidal time dependence is under- 
stood. The magnetic field is given by 

1 
H=—VxA (9.4) 

Ho 

while, outside the source, the electric field is 

E= a vxH (9.5) 

where Zy) = V wy/€y is the impedance of free space. 
Given a current distribution J(x’), the ficlds can, in principle at least, be 

determined by calculating the intcgral in (9.3). We will consider one or two ex- 
amples of direct integration of the source integral in Section 9.4. But at present 
we wish to establish certain simple, but general, properties of the fields in the 
limit that the source of current is confined to a small region, very small in fact 
compared to a wayclength. If the source dimensions arc of order d and the wave- 
length is A = 27c/w, and if d << A, then there are three spatial regions of interest: 

The near (static) zone: d<r<a 

The intermediate (induction) zone: d<r~,z 

The far (radiation) zone: d<A<«Kr 

We will see that the fields have very different propertics in the different zones. 
In the near zonc the fields have the character of static ficlds, with radial com- 
ponents and variation with distance that depend in detail on the propertics of 
the source. In the far zone, on the other hand, the ficlds are transverse to the 
radius vector and fall off as r~', typical of radiation fields. 

For the near zone where ¢ << A (or kr << 1) the exponential in (9.3) can be 
replaced by unity. Then the vector potential is of the form already considered in 
Chapter 5. The inverse distance can be expanded using (3.70), with the result, 

Ho 4m Yin(®, 6) lim A(x) = 
B09 4n 1 fewer. by dx (9.6) 
=‘ Lm 

This shows that the near ficlds are quasi-stationary, oscillating harmonically as 
e~'", but otherwise static in character. 

In the far zone (kr >> 1) the exponential in (9.3) oscillates rapidly and de- 
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termines the behavior of the vector poicntial. In this region it is sufficient to 
approximate* 

|x - — nex’ (9.7) 

where n is a unit vector in the direction of x. Furthermore, if only the leading 
term in kr is desired, the inverse distance in (9.3) can be replaced by r. Then the 
vector potential is 

py e*” F . 
lim A = BT ane tor ary! 9. Jim (x) Ge (xe Px {9.8) 

This demonstrates that in the far zonc the vector potential behaves as an outgoing 
spherical wave with an angular dependent coefiicient. It is easy to show that the 
ficlds calculated from (9.4) and (9.5) are transverse to the radius vector and fall 
off as r~'. They thus correspond to radiation fields. If the source dimensions are 
small compared to a wavelength it is appropriate to expand the integral in (9.8) 
in powers of k: 

iin aie 
Jim AQ) = fe 5 C8" [ sew'yem oxy dx! (9.9) 

The magnitude of the nth term is given by 

Fa [ se0y%0 ox) dbx! (9.10) 

Since the order of magnitude of x’ is d and kd is small compared to unity by 
assumption, the successive terms in the expansion of A cvidenily fall off rapidly 
with #2. Consequently the radiation emitted from the source will come mainly 
from the first nonvanishing term in the expansion (9.9). We will examine the first 
few of these in the following sections. 

In the intermediate or induction zone the two alternative approximations 
leading to (9.6) and (9.8) cannot be made: all powers of kr must be retained. 
Without marshalling the full apparatus of vector multipole ficlds, described in 
Sections 9.6 and beyond, we can abstract cnough for our immediate purpose. The 
Kcy result is the exact expansion (9.98) for the Green function appearing in (9.3). 
For points outside the source (9.3) then becomes 

A(x) = poik Dd HP(Kr)¥ (8, &) [ serviceryvsnce 6) Px’ (11) in 

If the source dimensions are smali compared to a wavelength, j{kr") can be 
approximated by (9.88). Then the result for the vector potential is of the form 
of (9.6), but with the replacement, 

1 ee 
pri Far ll + alike) + an(ikrP +--+ a((ikry) (9.12) 

* Actually (9.7) is valid for r >> ¢, independent of the value of kr. It is therefore an adequate ap- 
proximation even in the near zone 
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The numcrical coefficients a, come from the explicit expressions for the spherical 
Hanke! functions. The right-hand side of (9.12) shows the transition from the 
static-zone result (9.6) for kr < 1 to the radiation-zone form (9.9) for kr >> 1. 

Before discussing clectric dipole and other types of radiation, we examinc 
the question of electric monopole ficlds when the sources vary in time. The analog 
of (9.2) for the scalar potential is 

2,zal Sy f gp PRO) of k= x] D(x, 4) =a fee fa Ix x'| ale + 5 : 

The electric monopole contribution is obtained by replacing |x - x"| > |x[ =r 
under the integral. The result is 

¢ 
Pronopuie(% f) = a ane 

where q(t) is the total charge of the source. Since charge is conserved and a 
localized source is by definition one that does not have charge flowing into or 
away from it, the total charge q is independent of time. Thus the electric monopole 
part of the potential (and fields) of a localized source is of necessity static. The 
fields with harmonic time dependence e° ", # # 0, have no monopole terms, 

We now turn to the lowest order multipole fields for » # 0. Because these 
ficlds can be calculated from the vector potential alone via (9.4) and (9.5), we 
omit explicit reference to the scalar potential in what follows. 

9.2 Electric Dipole Fields and Radiation 

If only the first term in (9.9) is kept, the vector potential is 
jkr 

— he dx! A(x) 7 [1% dex (9.13) 

Examination of (9.11) and (9.12) shows that (9.13) is the / = 0 part of the series 
and that it is valid everywhere outside the source, not just in the far zone. The 
integral can be put in more fumiliar terms by an integration by parts: 

i Jd'x' = - { x'(V! - Dyd'x! = =i | x'p(x')d°x! (9.14) 

since from the continuity equation, 

lop = VI (9.15) 
Thus the vector potential is 

eo AQ) = --— : (x) ra (9.16) 

where 

p= i x'p(x'}Px’ (O17) 

is the electric dipole moment, as defined in electrostatics by (4.8). 
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The electric dipole fields from (9.4) and (9.5) are 

1 fmees 
w) (9.18) 

Fie — {en x py x (5- ie | 

We note that the magnetic field is transverse to the radius vector at all distances, 

but that the electric field has components paralic] and perpendicular to n, 

In the radiation zone the fields take on the limiting forms, 

as (nx 
4a . (9.19) 

E=Z,Hxn 

showing the typical behavior of radiation fields. 
In the near zone, on the other hand, the fields approach 

iw 
H=—({n = aq (BX P) (920) 

i 1 
E = 7,,, Gate: p) - Pls 

The electric field, apart from its oscillations in time, is just the static electric dipole 

field (4.13). The magnetic field times Z is a factor (kr) smaller than the electric 

field in the region where kr << 1. Thus the fields in the near zone are dominantly 

electric in nature. The magnetic field vanishes, of course, in the static limit 

k + 0. Then the near zone extends to infinity. 
The time-averaged power radiated per unit solid angle by the oscillating 

dipole moment p is 

fe i Re[r?n- E x H*] (9.21) 

where E and H are given by (9.19). Thus we find 

aP _ EZ, 
dQ” 320?  |(m x p) x nP (9.22) 

The state of polarization of the radiation is given by the vector inside the absolute 

value signs.* If the components of p all have the same phase, the angular distri- 

bution is a typical dipole pattern, 

dP _ Ly 
dQ 320° 

ke |p/? sin?e (9.23) 

*In writing angular distributions of radiation we will always exhibit the polarization explicitly by 
writing the absolute square of a vector that is proportional (o the electric field. If the angular distri- 
bution for some particular polarization is desired, it can then be obtained by taking the scalar product 
of the vector with the appropriate polarization vector before squaring. 
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where the angle is measured from the direction of p. The total power radiateg, 
independent of the relative phases of the components of p, is 

CZ ok* 

P= De tpi (9.24) 

A simple example of an electric dipole radiator is a center-fed, linear antenna 
whose length d is small compared to a wavelength. The antenna is assumed to 
be oriented along the 2 axis, extending from z = (d/2) to z = —(d/2) with a 
narrow gap at the center for purposes of excitation. as shown in Fig. 9.1. The 
current is in the same direction in each half of the antenna, having a value Iyat 
the gap and falling approximately linearly to zero at the ends: 

= 2\z 
U(zjet" = ui - 2) al (9.25) 

From the continuity equation (9.15) the linear-charge density p' (charge per unit 
length) is constant along cach arm of the antenna, with the value, 

2ily 
at (9.26) e(@=t_ 

the upper (lower) sign being appropriate for positive (negative) values of z. The 
dipole moment (9.17) is parallel to the z axis and has the magnitude 

(di2) Tod 

p= in pl(z) dz = (9.21) 
we 

The angular distribution of radiated power is 

dP Zoli Esa 
an 18a {kay sin’@ (9.28) 

while the total power radiated is 

5. Zoli(kdy 
P= 487 (9.29) 

We sce that for a fixed input current the power radiated increases as the square 
of the frequency, at least in the long-wavelength domain where kd << 1, 

The coefficient of 77/2 in (9.29) has the dimensions of a resistance and is 
called the radiation resistance R..3 of the antenna. It corresponds to the second 
term in (6.137) and is the total resistance of the antenna if the conductivity is 

Figure 9.1 Short, center-fed, linear antenna. 
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perfect. For this short center-fed antenna R,.u ~ 5(kd)’ ohms. In principle the 
input reactance for the antenna can be calculated by applying (6.138) or (6.140) 
of Section 6.9. Unfortunately the calculation depends crucially on the strong 
fields near the gap and thus is sensitive to the exact shape and method of exci- 
tation. Since the system is an electric dipole and the electrostatic dipole field 
dominates near the antenna, we can nevertheless say with certainty that the re- 

actance is negative (capacitive) for small kd. 

9.3 Magnetic Dipole and Electric Quadrupole Fields 

The next term in expansion (9.9) leads to a vector potential, 

be (any & Ga inex’) dix! AQ) => (: it) / Jx')(n + x’) dx (9.30) 

where we have included the correct terms from (9.12) to make (9.30) valid ev- 

erywhere outside the source. This vector potential can be written as the sum of 
two terms: One gives a transverse magnetic induction and the other gives a trans- 
verse electric field. These physically distinct contributions can be scparated by 
writing the integrand in (9.30) as the sum of a part symmetric in J and x’ and a 

part that is antisymmetric. Thus 

(n+ x’)3 = $[(n-x’)S + (m+ J)x') + 3" x J) XT (9.31) 

The second, antisymmetric part is recognizable as the magnetization due to the 
current J: 

M = 3(x x J) (9.32) 

The first, symmetric term will be shown to be related to the electric quadrupole 
moment density. 

Considering only the arse term, we have the vector potential, 

A(x) = “He #° (n x m) a = (i = i) (9.33) 

where m is the magnetic dipole moment, 

m = | mas = if (x x J) dx (9.34) 

The fields can be determined by noting that the vector potential (9.33) is pro- 
portional to the magnetic field (9.18) for an electric dipole. This means that the 
magnetic field for the present magnetic dipole source will be equal to 1/Zp times 
the electric field for the electric dipole, with the substitution p > m/c. Thus we 

find 

ek 
H= + {ea xm)Xn + (3n(n +m) — mi(4 = lee (9.35) 

Similarly, the electric field for a magnetic dipole source is the negative of Zo 
times the magnetic field for an electric dipole (with p — mic): 

age ee 
B= -7 eax m — (1 x) (9.36) 
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All! the arguments concerning the behavior of the fields in the near and far 
zones are the same as for the electric dipole source, with the interchange 
E — Z,H. Z,H > —E, p > mé. Similarly the radiation pattern and total power 
radiated are the same for the two kinds of dipole. The only difference in the 
radiation fieids is in the polarization. For an electric dipole the electric vector 
lies in the plane defined by n and p, while for a magnetic dipole it is perpendicular 
to the plane defined by n and m. 

The integra! of the symmetric term in (9.31) can be transformed by an in- 
tegration by parts and some rearrangement: 

Sf @-xys + (ne Dx] ax’ = 2 f vax ype’) ax (9.37) 

The continuity equation (9.15) has been used to replace V+ J by iwp. Since the 
integral involves second moments of the charge density, this symmetric part cor- 
responds to an electric quadrupole source. The vector potential is 

A et : 7 
A(x) = a ( - x) [ve xy) ay’ (9.38) 

The compicte fields are somewhat complicated to write down. We content our- 
selves with the fields in the radiation zone. Then it is easy to see that 

H = ikn X Alyy 
39) 

E = ikZ,(n x A) x a) (9:39) 

Consequently the magnetic field is 

ick? elt” ’ Nolxt) de? H= Rae (nm X x')(n- x')p(x’) dx’ (9.40) 

With definition (4.9) for the quadrupole moment tensor, 

Q.p = | (Bxaxs — 78,p)o(x) x (Al) 

the integral in (9.40) can be written 

nx [xe + x)p(x') dx’ = An x Q(n) (9.42) 

The vector Q(n) is defined as having components, 

Q.= Y Quay (9.43) 

We note that it depends in magnitude and direction on the direction of obser- 
vation as well as on the properties of the source. With these definitions we have 
the magnetic induction, 

n x Qn) (9.44) 

and the time-averaged power radiated per unit solid angle. 

dP _ CZ 
dQ 11520" Ke |[n x Q(n)] x nP (9.45) 
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where again the direction of the radiated electric field is given by the vector inside 
the absolute value signs. 

The genera! angular distribution is complicated. But the total power radiated 
can be calculated in a straightforward way. With the definition of Q{m) we can 
write the angular dependence as 

|[n x Q(n)] x nf = Q*-Q — |n- QP 

=D QsQaynany - 2, Qi QyoMahyyNs 
By 

(9.46) 

The necessary angular integrals over products of the rectangular components of 

n arc readily found to be 

7 
[ nun, dQ, = : Say 

Fi (9.47) 
| nyNyhytts dQ = iL (8ip8ya + Bay Spa + Onadpy) 

Then we find 

[itm x acm x wb a= 4a] Lag % ea 
! ¢ rr [= Qin Qn + 2D [QonP 
15 |“ Y oo 

Since Q,,, is a tensor whose main diagonal sum is zero, the first term in the square 

brackets vanishes identically. Thus we obtain the final result for the total power 
radiated by a quadrupole source: 

p= = lQupl? (9.49) 

The radiated power varies as the sixth power of the frequency for fixed quad- 
rupole moments, compared to the fourth power for dipole radiation. 

A simple example of a radiating quadrupole source is an oscillating sphe- 
roidal distribution of charge. The off-diagonal clements of Q.,g vanish. The di- 

agonal elements may be written 

On = Qn Qu = Qn = —3Q0 (9.50) 

Then the angular distribution of radiated power is 

dP Zh, yn 
a Siw Qe sin’@ cos’ (9.5). 

This is a four-lobed pattern, as shown in Fig. 9.2, with maxima at 6 = 7/4 and 
3/4. The total power radiated by this quadrupole is 

6Q2 
p = 2k (9.52) 

9607 

The labor involved in manipulating higher terms in expansion (9.9) of the 

vector potential (9.8) becomes increasingly prohibitive as the expansion is ex- 
tended beyond the electric quadrupole terms. Another disadvantage of the pres- 
ent approach is that physically distinct fields such as those of the magnetic dipole 
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2 

Figure 9.2. A quadrupole radiation pattern. 

and the electric quadrupole must be disentangled from the separate terms in 
(9.9). Finally, the present technique is useful only in the long-wavelength limit, 
A systematic development of multipole radiation begins in Section 9.6, It involves 
a fairly elaborate mathematical apparatus, but the price paid is worthwhile. The 
treatment allows all multipole orders to be handled in the same way; the results 
are valid for all wavelengths; the physically different electric and magnetic mul- 
tipoles are clearly separated from the beginning. 

9.4 Center-Fed Linear Antenna 

A, Approximation of Sinusoidal Current 

For certain radiating systems the geometry of current flow is sufficiently sim- 
ple that integral (9.3) for the vector potential can be found in relatively simple, 
closed form if the form of the current is assumed known. As an example of such 
a system we consider a thin, linear antenna of length d which is excited across a 
small gap at its midpoint. The antenna is assumed to be oriented along the z axis 
with its gap at the origin, as indicated in Fig. 9.3. Lf damping due to the emission 
of radiation is neglected and the antenna is thin cnough, the current along the 
antenna can be taken as sinusoidal in time and space with wave number k = wic, 
and is symmetric on the two arms of the antenna. The current vanishes at the 
ends of the antenna. Hence the current density can be written. 

Mx) =1 sin( - tle!) (x) A(y)es (9.53) 

for |z| < (d/2). The delta functions assure that the current flows only along the 
z axis. / is the peak value of the current if kd = 7. The current at the gap is 
Ig = Isin{kd/2). 

With the current density (9.53) the vector potential is in the z direction and 
in the radiation zone has the form [from (9.8)]: 

jkr pheli2) 

AQ) = 22 [ sin( 4 — jjz| Jerse” de (9.54) 
4a or s-cany 2 
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Coaxial 
feed 

Figure 9.3. Center-fed, linear antenna 

The result of straightforward integration is 

( ) (*’) 
cos| — cos 8} — cos 

g Hin 2le™ 2 2 
4a kr sin’@ 

A(x) = (9.55) 

Since the magnetic field in the radiation zone is given by H = ikn X A/jto, its 

magnitude is ]H| = k sin @|A5|/uo. Thus the time-averaged power radiated per 
unit solid angle is 

(e ) (3) 
cos| = cos @} — cos| -s 

ap Zr | \2 fd: (9.56) 
dQ 8x? sin @ a 

The electric vector is in the direction of the component of A perpendicular to a. 
Consequently the polarization of the radiation lies in the plane containing the 
antenna and the radius vector to the observation point. 

The angular distribution (9.56) depends on the value of kd. In the long- 
wavelength limit (kd << 1) it is easy to show that it reduces to the dipole result 

(9.28). For the special values kd = 77(27), corresponding to a half (two halves) 
of a wavelength of current oscillation along the antenna, the angular distributions 
are 

7 
cos*| = cos @ 7 0098 

ap_ 20) sme 
dQ 8a 

4 oos'(? cos °) (2:97) 

aap 

These angular distributions are shown in Fig. 9.7, where they are compared to 
multipole expansions. The half-wave antenna distribution is seen to be quite 
similar to a simple dipole pattern, but the full-wave antenna has a considerably 

sharper distribution. 
The full-wave antenna distribution can be thought of as duc to the coherent 

superposition of the fields of two half-wave antennas, one above the other, ex- 
cited in phase. The intensity at @ = 7/2, where the waves add algebraically, is 
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four times that of a half-wave antenna. At angles away from @ = 7/2 the ampli- 
tudes tend to interfere, giving the narrower pattern. By suitable arrangement of 
a set of basic antennas, such as the half-wave antenna, with the phasing of the 
currents appropriately chosen, arbitrary radiation patterns can be formed by co- 
herent superposition. The interested reader should refer to the electrical engi- 

neering literature for detailed treatments of antenna arrays. 

B. The Antenna as a Boundary- Value Problem 

Only for infinitely thin conductors are we justified in assuming that the cur- 
rent along the antenna is sinusoidal, or indeed has any other known form. A 
finite-sized antenna with a given type of excitation is actually a complicated 
boundary-value problem. Without attempting solution of such problems, we give 
some preliminary considerations on setting up the boundary-value problem for 
a straight antenna with circular cross section of radius a and length d, of which 
the center-fed antenna of Fig, 9.3 is one example. We assume that the conductor 
is perfectly conducting and has a small enough radius compared to both a wave- 
length A and the length d that current flow on the surface has only a longitudinal 
(z) component, and that the fields have azimuthal symmetry. Then the vector 
potential A will have only a z component. With harmonic time dependence of 
frequency w and in the Lorentz gauge. the scalar potential and the electric field 
are given in terms of A by 

D(x) = 

E(x) = Fim +A) + KA] 

Since A = %A,(x), the z component of the electric field is 

ic { # 
E(x) = rs (S + w) Aa 

But on the surface of the perfectly conducting antenna the tangential component 
of E vanishes. We thus establish the important fact that the vector potential A, 
(and also the scalar potential) on the surface of the antenna are strictly sinusoidal: 

(5 + ea Ap = 4,2) =0 (9.59) 

This is an exact statement, in contrast to the much rougher assumption that the 
current is sinusoidal. 

An integral equation for the current can be found from (9.3). If the total 
current flow in the z direction is /(z), then (9.3) gives for A, on the surface of 
the antenna, 

agid 
Ap = a,2) = be f z')K{z — z') dz’ 

where 

kg 2) ae exp[ikV{z — z'f + 4c? sin?p] 

V@-zy tara “F 6) 
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is the azimuthal average of the Green function e“*/R. The condition (9.59) leads 
to the integro-differential equation 

& 2 

- (iz+¥) 
This can be regarded as a differential equation for the integral, or equivalently 
one can integrate (9.59) and equate it to A,{p = a, z). The result is the integral 

equation 

Te: H2/)K(z — 2!) dz! (9.61) 
20 

zyrd 
a, coskz + az sinkz = i Uz')K(z — 2') dz’ 

70 

The constants a, and a) are determined by the method of excitation and by the 

boundary conditions that the current vanishes at the ends of the antenna. 
The solution of the integral equation is not easy. From the form of (9.60) it 

is clear that when z‘ = z care must be taken and the finite radius is important. 

For a — 0, the current can be shown to be sinusoidal. but the expansion param- 

eter for corrections turns out to be the reciprocal of In(d/a). This means that even 

for d/a = 10° there can be corrections of the order of 10-15%. When there is a 
current node near the place of excitation, such corrections can change the an- 
tenna’s input impedance drastically. Various approximate methods of solution 
of (9.61) are described by Jones. A detailed discussion of his version of the theory 
and the results of numerical calculations for the current, resistance, and reactance 
of a linear center-fed antenna are given by Hallén. Other references are cited in 
the suggested reading at the end of the chapter. 

9.5 Multipole Expansion for Localized Source 
or Aperture in Waveguide 

Ifa source in the form of a probe or loop or aperture in a waveguide is sufficiently 
small in dimensions compared to the distances over which the fields vary appre- 
ciably, it can be usefully approximated by its lowest order multipole moments, 
usually electric and magnetic dipoles. Different sources possessing the samc low- 
est order multipole moments will produce sensibly the same excitations in the 
waveguide. Often the clectric dipole or magnetic dipole moments can be calcu- 
lated from static fields, or even estimated geometrically. Even if the source is not 
truly small, the multipole expansion gives a qualitative, and often semiquantita- 

tive, understanding of its propertics. 

A. Current Source Inside Guide 

In Section 8.12 it was shown that the amplitudes A{*? for excitation of the 
Ath mode are proportional to the integral 

iE S-EO dx 

where the integral is extended over the region where J is different from zero. If 
the mode fields EY do not vary appreciably over the source, they can be ex- 
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panded in Taylor series around some suitably chosen origin. The integral is thus 
written, dropping the sub- and superscripts on E(”: 

fa. Ed’ = = | 100 E,(0) + S x5 

From (9.14) and (9.17) we see that the first term is 

| ax (9.62) 

E(0)- i U(x) dx = —iop + E(0) (9.63) 

where p is the electric dipole moment of the source: 

i 3. =-—] Ix) dx 
o 

This can be transformed into the more familiar form (9.17) by the means of the 
steps in (9.14), provided the surface integral at the walls of the waveguide can 

be dropped. This necessitates choosing the origin for the multipole expansion 
such that J,,t, vanishes at the walls. This remark applies to all the multipole 
moments. The use of the forms involving the electric and magnetic charge den- 
sities p and py requires that (x,J, + XpJ,,)x, +++ x, vanish at the wails of the 

guide. The above-mentioned form for the electric dipole and the usual expression 
(9.34) for the magnetic dipole are correct as they stand, without concern about 
choice of origin, 

The second term in (9.62) is of the same general form as (9.30) and is handled 

the same way. The product J,,x, is written as the sum of symmetric and antisym- 
metric terms, just as in (9.31): 

BiG Ons dental} 21 (| 

+23 Gata + Jove) =) 
cfs 

(9.64) 

The first (antisymmetric) part has been written so that the magnetic moment 
density and the curl of the clectric ficld are clearly visible. With the help of 

aw V x E = fwB, the antisymmetric contribution to the right side of 
(9.62) can be written 

J [5 JnXp 2B «| Px = iom + B(O) (9.65) 
AX antisym Bs 

where m is the magnetic dipole moment (9.34) of the source. Equations (9.63) 
and (9.65) give the leading order multipole moment contributions to the source 
integral (9.62). 

Other terms in the expansion in (9.62) give rise to higher order multipoles. 
The symmetric part of (9.64) can be shown, just as in Section 9.3, to involve the 
traceless electric quadrupole moment (9.41). The first step is to note that if the 
surface integrals vanish (sec above), 

| (ata + Ipte) Bx = —io { xaxpp(x) x 
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Then the second double sum in (9.64), integrated over the volume of the current 
distribution, takes the form 

FEF 0) | 000) sora ee 

The value of the double sum is unchanged by the replacement xyx, > 
(akg — 4775qp) because V-E = 0. Thus the symmetric part of the second term 
in (9.62) is 

| [= fete ol ax = -2 > Oop Et Ip -* (0) (9.66) 

Similarly an antisymmetric part of the next terms in (9.62), involving xgx,, gives 
a contribution 

1 @E, [ [: D otety a an | r= FE OGTEO O67) 
2 otey antisym 

in(w.f) 

where Q%, is the magnetic quadrupole moment of the source, given by (9.41) with 
the electric charge density p(x) replaced by the magnetic charge density, 

p(x) = -V-M = VO x J) (9.68) 

If the various contributions are combined, the expression (8.146) for the 
amplitude A{* has as its multipole expansion, 

Age = Ze {p © EO(0) = m+ BOC) 
p : (9.69) @ abi +23 [o% 0) - 0% o| + % aX, P axy 

It should be remembered that here the mode fields E&’ are normalized according 
to (8.131). The expansion is most useful if the source is such that the series 

converges rapidly and is adequately approximated by its first terms. The posi- 

tioning and orientation of probes or antennas to excite preferentially certain 
modes can be accomplished simply by considering the directions of the electric 
and magnetic dipole (or higher) moments of the source and the normal mode 

fields. For example, the excitation of TE modes, with their axial magnetic fields, 

can be produced by a magnetic dipole antenna whose dipole moment is parallel 
to the axis of the guide. TM modes cannot be excited by such an antenna, except 
via higher multipole moments. 

B. Aperture in Side Walls of Guide 

Apertures in the walls of a waveguide can be considered as sources (or sinks) 
of energy. In Section 8.12 it was noted that if the guide walls have openings in 
the volume considered to contain the sources, the amplitudes A{*) are given by 
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(8.147) instead of (8.146). With the assumption that there is only one aperture, 
and no actual current density, the amplitude for excitation of the Ath mode ig 

4 
2 

where n is an inwardly directed normal and the integral is over the aperture jn 
the walls of the guide. If the aperture is small compared to a wavelength or other 
scale of variation of the fields, the mode ficld H(”? can be expanded just as before, 
The lowest order term, with H? treated as constant over the aperture, evidently 
leads to a coupling of the magnetic dipole type. The next terms, with linear 
variation of the mode field, give rise to electric dipole and magnetic quadrupole 
couplings, exactly as for (9.64)-(9.66), but with the roles of electric and magnetic 
interactions interchanged. The result is an expansion of (9.70) like (9.69): 

AQ = - [ n-(E x HY) da (9.70) eae 

\Z, = ‘si 
A? = FS [par EO) = me = BLO) + + (9.71) 

where the effective clectric and magnetic dipole moments are 

Pow = en i (x + Eran) da (9.72) 

mae = > { (0% Eig) da 
ipo 

In these expressions the integration is over the aperture, the electric field Ejyy is 
the exact tangential field in the opening, and in (9.71) the mode fields are eval- 
uated at (the center of) the aperture. The effective moments (9,72) are the equiv- 
alent dipoles whose fields (9.18) and (9.35)-(9.36) represent the radiation fields 
of a small aperture in a flat, perfectly conducting screen (see Problem 10,10). 
Comparison of (9.71) and (9.69) shows that the dipole moments (9.72) are only 
halt as cffective in producing a given amplitude as arc the real dipole moments 
of @ source located inside the guide. The effective dipoles of an aperture are in 
some sense half in and hulf out of the guide. 

C. Effective Dipole Moments of Apertures 

On first encounter the effective dipole moments (9.72) are somewhat mys- 
terious. As already mentioned, they have a precise meaning in terms of the elec- 
tric and magnetic dipole paris of the multipole expansion of the fields radiated 
through an aperture in a flat perfectly conducting screen (considered later: Prob- 
lem 10.10}. For small apertures they can also be related to the solutions of ap- 
propriate static or quasi-static boundary-value problems. Such problems have 
already been discussed (Sections 3.13 and 5.13), and the results are appropriated 
below. 

If an aperture is very small compared to the distance over which the fields 
change appreciably, the boundary-value problem can be approximated by one in 
which the fields “far from the aperture” (measured in units of the aperture di- 
mension) are those that would exist if the aperture were absent. Except for very 
elongated apcrtures, it will be sufficiently accurate to take the surface to be flat 
and the “asymptotic” fields to be the same in all directions away from the ap- 
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erture. For an opening in a perfectly conducting surface. then, the boundary- 
value problem is specified by the normal electric field E, and the tangential 
magnetic field Hy that would exist in the absence of the opening. The fields Ey 

and H, are themselves the result of some boundary-value problem, of propaga- 
tion in a waveguide or reffection of a plane wave from a screen, for example. But 
for the purpose at hand, they are treated as given. To lowest order their time 
dependence can be ignored, provided the effective electric dipole moment is 
related to E, and the magnetic moment to Hp. (Sce, however, Problem 9.20.) 

The exact form of the fields around the opening depends on its shape, but 

some qualitative observations can be made by merely examining the general 
behavior of the lines of force. Outside a sphere enclosing the aperture the fields 
may be represented by a multipole expansion. The Icading terms will be dipole 

fields. Figure 9.4 shows the qualitative behavior. The loop of magnetic field pro- 
truding above the plane on the left has the appearance of a line of force from a 
magnetic dipole whose moment is directed oppositely to Hp, as indicated by the 
direction of the moment m‘*? shown below. The magnetic field below the plane 
can be viewed as the unperturbed Hp, plus an opposing dipole field (dashed lines 
in Fig. 9.4) whose moment is oriented parallel to Hy (denoted by im ? below). 
Similarly, the electric ficld lines above the plane appear to originate from a ver- 
tical dipole moment p‘*? directed along Ey, while below the plane the field has 
the appearance of the unperturbed normal field Ey. plus the field from a dipole 
p' ’, directed oppositely to E,. The use of effective dipole fields is of course 
restricted to regions some distance from the aperture. Right in the aperture the 
fields bear no resemblance to dipole fields. Nevertheless, the dipole approxima- 
tion is useful qualitatively everywhere, and the effective moments are all that are 
needed to evaluate the couplings of small apertures. 

The preceding qualitative discussion has one serious deficiency. While it is 
correct to state that the electric dipole moment is always directed parallel or 
antiparallel to E, and so is normal to the aperture, the magnetic dipole moment 
is not necessarily parallel or antiparallel to Hy. There are two directions in the 
tangent plane, and the relative orientation of the aperture and the direction of 
Hy are relevant in determining the direction of my. Since the effective moments 

are obviously proportional to the field strength, it is appropriate to speak of the 
electric and magnetic polarizabilities of the aperture. The dipole moments can be 
written 

Pee = €oY” Ey (9.73) 
(mg0)0 = > Yais(Ho)s 

where y" is the scalar electric polarizability and yj, is the 2 X 2 magnetic po- 
larizability tensor. The magnetic tensor can be diagonalized by choosing principal 
axes for the aperture. There are thus three polarizabilities (one electric and two 
magnetic) to characterize an arbitrary small aperture. It should be remembered 
that the signs of the y's in (9.73) depend on the side of the surface from which 

the dipole is viewed, as shown in Fig. 9.4. If there are fields on both sides of the 
surface, the expressions in (9.73) must be modified. For example, if there is a 

vertically directed electric field E, above the surface in Fig. 9.46, as well as Ey 

below, then E, in (9.73) is replaced by (Ey — E,). Other possibilities can be 
worked out from (9.73) by linear superposition. 
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4)— 

fo) 
Figure 9.4 Distortion of (a) the tangential magnetic field and (b) the normal clectric 
field by a small aperture in a perfectly conducting surface. The effective dipole 
moments, as viewed from above and below the surface, are indicated beneath. 

The polarizabilities y" and y%f, have the dimensions of length cubed. If a 
typical dimension of the aperture is d, then it can be expected that the polariz- 
abilities will be d* times numerical coefficients of the order of unity, or smaller. 
The expression (9.72) for Perr can be seen to be of the form to yield such a result, 
since E,,, is proportional to Ey, and the two-dimensional integral will give Ey 
times the cube of a length that is characteristic of the aperture. Furthermore, the 
vectorial properties of per in (9.72) correspond to (9.73). On the other hand, the 
expression in (9.72) for mcg is less transparently of the proper form, even though 
dimensionally correct. Some integrations by parts and use of the Maxwell equa- 
tions puts it into the equivalent and more satisfying form: 

me = 2 { x(n» H) da (9.74) 
where n+ H is the exact normal component of H in the aperture and the integra- 
tion is over the plane of the aperture. It is now evident that the connection 
between Hy and my is of the general form shown in (9.73). For a circular opening 
of radius R the effective dipole moments can be taken from the static solutions 
of Sections 3.13 and 5,13. The results are 

4eyR° 8R? 
3 Ey Meg = Pea’ = Hy (9.75) 

where the signs are appropriate for the apertures viewed from the side of the 
surface where E and H are nonvanishing. as can be checked from Fig. 9.4. The 
electric and magnetic polarizabilitics are thus 

4R? 8R? 
Ys a Yet = a Bap (9.76) 

The use of effective dipole moments to describe the clectromagnetic prop- 
erties of smail holes can be traced back to Lord Rayleigh.* The general theory 
was developed by H. A. Bethe’ and has been applied fruitfully to waveguide and 

*Lord Rayleigh, Phil. Mag. XLIV. 28 (1897). reprinted in his Scientific Papers, Vol. IV. p. 305. 
"H. A. Bethe, Phys. Rev. 66, 163 (1944). 
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diffraction problems. It is significant in practical applications that the effective 
dipole moments of arbitrary apertures can be determined experimentally by elec- 
trolytic tank measurements.* 

Examples of the use of multipoles to describe excitation and scattering in 
waveguides and diffraction are left to several problems at the end of the chapter. 
Other material can be found in the list of suggested reading. 

9.6 Spherical Wave Solutions of the Scalar Wave Equation 

In Chapters 3 and 4 spherical harmonic expansions for the solutions of the 

Laplace or Poisson equations were used in potential problems with spherical 
boundaries or to develop multipole expansions of charge densities and their 
fields. Our approach so far for radiating sources has been “brute force,” with 

creation of the lowest order multipoles more or less by hand. Clearly, treatment 
of higher multipoles demands a more systematic approach. We therefore turn to 
the development of vector spherical waves and their relation to time-varying 
sources. 

As a prelude to the vector spherical wave problem, we consider the scalar 
wave equation. A scalar field (x. £) satisfying the source-free wave equation, 

1 ey Vy—--—= k oe oR 0 (9.77) 

can be Fourier-analyzed in time as 

W(x, 1) = f Ux, we" dw (9.78) 

with each Fourier component satisfying the Helmholtz wave equation 

(V? + k)ub(x, w) = 0 (9.79) 

with k? = w°/c®. For problems possessing symmetry properties about some origin, 
it is convenient to have fundamental solutions appropriate to spherical coordi- 

nates. The representation of the Laplacian operator in spherical coordinates is 
given in equation (3.1). The separation of the angular and radial variables follows 
the well-known expansion 

Wx, @) = 3B fil )¥in(, &) (9.80) 
im 

where the spherical harmonics Y,,, ave defined by (3,53). The radial functions 

fm(r) satisfy the radial equation, independent of m, 

qe. 2d. i+ 
i +2442-85 ‘54 =0 (9.81) 

With the substitution, 

i 
fr) = Ta ul) (9.82) 

#§. B. Cohn. Proc. {RE 39. 1416 (1951): 40, 1069 (1952). 
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equation (9.81) is transformed into 

Grated 2 @+4P _ 

[4 Hr, rdr she r adr) = 0 (9.83) 

This equation is just the Bessel equation (3.75) with »v = + 3. Thus the solutions 
for fin(r) are 

fink) = 382 Jy alker) + Bl Ny, valk) (9.84) 
It is customary to define spherical Bessel and Hankel functions, denoted by 

Aix), 0x), OPC), as follows: 
12 

ie) = (2) Jivvale) 

nia) = (Z) Newval) (9.88) 

2x 

For real x, A/°'(x) is the complex conjugate of h{"(x). From the series expansions 
(3.82) and (3.83) one can show that 

u2 

ALDER) = (Z) (rr vale) * Nya) 

wee co; H(@) (9.86) 

n(x) = =( oft 2) (se) 

For the first few valucs of / the explicit forms are: 

fa) = 52%, gry = -8, gy = & 

jury = SBE = 228%, yee) = 05 _ Sax 

(9.87) 

AM) = S = 
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From the series (3.82), (3.83), and the definition (3.85) it is possible to calculate 
the small argument limits (x << 1, /) to be 

. Sah gh eek eRe ike) > Qr+ DH 21 + 3) (9.88) 

Qt yt mx) > - Fa 
2 

a elt 
20 — 21) ) 

where (2/ + 1)! = Ql + LQ! — It - 3) --- (5) - (3)- (1). Similarly the large 
argument limits (x >> /} are 

nix) > : : od 2) (9.89) 

i¢ 

The spherical Bessel functions satisfy the recursion formulas, 

a+) 
2AX) = Zp x) + Za i(X) 

2i(x) = [ziG) — + Dz] (9.90) 
Te +41 

d 
ay FeA@)] = 21-18) ~ es) 

where 2,(x) is any one of the functions j,(x), (x), A$ (x), AP?(x). The Wronskians 
of the various pairs are 

Wim) = WG HEY = =Wer HP?) = Zs (9.91) 
The general solution of (os) in spherical coordinates can be written 

U(x) = D [AVA GY) + ARE %im(8, &) (9.92) 
im 

where the coefficients Aj) and A{;) will be determined by the boundary 

conditions. 
For reference purposes we present the spherical wave expansion for the out- 

going wave Green function G(x, x’), which is appropriate to the equation, 

(+ K)G(x, x’) = —8(x — x’) (9.93) 

in the infinite domain. This Green function, as was shown in Chapter 6, is 

rk\x-x"| ie Cw, x) = (9.94) 
| 

The spherical wave expansion for G(x, x’) can be obtained in exactly the same 
way as was done in Section 3.9 for the Poisson equation [sce especially (3.117) 
and text following]. An expansion of the form 

G(x, x’) = > BA )Y ins 6 VYinlB, 8) (9.95) 
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substituted into (9.93) leads to an equation for g,(r, r’): 

# 2d,,, +l i 
sd - = - -r E Sap pe = Ar (9.96) 

The solution that satisfies the boundary conditions of finiteness at the origin ang 
outgoing waves at infinity is 

gilt, ) = Aker hike) (9.97) 

The correct discontinuity in slope is assured if A = ik. Thus the expansion of the 
Green function is 

ein! * t 
= tk (kr hi (kr. Yinl8', £')¥im(O 9. Tape] 7 KR ikrdhider.y SS Vins 6 V¥in(8. 6) (9.98) 

Our emphasis so far has been on the radial functions appropriate to the scalar 
wave cquation, We now reexamine the angular functions in order to introduce 
some concepts of use in considering the vector wave equation. The basic angular 
functions are the spherical harmonics Y,,,(8, @) (3.53), which are solutions of the 
equation 

taf. oa 1 # | a of i a =Ki+ 
[2 6308 (sn @ 3) * sin?9 Z| Yim = HI + WY om (9.98) 

As is well known in quantum mechanics, this equation can be written in the form: 

LY im = 1 + W¥ in (9.100) 
The differential operator L? = 13 + L} + L2, where 

L= ier x ¥) (9.101) 

ish | times the orbital angular-momentum operator of wave mechanics. 
The components of L can be written conveniently in the combinations, 

a a 
L,=L, +il, =e — +i ray L, + ib e(S icota-=) 

a a 
=L, - ily =e -S +i = 9.10; L_=L, —iL, =e (-g + score 2) (9.102) 

a 
hots 

We note that L operates only on angular variables and is independent of r. From 
definition (9.101) it is evident that 

r-L=0 (9.103) 

holds as an operator equation. From the explicit forms (9.102) it is easy to verify 
that L° is equal to the operator on the left side of (9.99). 

From the explicit forms (9.102) and recursion relations for Y,,, the following 
uscful relations can be established: 

LiYim = VE- mi +m +) Yim 
L_¥im = VF my — mF) Yin 1 (9.104) 
LYim = MY im 
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Finally we note the following operator equations concerning the commutation 

properties of L, L?, and V*: 

DL= Li? 
LxL=ib (9.105) 

LY? = VL, 

where 

1¢ i? 
v=" 30-FB (9.106) 

9.7 Multipole Expansion of the Electromagnetic Fields 

With the assumption of a time dependence ¢~'” the Maxwell equations in a 

source-free region of empty space may be written 

xE=ikZH, V = ~ik! Vv x E= ikZ,.H xH iKE/Zy (9.107) 

V-E=0 V-H=0 

where k = o/c. If E is eliminated by combining the two cur] equations, we obtain 

for H, 

(V+k)H=0, V-H=0 

with E given by (9.108) 

Alternatively, H can be eliminated to yield 

(V2 + RE 

with H given by (9.109) 

~~ VKE 
kL 

Either (9.108) or (9.109) is a set of three equations that is equivalent to the 

Maxwell equations (9.107). 
We wish to find multipole solutions for E and H. From (9.108) and (9.109) 

it is evident that cach Cartesian component of H and E satisfies the Helmholtz 

wave equation (9.79). Hence each such component can be written as an expan- 

sion of the general form (9.92). There remains, however, the problem of orches- 

trating the different components in order to satisfy V- H = Q and V-E = 0 and 

to give a pure multipole field of order {/, m). We follow a different and somewhat 

easier path suggested by Bouwkamp and Casimir.* Consider the scalar quantity 

r+ A, where A is a well-behaved vector field. It is straightforward to verify that 

the Laplacian operator acting on this scalar gives 

War A) =r-(WA) + 2V-A (9.110) 

*C. J. Bouwkamp and H. B. G. Casimir, Physica 20,539 (1954). This paper discusses the relationship 
among a number of different, but equivalent, approaches to multipole radiation. 
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From (9.108) and (9.109) it therefore follows that the scalars, r- E andr +H, both 
satisfy the Helmholtz wave equation: 

(4+ Pr E)=0, (V+ h)@-H=0 (9.1) 

The general solution for r+ E is given by (9.92), and similarly for r- H. 
We now define a magnetic multipole field of order (1. m) by the conditions, 

K+) 
r+ Hi? = BAK in, b) 

(9.112) 
T+ Ei, =0 

where 

gilkr) = ASPAM kr) + APP (Kr) (9.113) 
The presence of the factor of (7 + 1)/k is for later convenience. Using the cur} 
equation in (9.109) we can relate r+ H to the electric field: 

Zk roH = re(V XE)=2 (eK V)-E= LE (9.114) 

where L is given by (9.101). With r+ H given by (9.112), the electric field of the 
magnetic multipole must satisfy 

Le Ein '(r. 0. 6) = UE + 1) Zog(kr) ¥in(@. b) (9.115) 
and r+ Ej? = 0, To determine the purely transverse clectric field from (9,115), 
we first observe that the operator L acts only on the angular variables (6, o). 
This means that the radial dependence of Ej” must be given by gi{kr). Second, 
the operator L acting on Y,,, transforms the m value according to (9.104), but 
does not change the / value. Thus the components of E{*” can be at most linear 
combinations of Y,,,"s with different m values and a common /, equal to the ¢ 
value on the right-hand side of (9.115). A moment’s thought shows that for 
L-Ej;? to yield a single Y,,, the components of E4.? must be prepared before- 
hand to compensate for whatever raising or lowering of m values is done by L. 
Thus, in the term L_F., for example, it must be that E, is proportional to L, Y,,,. 
What this amounts to is that the electric ficld should be 

Ein? = ZogkrLY,n(8. 6) 

together with (9.116) 

(My (a) HY az, * Een 

Equation (9.116) specifies the electromagnetic fields of a magnetic multipole of 
order (/, 72). Because the electric field (9.116) is transverse to the radius vector, 
these multipole fields are sometimes called transverse electric (TE) rather than 
magnetic, 

The fields of an electric or transverse magnetic (TM) multipole of order (1, m) 
are specified similarly by the conditions, 

i+) 
k 

r- Ey =- Z im FAK) Vin, b) 117) 

rH? =0 
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Then the electric multipole fields are 

Hy, = filkr)LY (6, $) (9.118) 
i Ey = Vx Hey? 

The radial function f,(kr) is given by an expression like (9.113). 
The fields (9.116) and (9.118) are the spherical wave analogs of the TE and 

TM cylindrical modes of Chapter 8. Just as in the cylindrical waveguide, the two 
sets of multipole fields (9.116) and (9.118) can be shown to form a complete set 

of vector solutions to the Maxwell equations in a source-free region. The ter- 
minology electric and magnetic multipole fields will be used, rather than TM and 
TE, since the sources of each type of field will be scen to be the electric-charge 

density and the magnetic-moment density, respectively. Since the vector spherical 
harmonic, LY,,,, plays an important role, it is convenient to introduce the nor- 

malized form,* 

1 
Xin(B, = > LY, (6, 9.119 (0, 8) = Fe LYin(@, 6) (9.119) 

with the orthogonality properties, 

| Xin * Xim dQ = Si Sn (9.120) 

and 

{xt + (PX Xm) dQ = 0 (9.121) 

for all 1. f', m, m'. 

By combining the two types of fields we can write the general solution to the 
Maxwell equations (9.107): 

H-> [ene m)fkt)Xin ~ 5 alls mW x eh 
tm (9.122) 

E=%5 [: an(l, MDW X f(KAXim + alls medkr%n| 
where the coefficients a,(/, m) and ay(/, m) specify the amounts of electric (/, m) 
multipole and magnetic (/, #2) multipole fields. The radial functions f,(kr) and 
g(kr) are of the form (9.113). The coefficients a,-(/, nt) and a4, m), as well as 

the relative proportions in (9.113), are determined by the sources and boundary 
conditions. To make this explicit, we note that the scalars r-H and r-E are 
sufficient to determine the unknowns in (9.122) according to 

k * andl, m)gikr) = reat Vine Hd (9.123) 
k Loa, m)fi{kr) = Sear Yint +E dO 

*X,,, i defined to be identically zero for £ = 0. Spherically symmetric solutions to the source-free 
Maxwell’s equations exist only in the static limit k > 0. Sce Section 9.1. 
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Knowledge of r-H and r-E at two different radii. 7; and r, in a source-free 
region will therefore permit a complete specification of the fields, including de. 
termination of the relative proportions of Af" and hY? in f, and g,. The use of the 
scalars r-H and r- E permits the connection between the sources p, J and the 

multipole coefficients a; (/, m) and a,</, m) to be established with relative ease 
(see Section 9.10). 

9.8 Properties of Multipole Fields; Energy 
and Angular Momentum of Multipole Radiation 

Before considering the connection between the general solution (9.122) and a 
localized source distribution, we examine the properties of the individual multi- 
pole fields (9.116) and (9.118). In the near zone (kr << 1) the radial function 
fi(kr) is proportional to n,, given by (9.88), unless its coefficient vanishes iden- 
tically. Excluding this possibility, the limiting behavior of the magnetic field for 
an electric (/, 7) multipole is 

ky Yn 
ey “ah = (9.124) 

where the proportionality coefficient is chosen for later convenience. To find the 
electric field we must take the curl of the right-hand side. A useful operator 
identity is 

a 
Vxber— v(1 + 4) (9.125) 

The electric field (9.118) is 

EP 7 ZV xX (72) (9.126) 

Since (Y,,,/r’*') is a solution of the Laplace equation. the first term in (9.125) 
vanishes. Consequently the electric fieid at close distances for an electric (/, mt) 
multipole is 

Es -2( He) (9.127) 

This is exactly the electrostatic multipole field of Section 4.1. We note that the 
magnetic field Hj; is smaller in magnitude than E{/Z, by a factor kr, Hence, 
in the near zone, the magnetic field of an electric multipole is always much smaller 
than the electric field. For the magnetic multipole fields (9.116) evidently the 
roles of E and H are interchanged according to the transformation, 

E®) > - ZH, HY” > EZ, (9.128) 

In the far or radiation zone {kr >> 1) the multipole fields depend on the 

boundary conditions imposed. For definiteness we consider the example of out- 

going waves. appropriate to radiation by a localized source. Then the radial func- 

tion (kr) is proportional to the spherical Hankel function A§(kr). From the 
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asymptotic form (9.89) we see that in the radiation zone the magnetic induction 

for an electric (/, ) multipole goes as 

eit 
HY? + (-a (9.129) 

Then the electric field can be written 

is fe <y elk elke 

Ej,’ = Zo Vi—}] x LY, + Vv x LY, (9.130) 
r r 

Since we have already used the asymptotic form of the spherical Hankel function, 
we are not justified in keeping powers higher than the first in (1/r). With this 
restriction and use of the identity (9.125) we find 

ikr 
F ote) © EW) = -Z,(-i) & [. x LY, = tov? - 1% (9.131) 

where m = (r/r) is a unit vector in the radial direction. The second term is evi- 
dently I/kr times some dimensionless function of angles and can be omitted in 
the limit kr >> |. Then we find that the electric field in the radiation zone is 

EY?) = Z,Hf (9.132) Em 

where Hj”? is given by (9.129). These fields are typical radiation fields, transverse 
to the radius vector and falling off as r~’. For magnetic multipoles the same 
relation holds because the Poynting vector is directed radially outward for both 
types of multipole. 

The multipole fields of a radiating source can be used to calculate the energy 
and angular momentum carried off by the radiation. For definiteness we consider 
a linear superposition of electric (/, nz) multipoles with different m values, but all 

having the same /, and, following (9.122), write the fields as 

Hy = Sag (l.m)Xighi krden 
” (9.133) 
i 

E, = k ZV x H; 

For harmonically varying fields the time-averaged energy density is 

“= 2 (E+ E* + 22H - H*) (9.134) 

In the radiation zone the two terms are equal. Consequently the energy in a 

spherical shell between r and (r + dr) (for kr >> 1) is 

dU = we D ak, mac(l, m) | Xfm *Ximd@ (9.138) 
mae 

where the asymptotic form (9.89) of the spherical Hankel function has been used. 
With the orthogonality integral (9.120) this becomes 

dU py 

dr ORS D lac, m)P 
(9.136) 
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independent of the radius. For a general superposition of electric and magnetic 
multipoles the sum over m becomes a sum over / and m and |ag/? becomes 
lac + |a,,?. The total energy in a spherical shell in the radiation zone is thus 
an incoherent sum over all multipoles. 

The time-averaged angular-momentum density is 

m= x Refr x (E x H*)] (9.137) 

The triple cross product can be expanded and the electric field (9.133) substituted 
to yield, for a superposition of ciectric multipoles, 

m = © RefH*(L+ H)] (9.138) 
20 

Then the angular momentum in a spherical shell between r and (r + dr) in the 
radiation zone is 

podr 
dM = sors Re >: ai (l, m')a,{1, m) { (L + Xenr)*Xin dQ — (9,139) 

With the explicit form (9.119) for X,,,, (9.139) can be written 

aM _ é ant Sak Re >. aR(l, m')a,-(1, m) { Vin bY dO (9.140) 

From the properties of LY,,, tisted in (9.104) and the orthogonality of the spher- 
ical harmonics we obtain the following expressions for the Cartesian components 
of dM/dr: 

aM, __ Mo Vom bm 21) at Wo deo Re 2 (V= m+ om +1) af, m + 1) 
: (9.141) 

+ V(E+ my = m + 1) ak, m = 1)Ja,-(d. m) 

dM, Bo _ 
t= Im S [VE = mE + m + 1) ak, m + 1) 
dr 4wk? m o (9.142) 

= V+ my = m +1) adm = Dag, m) 
1M, 0 2 a = so Sm lac, woe (9.143) 

These equations show that for a general /th-order electric multipole that consists 
of a superposition of different m values only the z component of angular mo- 
mentum is relatively simple. 

For a multipole with a single m value, M, and M, vanish, while a comparison 
of (9.143) and (9.136) shows that 

aM ef ma. 
dr @ dr 

(9.144) 

independent of r. This has the obvious quantum interpretation that the radiation 
from a multipole of order (/, mt) carries off mf units of z component of angular 

momentum per photon of energy #@. Even with a superposition of different m 
values, the same interpretation of (9.143) holds, with each multipole of definite 



dM 

dr 
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m contributing incoherently its share of the z component of angular momentum. 
Now, however, the x and y components are in general nonvanishing. with mul- 
tipoles of adjacent m values contributing in a weighted coherent sum. The be- 
havior contained in (9.140) and exhibited explicitly in (9.141)-(9.143) is familiar 
in the quantum mechanics of a vector operator and its representation with respect 
to basis states of J? and J,.* The angular momentum of multipole fields affords 
aclassical example of this behavior, with the z component being diagonal in the 
{i, m) multipole basis and the x and y components not. 

The characteristics of the angular momentum just presented hold true gen- 
erally, even though our example (9.133) was somewhat specialized. For a super- 

position of both electric and magnetic multipoles of various {/, m) values, the 
angular momentum expression (9.139) is generalized to 

= Mo Re D {twee, m’Ja,(l,m) + ak’, m')asl, m)] | (L* Xpn-)®X jy AD 
2wk' tm 

rom 

+f aE m'Jasdl, mr) — andl’. m')ae(t. m)| i (Ls Xp)" X Xp, ao} 

(9.145) 

The first term in (9.145) is of the same form as (9.139) and represents the sum 

of the electric and magnetic multipoles separately. The second term is an inter- 
ference between electric and magnetic muitipoles. Examination of the structure 
of its angular integral shows that the interference is between electric and mag- 
netic multipoles whose / values differ by unity. This is a necessary consequence 
of the parity properties of the multipole fieids (see below). Apart from this com- 
plication of interference, the properties of dM/dr are as before. 

The quantum-mechanical interpretation of (9.144) concerned the 2 compo- 
nent of angular momentum carried off by each photon, In further analogy with 
quantum mechanics we would expect the ratio of the square of the angular mo- 

mentum to the square of the energy to have value 

MW? (M2 + M2 + M2), _ Kl-+ 1) 
u? u? wo 

But from (9.136) and (9.141)-(9.143) the classical result for a pure (é, t) multi- 

pole is 

(9.146) 

MO |M. 
7 U? oe (9.147) 

The reason for this difference lies in the quantum nature of the electromagnetic 
fields for a single photon. If the z component of angular momentum of a single 
photon is known precisely, the uncertainty principie requires that the other com- 
ponents be uncertain, with mean square values such that (9.146) holds. On the 
other hand, for a state of the radiation field containing many photons (the clas- 
sical limit), the mean square values of the transverse components of angular 
momentum can be made negligible compared to the square of the z component. 

+See for example, E. U. Condon and G. H. Shortley. The Theory of Atomic Spectra. Cambridge 
University Press, Cambridge (1953). p. 63. 
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Then the classical limit (9.147) applies. For a (/, m) multipole field containing 
photons it can be shown* that 

[MO(N)P 2m? + NIE + 1) — ne? 
T7709) ae Nat (9.148) 

This contains (9.146) and (9.147) as limiting cases. 
The quantum-mechanical interpretation of the radiated angular momentum 

per photon for multipole fields contains the selection rules for multipole trans}. 
tions between quantum states. A multipole transition of order (/, m) will connect 
an initial quantum state specified by total angular momentum J and z component 
M to a final quantum state with J’ in the range |J —/[| SJ’ < J + land M’ = 
M — m. Or. alternatively, with two states (J, M) and (J’, M’), possible multipole 
transitions have (/, m2) such that |f —J'| </<J+J' andm=M-—-M’, 

To complete the quantum-mechanical specification of a multipole transition 
it is necessary to state whether the parities of the initial and final states are the 
same or different. The parity of the initial state is equal to the product of the 
parities of the final state and the multipole field. To determine the parity of a 
multipole field we merely examine the behavior of the magnetic field H,,, under 
the parity transformation of inversion through the origin (t > —r), One way of 
seeing that H,,, specifies the parity of a multipole field is to recalf that the inter. 
action of a charged particle and the electromagnetic field is proportional to 
(v- A). If H,,, has a certain parity (even or odd) for a multipole transition, then 
the corresponding A,,, will have the opposite parity, since the curl operation 
changes parity. Then, because y is a polar vector with odd parity, the states 
connected by the interaction operator (v - A) will differ in parity by the parity of 
the magnetic field H,,,. 

For electric multipoles the magnetic field is given by (9.133). The purity trans- 
formation (r > —r) is equivalent to (r > r, 6 7 — 6, d + a) in spherical 
coordinates. The operator L is invariant under inversion, Consequently the parity 
properties of H,,, for electric multipoles are specified by the transformation of 
¥i»(8, &). From (3.53) and (3.50) it is evident that the parity of Y,,, is (- 1), Thus 
we see that the parity of fields of an electric multipole of order (1, m) is (-1). 
Specificaily, the magnetic induction H,,, has parity (—1)', while the electric field 
E,,, has parity (—1)'*', since Ey, = iZyoV X Halk. 

For a magnetic multipole of order (1, m) the parity is (—1)'"). In this case the 
clectric field E,,, is of the same form as H,,, for electric multipoles. Hence the 
parities of the fields are just opposite to those of an electric multipole of the same 
order. 

Correlating the parity changes and angular-momentum changes in quantum 
transitions, we see that only certain combinations of multipole transitions can 
occur. For example, if the states have J = } and J’ = 3, the allowed multipole 
orders are / = 1, 2. If the parities of the two states are the same, we see that 
parity conservation restricts the possibilities, so that only magnetic dipole and 
electric quadruple transitions occur. If the states differ in parity, then electric 
dipole and magnetic quadrupole radiation can be emitted or absorbed. 

*C. Morette De Witt, and J. H. D. Jensen, % Naturforsch. 8a, 267 (1953). Their treatment parallels 
ours closely, with our classical multipole coefficients wp(F. m7) and ay(/, 1) becoming quantum-me- 
chanical photon annihilation operators (the complex conjugates. a7. and a¥,. become Hermitian con- 
jugate creation operators). 
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9.9 Angular Distribution of Multipole Radiation 

For a general localized source distribution, the fields in the radiation zone are 

given by the superposition 

_itt t HSS A lee Kim + aadl. myn Xin) eas 
E>+ZHxn1 

The coefficients a,(/, m) and ay/, m) will be related to the properties of the 

source in the next section. The time-averaged power radiated per unit solid angle 

is 
2 

Fe aE al Marl MXg Xm + alls MXinl] (0-150) 
Within the absolute value signs the dimensions are those of magnetic field, but 
the polarization of the radiation is specified by the directions of the vectors. We 

note that electric and magnetic multipoles of a given (/, 2) have the same angular 
dependence but have polarizations at right angles to one another. Thus the mul- 
tipole order may be determined by measurement of the angular distribution of 
radiated power, but the character of the radiation (electric or magnetic) can be 

determined only by a polarization measurement. 
For a pure multipole of order (/, m) the angular distribution (9.150) reduces 

to a single term, 

dP(l, m) 
dQ 

From definition (9.119) of X,, and properties (9.104), this can be transformed 

into the explicit form: 

Z é = xe [a(l, m)|? |XonP (9.151) 

aP(m) _ Zo lad. mF 3 = mE + me + 1 [Yama P 
do 2KE + 1) + E+ ml = m+ 1) [Vem a? +m? Yin? 

(9.152) 

Table 9.1 lists some of the simpler angular distributions. 
The dipole distributions are seen to be those of a dipole oscillating paraliel 

to the < axis (m = 0) and of two dipoles, one along the x axis and one along the 
y axis, 90° out of phase (m = +1). The dipole and quadrupole angular distribu- 
tions are plotted as polar intensity diagrams in Fig. 9.5. These are representative 
of / = 1 and / = 2 multipole angular distributions, although a general multipole 

Table 9.1 Some Angular Distributions: [X,,.(@, )P 

m 

i 0 +1 +2 

! 3 int 3 ; 
Dipole azsi'e Faq il + cos*o) 

2 OS td cant Sey xe ‘ Bola ay 
Giadripsig” gp BT OOE OE gg ll SCO EEA COO. Teall = cos: #) 
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t=2m=0 

CO 
t=Lm=0 

tmijm=t1 

Figure 9.5 Dipole and quadrupole radiation patterns for pure (J, m) multipoles. 

distribution of order / will involve a coherent superposition of the (2/ + 1) am- 
plitudes for different m, as shown in (9.150). 

It can be shown by means of (3.69) that the absolute squares of the vector 
spherical harmonics obey the sum rule, 

2b+1 
was 153 

4a (9.138) 
a Xin(, BYP = 

Hence the radiation distribution will be isotropic from a source that consists of 
a set of multipoles of order /, with coefficients a(/, m) independent of m, super- 
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posed incoherently. This situation usually prevails in atomic and nuclear radiative 
transitions unless the initial state has been prepared in a special way. 

The total power radiated by a pure muitipole of order (/, m2) is given by the 
integrat of (9.151) over all angles. Since the X,,, are normalized to unity, the 

power radiated is 

P(l, m) = & Jatt, m)/? (9.154) 

For a general source the angular distribution is given by the coherent sum (9.150). 
On integration over angles it is easy to show that the interference terms do not 
contribute. Hence the total power radiated is just an incoherent sum of contri- 

butions from the different multipoles: 

p= sad Ulae(l, mp + Janes dP] (9.155) 

9.10 Sources of Multipole Radiation; Multipole Moments 

Having discussed the properties of multipole fields, the radiation patterns, and 
the angular momentum and energy carried off, we now turn to the connection 
of the fields with the sources that generate them. We assume that there exist 
localized well-behaved distributions of charge p(x, /), current J(x, ), and intrinsic 
magnetization M(x, 1). Furthermore, we assume that the time dependence can 
be analyzed into its Fourier components, and we consider only harmonically 
varying sources, 

p(xye xe, A(xje" (9.156) 

where it is understood that we take the real part of such complex quantities. A 
more general time dependence can be obtained by linear superposition (see also 
Problem 9.1), 

The Maxwell equations for E and H’ 

V-H' =0, Vv x E — ikZ,H’ 

V-E= ple, VX H' + ikE/iZy= 5+ 0x M 

B/j1y are 

(9.157) 

with the continuity equation, 

jop = V-3 (9.158) 

It is convenient to deal with divergenceless fields. Accordingly, we use as field 

variables, H’ and 

EB =E+—J (9.159) 
WE 

In the region outside the sources, E’ reduces to E and H’ to H. In terms of these 

fields the Maxweil equations read 

V-H'=0, Vx E'-ikZH’=—-V¥xJ 
weg (9.160) 

VE =0, VXH+ikE/Z,=0xM 
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The curl equations can be combined to give the inhomogeneous Helmholtz Wave 
equations 

(V+ PYM = -V x (0+ x M) 

and (9.161) 

(V+ RY iZ4kV x (4 + AV x 3) 

These wave equations, together with V- H’ = 0, ¥- E’ = 0, andthe curl equations 
giving E’ in terms of H’ or vice versa, are the counterparts of (9.108) and (9.109) 
when sources are present. 

Since the multipole coefficients in (9.122) are determined according to 
(9.123) from the scalars r- H’ andr- E’, it is sufficient to consider wave equations 
for them, rather than the vector fields E’ and H’. From (9.110), (9.161) and the 
vector relation, r+ (V x A) = (r x ¥)-A = iL- A for any vector field A, we find 
the inhomogeneous wave equations 

(P+ Rye HW = iL (I+ V x (9.162) 

okt (a Sv x3) (V2 + r+ EB’ 

The solutions of these scalar wave equations follow directly from the develop- 
ment in Section 6.4. With the boundary condition of outgoing waves at infinity, 
we have 

wey Ef a ee a ee r+ H’(x) = 77 ix— x] I(x’) + x M(x] dx (9.168) 

ray a neuk [et en ap dle nt giy! re E(x) = dn Suu [Moy + By x30) | as 

To evaluate the multipole coefficients by means of (9.123), we first observe that 
the requirement of outgoing waves at infinity makes Af” = 0 in (9.113). Thus we 
choose fi(kr) = gi{kr) = hf? (kr) in (9.122) as the representation of E and H 
outside the sources. Next we consider the spherical wave representation (9.98) 
for the Green function in (9.163) and assume that the point x is outside a spherical 
surface completely enclosing the sources. Then in the integrations in (9.163), 
r= 1.1, = r. The spherical wave projection needed for (9.123) is 

ikix -x" A farys e dO Vin(®. 8) 5 77 ik hE (rik inl", 6") (9.164) 

By means of this projection we see that ay,(/, m) and a,(/, m) are given in terms 
of the integrands in (9.163) by 

ar(l m) = a ident (a+ Sux) ax Vii + 1) k (9.165) 
3 

aydl, m) = vara! jk) Vig 0+ x Max 

The expressions in (9.165) give the strengths of the various multipole fields 
outside the source in terms of integrals over the source densities J and AL. They 
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can be transformed into more useful forms by means of the following identities: 
Let A(x) be any well-behaved vector field. Then 

L-A=i¥-(Fx A) (9.166) 

Liv x ay =r a) 2 ervey 

These follow from the definition (9.101) of L and simple vector identities. With 
A = Min the first equation and A = J in the second, the integral for a,.{/, m) in 
(9.165) becomes 

BR 
ae(i,m) = Vite Jiao] “(cx M) 

Ties icl a.) 5 
+ pVr-d) 18 Gp | ate 

where we have used (9.158) to express V - J in terms of p. Use of Green's theorem 
on the second term replaces V’ by —k’, while a radial integration by parts on the 
third term casts the radial derivative over onto the sphericai Bessel function. The 
result for the electric multipole coefficient is 

a 
KR cp. [ridkr)} + ik(r + I)ji(kr) 

He or ag(l.m) = —— | Yt, 
iVKL + 1) = ikY + (rx MYj(kr) 

The analogous manipulation with the second equation in (9.165) leads to the 
mugnetic multipole coefficient, 

dx (9.167) 

ay(l,m) = ax 

s a. 
kK fi ._ Vie(r x Dji(kr) + VM es [yi(kr)] 

iV + 1) — Wes Miji(kr) 
(9.168) 

These results are exact expressions, valid for arbitrary frequency and source size. 
For many applications in atomic and nuclear physics the source dimensions 

are very small compared to a wavelength (kr. << 1). Then the multipole co- 
efficients can be simplified considerably. The small argument limit (9.88) can be 
used for the spherical Bessel functions. Keeping only the lowest powers in kr for 
terms involving p or J and Al, we find the approximate electric multipole 
coefficient, 

CE EA 
all) = Gran ( 7 

where the multipole moments are 

v2 

) (Qin + Qin) (9.169) 

Om = { Vina 
and (9.170) 

~ik 
Qin = Tay | Yn Pte x M) dx 

The moment Q,,, is seen to be the same in form as the electrostatic multipole 

moment ¢;,, (4.3). The moment Q},, is an induced electric multipole moment due 
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to the magnetization. It is generally at least a factor kr smaller than the normal 
moment Q,,,. For the magnetic muttipole coefficient a,,{/, m) the corresponding 
long-wavelength approximation is 

axiom) = ae (2) (Min + Mim) (9.171) 

where the magnetic multipole moments are 

1 Min =~) J HVIn Vee xD ax 

and (9.172) 

Min = -[ V5, Ve M Ox 

In contrast to the electric multipole moments Q,,, and Q/,,. for a system with 
intrinsic magnetization the magnetic moments M,,, and Mj, are generally of the 
same order of magnitude. 

In the long-wavelength limit we see clearly that electric multipole fields are 
related to the electric-charge density p, while the magnetic multipole ficlds are 
determined by the magnetic-moment densities, (r x J)/2 and M. 

9.11 Multipole Radiation in Atoms and Nuclei 

Although a full discussion of radiative transitions in atoms and nuclei requires a 
quantum-mechanical treatment, the qualitative aspects can be gleaned from our 
classical formutas by means of semiclassical arguments and simple estimates of 
the effective multipole moments. First of all, we note that the transition proba- 
bility (reciprocal mean life) for emission of a photon of energy fiw is given by 
the radiated power divided by fiw. From (9.154) for the power and (9.169) and 
(9.171) for the amplitudes a,. and ay, in terms of the long-wavelength multipoles, 
we find the transition probability for an electric multipole (/, m), 

oL yk” +1 be wip (4) 1m + Onl? 78 
For a magnetic multipole, Q,,, + Qim > (Uc)[Mim + Mim|- 

The effective multipole moments can be estimated as to order of magnitude 
as follows. Suppose that for the system under consideration the effective charge 
is e, the effective mass of the radiating constituents is mt, and the effective size is 
R. Then the effective magnetization is |M| = O(eh/ntR*), where eh/m is the ef- 
fective magnetic moment of the constituents. The most naive estimates of the 
multipole coefficients are then 

Td, m) = 

he Qin] = OCR"): |Qhml = of 2% er’) 
mec 

and (9.174) 

i 
= [Min + Min| = of nv) 
c nic 
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With these order-of-magnitude estimates some qualitative features of atomic and 
nuclear radiative transitions can be abstracted. In atoms and in nuclei the tran- 

sition energies Aw are invatiably small compared to the rest energy mic? of the 
constituents. We thus see that |Qj,| <<|Qzn| is a universal expectation. Electric 
multipole transitions of order / (denoted by £/) are dominated by the transitional 
charge density, with negligible contribution from the “magnetization charge.” 
On the other hand, magnetic multipole transitions (M/) generally have compa- 

rable contributions from the orbital and intrinsic magnetizations. 
In atoms the electrons arc the radiating constituents. The size of the system 

is R = O(ag!Z.). where ay is the Bohr radius and Z,,, is of order unity for valence 

electron transitions and of order Z for K- or L-sheil x-ray transitions, From 
(9.174) the relative size of the magnetic multipole moments with respect to the 
electric of the same order / is |M|/c|Q| = O(f4/mcR) = O(Z.)/137). For the same 
transition energy, the transition probabilities will be in the ratio 

Tull) of Bu 
rd) ol ca ) U5) 

Only for x-ray transitions in heavy clements are magnetic multipoles even re- 
motely competitive with electric multipoles of the same order. [Note, however, 
that the M/ transitions have the opposite parity properties to the E/ for the 
same J] 

OF interest is the relative size of transition probabilities for multipoles dit- 
fering by one unit in order, Ignoring factors of order unity, we see from (9.173) 
and (9.174) that 

Tew + 1) 

Tes!) 

In atoms the transition energies are of order Ziymc7/(137). while the size is 

R= 0(137 himeZ 4c). We thus find KR = O(Z.4;/137) and the ratio for successive 
El multipoles is of the same order as (9.175). For atomic transitions in which the 

angular-momentum selection rules permit several multipoles, the lowest multi- 
pole generally dominates. For example, if the initial and final angular momenta 
are J = Sand J’ = 3and the states have the opposite parity, the allowed multipoles 
are Fl and M2. The £1 transition will dominate by a factor of order (Zoe! 137)". 

If the parities are the same, the allowed transitions are M1 and £2. Now the two 

transition mechanisms may be comparable, with transition probabilities much 
smaller than for opposite parities. In atoms the dominant transitions are £1; high 
angular momentum states de-excite by a cascade of Fi transitions, if at all 

possible. 
In nuclei the situation is somewhat different. Successive multipoles of the 

same type still obey the estimate (9.176), but the transition energies vary signif- 
icantly. With the nuclear radius R = 1.4 A‘* x 10 ' m as the effective size, 
numerically we have KR = [f#@(MeV)} A’“/140. Energies vary from a few keV 
to several MeV. In heavy nuclei, this corresponds to a range, KR = 10 *-10°'. 
Evidently, for energetic nuclear transitions successive multipotes of the same type 
are not as suppressed as in atoms. For low energies. however, the suppression of 
rate with multipole order is dramatic. M4 isomeric transitions with energies of 
the order of 100 keV or fess can have mean lives of hours. The nuclear estimates 

= OR?) (9.176) 
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for magnetic relative to electric transition rates of the same order. and for an 
electric multipole of one higher order relative to a magnetic transition, are 

) Tel + 1), /(rw[Mev])? A”? 
ao TAD =o) ( 4000 ) (9.177) 

In these estimates we have taken the effective magnetization to be roughly 
3 ehimyR®, with a g factor of 3 to account for the magnetic moments of aideleone 

Our estimates of the nuclear transition rates are subject to exceptions as. 
cribable to special properties of the nuclear states and interactions. In light to 
medium mass nuclei, £1 transitions are strongly suppressed by the isospin sym. 
metry of nuclear forces, at least at low energies. M1 transitions are far commoner 
than £1 transitions and just as intense. In rare earth and transuranic nuclei, £2 
transitions are often 100 times stronger than our estimate because of significant 
static and transitional quadrupole moments in these nonspherical nuclei. If al- 
lowed by spin-parity, £2 transitions then compete favorably with M1 transitions, 

A proper quantum-mechanical treatment of multipole radiation can be found 
in Blatt and Weisskopf, Chapter XII. Applications to nuclear transitions are cited 
in the References and Suggested Reading at the end of the chapter. 

002 A-); 

9.12 Multipole Radiation from a Linear, Center-Fed Antenna 

As an illustration of the use of a multipole expansion for a source whose dimen- 
sions are comparable to a wavelength, we consider the radiation from a thin, 
linear, center-fed antenna, as shown in Fig. 9.6. We have already given in Section 
9.4 a direct solution for the fields when the current distribution is taken to be 
sinusoidal. This will serve as a basis of comparison to test the convergence of 
the multipole expansion. We assume the antenna to lie along the z axis trom 
—(d/2) S z = (d/2), and to have a small gap at its center so that it can be suitably 

Figure 9.6 Linear, center-fed 
antenna. 
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excited. The current along the antenna vanishes at the end points and is an even 
function of z. For the moment we will not specify it more than to write 

Hz. 1) = Kzer™. ($) =0 (9.178) 

Since the current flows radially, (r x J) = 0. Furthermore there is no intrinsic 
magnetization. Consequently all magnetic multipole coefficients a y,(d, #2) vanish. 
To caiculate the electric multipole coefficient az(/. m) (9.167) we need expres- 
sions for the charge and current densities. The current density J is a radial current, 
confined to the z axis. In spherical coordinates this can be written for r < (d/2) 

Ux) =? fe (9.179) 

where the delta functions cause the current to flow only upward (or dowaward) 
along the z axis. From the continuity equation (9.158) we find the charge density 

1 dir) [a — 1) — d(cos 6 + 4| 
p(x) = (9.180) 

iw dr 2ar’ 

These expressions for J and p can be inserted into (9.167) to give 

5 KR cr ; tdi d 
an(l, m) = mV ET) Jo ary KAKO) — 2a [ritkr)] (9.181) 

x Jaa Yin[S(cos @ ~ 1) — &(cos @ + 1)] 

The integral over angles is 

| dQ = 278, of ¥o(0) — Yoo(z7)] 

showing that only m = 0 multipoles occur. This is obvious from the cylindrical 
symmetry of the antenna. The Legendre polynomials are even (odd) about 6 = 
m2 for / even (odd). Hence, the only nonvanishing multipoles have / odd. The 

the angular integral has the value, 

[ao = V4xr{(2i + i), todd, m = 

With slight manipulation (9.181) can be written 

k [4ncar+1)]"” ff a dl 
az(1,0) = al i =| [ {- 77 [xen | 

+ rite + e1)} dr 
(9.182) 

To evaluate (9.182) we must specify the current /{z) along the antenna. If 

no radiation occurred. the sinusoidal variation in time at frequency w would imply 
a sinusoidal variation in space with wave number k = wic. But as discussed in 

Section 9.4.B. the emission of radiation modifies the current distribution unless 
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the antenna is infinitely thin. The correct current /(z) can be found only by solving 
a complicated boundary-value problem. Since our purpose here is to compare a 
multipole expansion with a closed form of solution for a known current distr}. 
bution, we make the same assumption about /(z) as in Section 9.4.A, namely, 

Iz) = rsin(M - tel) (9.183) 

where / is the peak current, and the phase is chosen to ensure that the current 
vanishes at the ends of the antenna. With a sinusoidal current the second part of 
the integrand in (9.182) vanishes. The first part is a perfect differential. Conse- 
quently we immediately obtain, with /(z) from (9.183), 

_ 1 [amet iy] (ea. (kat ae(l. 0) = jee? 5 | [(2) (2). fodd (9.184) 

Since we wish to test the multipole expansion when the source dimensions 
are comparable to a wavelength, we consider the special cases of a half-wave 
antenna (kd = 7) and a full-wave antenna (kd = 27). Table 9.2 shows the / = 1 
coefficient for these two values of kd, along with the relative values for / = 3,5, 
From the table it is evident that (a) the coefficients decrease rapidly in magnitude 
as / increases, and (b) higher / coefficients are more important the larger the 
source dimensions. But even for the full-wave antenna it is probably adequate 
to keep only / = | and / = 3 in the angular distribution and certainly adequate 
for the total power (which involves the squares of the coefficients). 

With only dipole and octupole terms in the angular distribution we find that 
the power radiated per unit solid angle (9.150) is 

AP _ Zolac(1.0)P ae(3.0) 
= LY — LY: 9.185, 

a 4k? "V6 ae(1, 0) ee) 

The various factors in the absolute square are 

= 2 sin’@ 
7 

2 6B 2 2 ILYsoP? = Ten si" 8(5 cos? — 1) (9.186) 

3v2i 
(LY 10)" + (L¥a0) = sin’@(S cos’@ — 1) 0 

Table 9.2. Multipole Coefficients for Linear Antenna 

ka a,(1, 9) a(3, 0a, (1, 0) a,(5, 0)/a,(E, 0) 

fez 4.95 x 10°? 1.02 x 10-7 \ad 

2a Vent 0.3242 2.39 x 10 ? 
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With these angular factors (9.185) becomes 

dP 3207 (3 ., Fae, 0) y ‘ 3 aa ay i 29-1 q wo ge 8} Ve wet ) Oo8 )} (9.187) 

where the factor A is equal to 1 for the half-wave antenna and (77/4) for the full 

wave. The coefficient of (5 cos?@ — 1) in (9.187) is 0.0463 and 0.3033 for the half- 
wave and full-wave antenna, respectively. 

A numerical comparison of the exact and approximate angular distributions, 
(9.57) and (9.187), is shown in Fig. 9.7. The solid curves are the exact results, the 
dashed curves the two-term multipole expansions. For the half-wave case (Fig. 
9.7a) the simple dipole result [first term in (9.187)] is also shown as a dotted 
curve. The two-term multipole expansion is almost indistinguishable from the 
exact result for kd = a. Even the lowest order approximation is not very far off 

in this case. For the full-wave antenna (Fig. 9.7b) the dipole approximation is 
evidently quite poor. But the two-term multipole expansion is reasonably good, 
differing by less than 5% in the region of appreciable radiation. 

The total power radiated is, according to (9.155). 

paz) &, leet OF (9.188) 

(a) hd = (6) kd = 2 

Figure 9,7 Comparison of exact radiation patterns (solid curves) for half-wave 
{kd = 7) and full-wave (kd = 277) center-fed antennas with two-term multipole 
expansions (dashed curves). For the half-wave pattern, the dipole approximation 
{dotted curve} is also shown, The agreement between the exact and two-lerm multipole 

results is excellent, especially for kd = 7. 
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6 + Sa So ns ea Ra 

Long wavelength 
dipole approx. 7 

z 
All multipoles 

Figure 9.8 Total power radiated by center-fed antenna with sinusoidal current 
distribution (9.183) versus kd. The ordinate is 4P/Z,/°, with / the peak current in 
(9.183). The curve labeled “Long-wavelength dipole approx.” employs the long- 
wavelength dipole moment (9.170) rather than the exact (9.167) used for the curve 
labeled “Exact dipole term.” The curve labeled ‘Ail multipoles” is the sum (9.188) 
[actually up to £9) 

For the half-wave antenna the coefficients in Table 9.2 show that the power 
radiated is a factor 1.00244 times larger than the simple dipole result, (37,/7/7°). 
For the full-wave antenna, the power is a factor 1.10565 times larger than the 
dipole form (3217/47). 

A compatison of the total power (9.188) for the center-fed linear antenna 
with the lowest multipole power, for both the exact lowest multipole and its long- 
wavelength approximation, is shown in Fig. 9.8 versus kd, For kd = 27, the power 

is dominated by the £1 multipole, as we have just seen, but for larger kd the 
higher multipoles contribute more and more. It is noteworthy that the long- 
wavelength dipole approximation departs significantly from the exact dipole re- 
sult (and the total power) for kd > 7. The departure, which becomes gross for 
larger kd, is a consequence of differences between exact multipole moments and 
the long-wavelength approximations to them when the wavelength becomes com- 
parable to or smailer than source size. 
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Problems 

91 A common textbook example of a radiating system (see Problem 9.2) is a config- 

uration of charges fixed relative to each other but in rotation, The charge density 
is obviously a function of time, but it is not in the form of (9.1). 

(a) Show that for rotating charges one alternative is to calculate real time-depen- 

dent multipole moments using p(x, 4) directly and then compute the multipole 
moments for a given harmonic frequency with the convention of (9-1) by in- 
spection or Fourier decomposition of the lime-dependent moments. Note that 
care must be taken when calculating q;,,(t) to form linear combinations that 

are real before making the connection. 

(b) Consider a charge density p(x, 9 that is periodic in time with period T = 2a/w,. 
By making a Fourier series expansion, show that it can be written as 

p(x. = pox) + > Re[2p,(x)e ] 

where 

4 
pid) = : [ pls. Ne" de 

This shows explicitly how to establish connection with (9.1). 
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9.2 

9.3 

94 

95 

9.6 

(©) For a single charge q rotating about the origin in the x-y plane in a circle of 
radius R at constant angular speed ay, calculate the / = 0 and / = 1 multipole 
moments by the methods of parts a and b and compare. In method b express 
the charge density p,(x) in cylindrical coordinates. Are there higher mulii. 
poles, for example, quadrupole? At what frequencies? 

A radiating quadrupole consists of a square of side a with charges +q at alternate 
corners. The square rotates with angular velocity w about an axis normal to the 
plane of the square and through its center. Caiculate (he quadrupole moments, the 
radiation fields, the angular distribution of radiation, and the total radiated power, 
all in the long-wavelength approximation. What is the frequency of the radiation? 

Two halves of a spherical metallic shell of radius R and infinite conductivity are 
separated by a very small insulating gap. An alternating potential is applied between 
the two halves of the sphere so that the potentials are +V cos wr, In the long. 
wavelength limit, find the radiation fields, the angular distribution of radiated 
power, and the total radiated power from the sphere. 

Apply the approach of Problem 9.1b to the current and magnetization densities of 
the particle of charge q rotating about the origin in the x-y plane in a circle of radius 
R at constant angular speed a. The motion is such that aR << c. 

(a) Find (4.)n, Jy)n. and {J,), in terms of cylindrical coordinates for all 1, Also 

determine the components of the orbital “magnetization,” (x x J,,)/2, and its 
divergence [which plays the role of a magnetic charge density for magnetic 
multipoles, as in M,,, (9.172)]. 

(b) What long-wavelength magnetic multipoles (/, 1) occur and at what frequen- 
cies? [Remember that the multipole order / does not necessarily equal the 
harmonic number n.] 

(©) Use linear superposition to generalize your argument to the four charges ro- 
tating in Problem 9.2 at radius R = a/V2. What harmonics occur, and what 
magnetic multipoles at each harmonic? Is there a magnetic multipole contri- 
bution at the £2 frequency of Problem 9.2? Is it significant relative to the £2 
radiation? 

(a) Show that for harmonic lime variation at frequency w the electric dipole scalar 
and vector potentials in (he Lorenz gauge and the long-wavelength limit are 

iar 
(x) = ie n= p(1 — kr) 

ike 
AQ) = 1225p [this is (9.16)) an or 

where k = w/c, nis a unit vector in the radial direction, p is the dipole moment 
(9.17). and the time dependence eis understood. 

(b) Calculate the electric and magnetic fields from the potentials and show that 
they are given by (9.18). 

(a) Starting from the general expression (9.2) for A and the corresponding ex- 
pression for @, expand both R = |x — x’| andr’ = ¢ — Ric to first order in 
|x‘ /r to obtain the electric dipole potentials for arbitrary lime variation 

-1 fi Pas 

Aww) = fe Be 



(b) 

97 (a) 

(b) 

98 (a) 

(b) 

(c) 

{d) 
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where p,.. = p(t’ = 7 — z/c) is the dipole moment evaluated at the retarded 

time measured from the origin. 

Calculate the dipole electric and magnetic fields directly from these potentials 

and show that 

1 F Peer nx Pat Ty x TBs oF a Cr ar 

ae  @\{3n(n + ror} = Pret 1 # Peer 
B(x.) = Ame, {(: ne I = nel GO 

Show explicitly how you can go back and forth between these results and the 
harmonic fields of (9.18) by the substitutions —ia <> a/at and pe” "<> pyudt"). 
By means of Fourier superposition of different frequencies or equivalent 
means. show for a real electric dipole p(s) that the instantaneous radiated 
power per unit solid angle at a distance r from the dipole in a direction n is 

iP Za Lp, ah) [ax Ban] xe 
dQ Vere 

where r’ = 1 — r/c is the retarded time. For a magnetic dipole m(s), substitute 
(l/c) X n for (n x p) x n. 

Show similarly for a real quadrupole tensor Q,,9(/) given by (9.41) with a real 
charge density p(x, #) that the instantaneous radiated power per unit solid 

dQ 576m" 

angle is 

&Q " 
[> x ae (n, ¢ | xn 

where Q(n, 1) is defined by (9.43). 

Show that a classical oscillating electric dipole p with fields given by (9.18) 
radiates electromagnetic angular momentum to infinity at the rate 

3 ak 
de” Tone, nih * PI 

2 

AP) _ 

What is the ratio of angular momentum radiated to energy radiated? Interpret. 

For a charge e rotating in the x-y plane at radius a and angular speed w, show 
that there is only a z component of radiated angular momentum with mag- 
nitude dL /dt = e*k*a?/67¢,. What about a charge oscillating along the z axis? 

What are the results corresponding to parts a and b for magnetic dipole 

radiation? 

Hint: The electromagnetic angular momentum density comes [tom more than the 

transverse (radiation zone) components of the fields. 

99 (a) From the electric dipole fields with general time dependence of Problem 9.6, 
show that the total power and the total rate of radiation of angular momentum 
through a sphere at large radius 7 and time ¢ are 

=) (#p.e)’ 
70 = sea ( Be) 

_ 1) fame, Pre 
dt Gee \ at ar 

where the dipole moment p is evaluated at the retarded time #° = 7 — ric. 
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9.10 

9.11 

{b) The dipole moment is caused by a particle of mass 7 and charge ¢ moving 
nonrelativistically in a fixed central potential V(r). Show that the radiated 
power and angular momentum for such a particle can be written as 

av =j)1 (2) 

where 7 = ¢7/67reync’ (= 2e/3mc’ in Gaussian units) is a characteristic time, 
L is the particle’s angular momentum, and the right-hand sides are evaluated 
at the retarded time. Relate these results to those from the Abraham-Lorentz 
equation for radiation damping [Section 16.2]. 

(c) Suppose the charged particle is an electron in a hydrogen atom. Show that the 
inverse time defined by the ratio of the rate of angular momentum radiated 
to the particle's angular momentum is of the order of a*c/a, where @ = 
e/4reic = 1/137 is the fine structure constant and ay is the Bohr radius, How 
does this inverse time compare to the observed rate of radiation in hydrogen 

atoms? 

(d) Relate the expressions in parts a and b to those for harmonic time dependence 
in Problem 9.8. 

The transitional charge and current densities for the radiative transition from the 
m = 0, 2p state in hydrogen to the 1s ground state are, in the notation of (9.1) and 
with the neglect of spin, 

2e 1 in alr, 8. dt) = Ea ve MOY WY yee 
io 

wn {F  don 
( + y a)otr. 8, b, 0) 

where dy = 42re,h?/me? = 0.529 x 10°" m is the Bohr radius, wy = 3¢7/32ae hay is 
the frequency difference of the levels, and vy = e7/47reyh = ac ~ c/137 is the Bohr 
orbit speed, 

(a) Show that the effective transitional (orbital) “magnetization” is 

I(r, 8, b.) = 

, ACUy 
“MOK, 8 1) = i 7 tan AK sin d — ¥ cos d) - plr, O OO 

Calculate V+ “M4” and evaluate all the nonvanishing radiation multipoles in 
the long-wavelength limit. 

(b) In the electric dipole approximation caiculate the total time-averaged power 
radiated. Express your answer in units of (Aa) - (a*clag), where a = /Amre,he 
is the fine structure constant. 

(c) Interpreting the classically calculated power as the photon energy (fa) times 
the transition probability, evaluate numerically the transition probability in 
units of reciprocal seconds. 

(d) If, instead of the semiclassical charge density used above. the electron in the 

2p state was described by a circular Bohr orbit of radius 2dp, rotating with the 
transitional frequency wy, what would the radiated power be? Express your 
answer in the same units as in part b and evaluate the ratio of the two powers 
numerically. 

Three charges are located aiong the z axis, a charge +2g at the origin, and charges 
—q at 7 = +a coswt. Determine the lowest nonvanishing multipole moments, 
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the angular distribution of radi: 
ka. 

jon, and the total power radiated. Assume that 

An almost spherical surface defined by 

R(O) = Rol] + BP3{cos 8)] 

has inside of it a uniform volume distribution of charge totaling Q. The small pa- 

rameter 8 varies harmonically in time at frequency w. This corresponds to surface 
waves on a sphere. Keeping only lowest order terms in 8 and making the long- 
wavelength approximation, calculate the nonvanishing multipole moments, the an- 

gular distribution of radiation, and the total power radiated, 

The uniform charge density of Problem 9.12 is replaced by a uniform density of 
intrinsic magnetization parallel to the z axis and having total magnetic moment M. 
With the same approximations as above calculate the nonvanishing radiation mul- 
tipole moments, the angular distribution of radiation, and the total power radiated. 

An antenna consists of a circular loop of wire of radius @ located in the x-y plane 
with its center at the origin. The current in the wire is 

T=}, cos wt = Re he ' 

(a) Find the expressions for E, H in the radiation zone without approximations. 
as to the magnitude of ka. Determine the power radiated per unit solid angle. 

(b) What is the lowest nonvanishing multipole moment (Q,,, or Mi,,)? Evaluate 
this moment in the limit ka << 1. 

Two fixed electric dipoles of dipole moment p are located in the x-y plane a distance 
2a apart, their axes parallel and perpendicular to the plane, but their moments 
directed oppositely. The dipoles rotate with constant angular speed w about a z axis 
located halfway between them. The motion is nonrelativistic (wale << 1). 

(a) Find the lowest nonvanishing multipole moments. 

(b) Show that the magnetic field in the radiation zone is, apart from an overall 

phase factor, 

‘ ine 
H= os A(R + i) cos @ — sin Oe] cos 

(ce) Show that the angular distribution of the radiation is proportional to 

(cos*@ + cos*#) and the total averaged power radiated is 

4 p= kore Pra ; tka 

Hint: Problem 6.21 is relevant. 

A thin linear antenna of length d is excited in such a way that the sinusoidal current 
makes a full wavelength of oscillation as shown in the figure. 

Problem 9.16 

(a) Calculate exactly the power radiated per unit solid angle and plot the angular 
distribution of radiation. 

(b) Determine the total power radiated and find a numerical value for the radi- 

ation resistance. 
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97 

9.18 

9.19 

9.20 

‘Treat the linear antenna of Problem 9.16 by the multipole expansion method. 
(a) Caicuiate the multipole moments (electric dipole, magnetic dipole. and elec. 

tric quadrupole) exactly and in the long-wavelength approximation. 

(b) Compare the shape of the angular distribution of radiated power for the lowest 
nonvanishing multipole with the exact distribution of Problem 9.16, 

{c) Determine the total power radiated for the lowest multipole and the corre- 

sponding radiation resistance using both muitipole moments {rom part a, 
Compare with Problem 9.16b. Is there a paradox here? 

A qualitative understanding of the result for the reactance of a short antenna whose 

radiation fields are described by the electric dipole fields of Section 9.2 can be 
achieved by considering the idealized dipole fields (9.18). 

{a) Show that the integral over all angles at fixed distance r of €|E)’ — jo |H/? 
is 

6 J les feP ~ po [HP) a0 = 2rey r 

(hb) Using (6.140) for the reactance, show that the contribution X,, to the reactance 
from fields at distances r > a is 

--_ ele 
“69 [LP a’ 

where /, is the input current. 

(©) For the short center-fed antenna ol Section 9.2 show that ¥,, = — d?/24 me,wa’, 
corresponding to an effective capacitance 247e9a°/d", With a = di2, X, gives 
only a small fraction of the total negative reactance of a short antenna. The 
fields close to the antenna, obviously not dipole in character, contribute heav- 
ily. For calculations of reactances of short antennas, sec the book by 
Schetkunoff and Friis. 

Consider the excitation of a waveguide in Problem 8.19 from the point of view of 
multipole moments of the source. 

(a) For the linear probe antenna calculate the multipole moment components of 
p.m, Q,,,, OX, that enter (9.69). 

(b) Calculate the amplitudes for excitation of the TE), mode and evaluate the 
power flow. Compare the multipole expansion result with the answer given in 
Problem 8.19b. Discuss the reasons for agreement or disagreement. What 
about the comparison for excitation of other modes? 

(a) Verify by direct calculation that the static tangential electric field (3.186) in a 
circular opening in a flat conducting plane, when inserted into the defining 

equation (9.72) for the electric dipole moment py. leads to the expression 
(9.75). 

(b) Determine the value of izeoms given by (9.72) with the static electric field in 
part a. 

(©) Use the static normal magnetic field (5.132) for the corresponding magnetic 
boundary problem with a circular opening to compute via (9.74) the magnetic 
dipole moment m.., and compare with (9.75). 

(d) Comment on the differences between the results of parts b and c and the use 
of the definitions (9.72) in a consistent fashion. [See Section 9 of the article. 

Diffraction Theory, by C. J. B. Bouwkamp in Reports on Progress in Physics, 
Vol. 17, ed. A. C. Strickland, The Physical Society, London (1954).] 
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The fields representing a transverse magnctic wave propagating in a cylindrical 
waveguide of radius R are: 

= Innere HL = 0 
=m F, B= H, = eS ey 

ip ak, = iB ae, H, = 
¥ ao ba 

where m is the index specifying the angular dependence. f is the propagation con- 
stant, y” = k? — B? (k = wie), where is such that J,,(yR) = 0. Calculate the ratio 
of the z component of the electromagnetic angular momentum to the energy in the 
field. It may be advantageous to perform some integrations by parts, and to use the 
differential equation satisficd by £,, to simplify your calculations. 
A spherical hole of radius a in a conducting medium can serve as an electromagnetic 
resonant cavity. 

(a) Assuming infinite conductivity, determine the transcendental equations for 

the characteristic frequencies «,,, of the cavity for TE and TM modes, 

(b) Calculate numerical values for the wavelength A,,, in units of the radius a for 
the four lowest modes for TE and TM waves. 

(ce) Calculate explicitly the electric and magnetic fields inside the cavity for the 
lowest TE and lowest TM mode. 

The spherical resonant cavity of Problem 9.22 has nonpermeable walls of large, but 
finite, conductivity. In the approximation that the skin depth 4 is small compared 
to the cavity radius a, show that the Q of the cavity, defined by equation (8.86), is 
given by 

Q=>5 for all TE modes 

q-% ( = wen) for TM modes 
Xin 

where x;,, = {a/c)w,,, for TM modes. 

Discuss the normal modes of oscillation of a perfectly conducting solid sphere of 
radius a in free space. (This problem was solved by J. J. Thomson in the 1880s.) 
(a) Determine the characteristic equations for the eigenfrequencies for TE and 

TM modes of oscillation. Show that the roots for w always have a negative 
imaginary part, assuming a time dependence of ¢ “. 

(b} Calculate the eigenfrequencies for the / = 1 and / = 2 TF and TM modes. 

Tabulate the wavelength (defined in terms of the real part of the frequency) 
in units of the radius @ and the decay time (defined as the time taken for the 
energy to fall to e' of its initial value) in units of the transit time {a/c) for 

cach of the modes. 
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Scattering and Diffraction 

The closely related topics of scattering and diffraction are important in many 
branches of physics. Approaches differ depending on the relative length scales 
involved—the wavelength of the waves on the one hand, and the size of the 
target (scatterer or diffractor} on the other. When the wavelength of the radiation 
is large compared to the dimensions of the target. a simple description in terms 
of lowest order induced multipoles is appropriate. When the wavelength and size 
are comparable, a more systematic treatment with multipole fields is required, 

In the limit of very small wavelength compared to the size of the target, semi- 

geometric methods can be utilized to obtain the departures from geometrical 
optics. We begin with the long-wavelength limit of electromagnetic scattering, 
with some simple cxamples. Then we develop a perturbation approach to scat- 
tering by a medium with small variations in its dielectric properties in order to 
discuss Rayleigh scattering, the blue sky, and critical opalescence. To introduce 
the more systematic approach with multipole fields, we first present the multipole 
expansion of an electromagnetic plane wave and then apply it to the scattering 
by a conducting sphere. 

Diffraction is treated next, first the scalar Huygens—Kirchhoff theory, then a 
vector generalization that leads naturally to a discussion of Babinct's principle 
of complementary screens. These tools are applied to diffraction by a circular 
aperture, with connection to the low-order effective multipoles of Section 9.5 in 

the long-wavelength limit. Scattering at very short wavelengths and the important 
optical theorem complete the chapter. 

10.1 Scattering at Long Wavelengths 

456 

A. Scattering by Dipoles Induced in Small Scatterers 

The scattering of electromagnetic waves by systems whose individual dimen- 
sions are sma{l compared with a wavelength is a common and important occur- 
rence. In such interactions it is convenient to think of the incident (radiation) 
fields as inducing electric and magnctic multipoles that oscillate in detinite phase 
relationship with the incident wave and radiate energy in directions other than 
the direction of incidence. The cxact form of the angular distribution of radiated 
energy is governed by the coherent superposition of multipoles induced by the 
incident fields and in genera! depends on the state of polarization of the incident 
wave. If the wavelength of the radiation is long compared to the size of the 
scatterer, only the lowest multipoles, usually electric and magnetic dipoles, arc 
important. Furthermore, in these circumstances the induced dipoles can be cal- 

culated from static or quasi-static boundary-value problems, just as for the small 
apertures of the preceding chapter (Section 9.5). 
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The customary basic situation is for a plane monochromatic wave to be in- 

cident on a scatterer. For simplicity the surrounding medium is taken to have 
, = € = 1. Tf the incident direction is defined by the unit vector no, and the 

incident polarization vector is €,, the incident fields are 

Eine = €0£ge*"* (10.1) 
Hine = No X Ein. /Zo 

tor where k = w/c and a time-dependence e “” is understood. These fields induce 
dipole moments p and m in the smail scatterer and these dipoles radiate cnergy 
in all directions, as described carlicr (Sections 9.2, 9.3). Far away from the scat- 
terer, the scattered (radiated) fields are found from (9.19) and (9.36) to be 

1 ikr 
E, k mx xX n—n X mic am oF [(n x p) | fae 

H,, =n X E,./Zy 

where n is a unit vector in the direction of observation and r is the distance away 

from scatterer. The power radiated in the direction n with polarization €, per unit 
solid angle, per unit incident flux (power per unit area) in the direction ny with 
polarization €o, is a quantity with dimensions of area per unit solid angle. It is 
called the differential scattering cross section*: 

2 1 
le* + Ey 

di 37, 
Oo (1, €; ny. €o) = 7 (10.3) 

¥ 2 7, Jes + Eine! 

The complex conjugation of the polarization vectors in (10.3) is important for 
the correct handling of circular polarization, as mentioned in Section 7,2. With 
(10.2) and i the differential cross section can be written 

4 

a (re,Eoy le 

The dependence of the cross section on ny and €, is implicitly contained in the 

dipole moments p and m. The variation of the differential (and total) scattering 
cross section with wave number as &* (or in wavelength as A~*) is an almost 
universal characteristic of the scattcring of long-wavelength radiation by any fi- 

nite system. This dependence on frequency is known as Rayleigh’s law. Only if 
both static dipole moments vanish docs the scattering fail to obey Rayleigh’s law, 
the scattcring is then via quadrupole or higher multipoles (or frequency- 

dependent dipole moments) and varies as w® or higher. Sometimes the dipole 

scattering is known as Rayleigh scattering, but this term is usually reserved for 
the incoherent scattering by a collection of dipole scatterers. 

= (n, €; Ny, €o) = *.p + (nx e*)+mécP (10.4) 

B, Scattering by a Small Dielectric Sphere 

As a first. very simple example of dipole scattering we consider a small di- 
electric sphere of radius a with 2, = 1 and a uniform isotropic diclectric constant 

*Ln the engineering literature the term bistatic cross section is used for 47 (daidQ). 
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€-(w)}. From Section 4.4, in particular (4.56), the electric dipole moment is foung 
lo be 

eet 
=4 _ ‘E, P of & rr +e ine (10.5) 

There is no magnetic dipole moment. The differential scattering cross section ig 
2 

do 46 |! 2 
7 kha paren] le* - €9| (10.6) 

The polarization dependence is typical of purely clectric dipole scattering. The 
scattered radiation is lincarly polarized in the plane defined by the dipole moment 
direction (€,) and the unit vector n. 

Typically the incident radiation is unpolarized, It is then of interest to ask 
for the angular distribution of scattered radiation of a definite state of linear 
polarization. The cross section (10.6) is averaged over initial polarization €, for 
a fixed choice of €. Figure 10.1 shows a possible sct of polarization vectors, The 
scattering plane is defined by the vectors ny and n. The polarization vectors ¢) 
and ¢” are in this plane, while ef = e is perpendicular to it. The differential 
cross sections for scattering with polarizations €'? and €, averaged over initial 
polarizations, are easily shown to be 

doy _ Ka® |e — 3)" oy 
ao 2 |e, +2| “ (10.7) 
doy _ Ka’ Je = 1)" 
d2 2 |e, +2 

where the subscripts || and .L indicate polarization parallel to and perpendicular 
to the scattering plane, respectively. The polarization T1(6) of the scattered ra- 
diation is defined by 

doy _ doy 
dQ aa 

T1(@) = do, do, (10.8) 

dQ 

Figure 10.1. Polarization and 
propagation vectors for the 
incident and scattered radiation. 
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Figure 10.2 Differential scattering cross section (10.10) and the polarization of 
scattered radiation (10.9) for a small dielectric sphere (dipole approximation). 

From (10.7) we find for the (electric dipole) scattering by a small dielectric sphere, 

sin’ 
O'S J + cos?@ (10.9) 

The differential cross section, summed over scattered polarization, is 
2 

do 4,6 | Er n 2 =k 3({1 + cos’6) 14) an? lea] XM) + cose) (10:10) 
and the total scattering cross section is 

_ {de _ 84 44 |e) 
a= | ig day k ree (10.11) 

The differential cross scction (10.10) and the polarization of the scattered radi- 

ation (10.9) are shown as functions of cos @ in Fig. 10.2. The polarization I1(@) 

has its maximum at @ = 77/2. At this angle the scattered radiation is 100% lincarly 
polarized perpendicular to the scattering plane, and for an appreciable range of 
angles on either side of @ = 7/2 is quite significantly polarized. ‘The polarization 
characteristics of the bluc sky are an illustration of this phenomenon, and are, in 
fact, the motivation that led Rayleigh first to consider the problem. The reader 
can verify the general behavior on a sunny day with a sheet of linear polarizer 

or suitable sunglasses. 

C. Scattering by a Small Perfectly Conducting Sphere 

An cxample with interesting aspects involving cohcrence between different 
multipoles is the scattering by a small perfectly conducting sphere of radius a. 
The electric dipole moment of such a sphere was shown in Section 2.5 to be 

p = 42600 Einc (10.12) 
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The sphere also possesses a magnetic dipole moment. For a perfectly conducting 
sphere the boundary condition on the magnetic field is that the normal compo. 
nent of B vanishes at r = a. Either by analogy with the dielectric sphere in a 
uniform clectric field (Section 4.4) with = 0, or from the magnetically permeable 
sphere (Section 5.11) with » = 0, or by a simple direct calculation, it is foun 
that the magnetic moment of the small sphere is 

m = 27H. (10.13) 
For a linearly polarized incident wave the two dipoles are at right angles to each 
other and to the incident direction. 

‘The differential cross section (10.4) is 

do 
aa + €y — 3( X €*) + (My X €)P (10.14) (1, €: Mo, €9) = k'a® |e* 

The polarization properties and the angular distribution of scattered radiation 
are more complicated than for the dielectric sphere. The cross sections analogous 
to (10.7), for polarization of the scattered radiation parallel to and perpendicular 
to the plane of scattering, with unpolarized radiation incident, are 

4p6 

2 (10.15) 

The differential cross section summed over both states of scattered polarization 
can be written 

“ = k4a[3(1 + cos’) — cos 6] (10.16) 

while the polarization (10.8) is 

Ifa) = (10.17) 
1 + cos’@) — 8 cos @ 

The cross section and polarization are plotted versus cos 6 in Fig, 10.3. The cross 
section has a strong backward peaking caused by electric dipole-magnetic dipole 
interference. The polarization reaches [] = +1 at @ = 60° and is positive through 
the whole angular range. The polarization thus tends to be similar to that for a 
small diclectric sphere, as shown in Fig. 10.2, even though the angular distribu- 
tions are quite different. The total scattering cross section is @ = 10ak*a"/3, of 
the same order of magnitude as for the dielectric sphere (10.11) if (e, — 1) is not 
small. 

Dipole scattering with its w* dependence on frequency can be viewed as the 
lowest order approximation in an expansion in kd, where d is a length typical of 
the dimensions of the scatterer. In the domain kd ~ 1, more than the lowest 
order multipoles must be considered. ‘Then the discussion is best accomplished 
by use of a systematic expansion in spherical multipole fields. In Section 10.4 the 
scattering by a conducting sphere is examined from this point of view. When 
kd >> 1, approximation methods of a different sort can be employed, as is illus- 
trated later in this chapter (Section 10.10). Whole books are devoted to the scat- 
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Figure 10.3 Differential scattering cross section (10.16) and polarization of scattered 
radiation (10.17) for a small perfectly conducting sphere (electric and magnetic dipole 
approximation). 

tering of light by spherical particles possessing arbitrary 2, €, 7, Some references 
to this literature are given at the end of the chapter. 

D. Collection of Scatterers 

As a final remark we note that if the scattering system consists of a number 
of small scatters with fixed spatial separations, each scattcrer generates an am- 
plitude of the form (10.2). The scattering cross section results from a coherent 
superposition of the individual amplitudes. Because the induced dipoles are pro- 
portional to the incident ficlds, evaluated at the position x, of the jth scatterer, 
its moments will possess a phase factor, e“*"*. Furthermore, if the observation 
point is far from the whole scattering system, (9.7) shows that the fields (10.2) 
for the jth scatterer will have a phase factor e “=, The generalization of (10.4) 

for such a system is 

do _ 
an om) 

where q = kny — knis the vectorial change in wave vector during the scattering, 

The presence of the phase factors e in (10.18) means that, apart from the 
forward direction where q = 0, the scattcring depends sensitively on the exact 
distribution of the scattcrers in space. The general behavior can be illustrated by 
assuming that all the scatterers are identical. Then the cross section is the product 
of the cross section for one scatterer times a structure factor,* 

= le* + p, + ( X €*) + mice (10.18) 

2 

F(q) = (10.19) 

“We do not consider here the effects of multiple scattering: that is, we assume that the mean free 
path for scattering is large compared to the dimensions of the scattering array. 
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Written out as a factor times ils complex conjugate, F(q) is 

Hq) = > > eer 
iF 

If the scatterers are randomly distributed, the terms with j # j’ can be shown to 
give a negligible contribution. Only the terms with j = j' are significant. Then 
#(q) = N. the total number of scatterers, and the scattering is said to be an 
incoherent superposition of individual contributions. If, on the other hand, the 
scatterers are very numerous and have a regular distribution in space, the struc. 
ture factor effectively vanishes everywhere except in the forward direction. There 
is therefore no scattering by a very large regular array of scatterers, of which 
single crystals of transparent solids like rock salt or quartz are examples, What 
smal] amount of scattering does occur is caused by thermal vibrations away from 
the perfect lattice, or by impurities, etc. An explicit illustration, also providing 
evidence for a restriction of the foregoing remarks to the long-wavelength re- 
gime, is that of a simple cubic array of scattering centers. The structure factor is 
well known to be 

where a is the lattice spacing, N,. N2. N3 are the numbers of lattice sites along 

the three axes of the array, N = N,N,N; is the total number of scatterers and 

qi. 92, 93 are the components of g along the axes. At short wavelengths 
(ka > 7), (10.20) has peaks when the Bragg scattering condition, qa = 0, 27, 
4i,..., is obeyed. This is the situation familiar in x-ray diffraction. But at long 
wavelengths only the peak at q,a = 0 is relevant because (4;@)max = 2ka << 1. 
In this limit #(q) is the product of three factors of the form [(sin x,)/x,|? with 
x; = Niqal2. The scattering is thus confined to the region g, S 27/N,a, corre- 

sponding to angles smaller than A/L. where A is the wavelength and L a typical 
overall dimension of the scattering array. 

10.2. Perturbation Theory of Scattering, Rayleigh’s Explanation 
of the Blue Sky,* Scattering by Gases and Liquids, 
Attenuation in Optical Fibers 

A, General Theory 

If the medium through which an electromagnetic wave is passing is uniform 
in its properties, the wave propagates undisturbed and undeflected. If, however, 

* Although Rayleigh’s name should undoubtedly bc associated with the quantitative explanation of 
the blue sky, it is of some historical interest that Leonardo da Vinci understood the basic phenomenon 
around 1500. In particular, his experiments with the scattcring of sunlight by wood smoke observed 
against a dark background (quoted as itcms 300-302. pp. 237 ff, in Vol. [ of Jean Paul Richter, The 
Literary Works of Leonardo da Vinci, 3rd edition, Phaidon, London 1970) (also a Dover reprint 
entitled The Notebooks of Leonardo da Vinci. Vol. i, pp. 161 ff.) anticipate by 350 years Tyndall’s 
remarkably similar observations (J. Tyndall, Philos. Trans. R. Soc. London 160, 333 (1870)| 
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there are spatial (or temporal) variations in the electromagnetic properties, the 

wave is scattered. Some of the energy is deviated from its original course. If the 
variations in the properties are small in magnitude, the scattering is slight and 
perturbative methods can be employed. We imagine a comparison situation cor- 
responding to a uniform isotropic medium with electric permittivity €, and mag- 
netic permeability jo. For the present €, and yy are assumed independent of 

frequency. although when harmonic time dependence is assumed this restriction 
can be removed in the obvious way. Note that in this section €, and jy are not 

the free-space values! Through the action of some perturbing agent, the medium 
is supposed to have small changes in its response to applied fields, so that 
D # &E. B # joH, over certain regions of space. These departures may be 
functions of time and space variables. Beginning with the Maxwell equations in 
the absence of sources, 

(10.21) 
V-D=0, VxH= 

This equation is without approximation as yet, although later the right-hand side 
will be treated as small in some sense.* 

If the right-hand side of (10.22) is taken as known, the equation is of the 

form of (6.32) with the retarded solution (6.47). In general, of course, the right- 
hand side is unknown and (6.47) must be regarded as an integral relation, rather 

than a solution. Nevertheless, such an integral formulation of the problem forms 
a fruitful starting point for approximations. It is convenient to specialize to har- 
monic time variation with frequency w for the unperturbed fields and to assume 
that the departures (D — €,E) and (B — oH) also have this time variation. This 
puts certain limitations on the kind of perturbed problem that can be described 
by the formalism, but prevents the discussion from becoming too involved. With 
a time dependence e~“” understood, (10.22) becomes 

(V2 + RD = -V x Vx (D - eE) — icy VX (B— pig) (10.23) 

where k* = py€y@*. and jty and €, can be values specific to the frequency w. The 

solution of the unperturbed problem, with the right-hand side of (10.23) set equal 

to zero, will be denoted by D(x). A formal solution of (10.23) can be obtained 
from (6.45), if the right-hand side is taken as known. Thus 

elke { vx Vx (D - eE) 1 
D=b® +i fer 

4ar * |x t+ieyw V’ x (B — pH) 
} (10.24) 

“If prescribed sources p(x. 1), J(x. £) are present. (10.22) is modified by the addition to the left-hand 
side of 

al ly, oe [ OF Bok 2) 



464 Chapter 10 Scattering and Diffraction—SI 

If the physical situation is one of scattering, with the integrand in (10.24) confined 
to some finite region of space and D describing a wave incident in some direc. 
tion, the field far away from the scattering region can be written as 

ike 
D>D+Aa.— (10.25) . 

where the scattering amplitude A... is 

i { cel VOXWX(D— ek) Ago 2 [gage ever ia 
ame € es Vv’ x (B= yy) (10.26) 

The steps from (10.24) to (10.26) are the same as from (9.3) to (9.8) for the 
radiation fields. Some integrations by parts in (10.26) allow the scattering ampli- 
tude to be expressed as 

[n x (D — &E)| xn 

2 

we 
Ane Ef ae nike, 

io En (B — po) 
(10.27) 

The vectorial structure of the integrand can be compared with the scattered 
dipole field (10.2). The polarization dependence of the contribution from 
(D — e9E) is that of an electric dipole, from (B — oH) a magnetic dipole. In 
correspondence with (10.4) the differential scattering cross section is 

do _ |e*+ AF 
7 [PE (10.28) 

where € is the polarization vector of the scattered radiation. 
Equations (10.24), (10.27), and (10.28) provide a formal solution to the scat- 

tering problem posed at the beginning of the section. The scattering amplitude 
A,. is not known, of course, until the fields are known at least approximately. 
But from (10.24) a systematic scheme of successive approximations can be 
developed in the same way as the Born approximation series of quantum- 
mechanical scattering. [f the integrand in (10.24) can be approximated to first 
order, then (10.24) provides a first approximation for D, beyond D™. This ap- 
proximation to D can be used to give a second approximation for the integrand, 
and an improved D can be determined, and so on. Questions of convergence of 
the series, etc. have been much studied in the quantum-mechanical context. The 
series is not very useful unless the first few iterations converge rapidly, 

B. Born Approximation 

We will be content with the lowest order approximation for the scattering 
amplitude. This is called the first Born approximation or just the Born approxi- 
mation in quantum theory and was actually developed in the present context by 
Lord Rayleigh in 1881. Furthermore, we shall restrict our discussion to the simple 
example of spatial variations in the linear response of the medium. Thus we 
assume that the connections between D and E and B and H are 

D(x) = [e) + de(x)JE(x) (10.29) 
B(x) = [x0 + 5e(x}/H(x) 

where de(x) and 6u(x) are small in magnitude compared with €, and jy. The 
differences appearing in (10.24) and (10.27) are proportional to 8 and 6. To 
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lowest order then. the fields in these differences can be approximated by the 
unperturbed fields: 

ae 
D-«E= D(x) 

(10.30) 

B - poH = su) BO (x) 
Bo 

If the unperturbed fields are those of a plane wave propagating in a direction np, 

so that D and B® are 

D(x) = €Dye 
B(x) = ie ny X D(x) 

the scalar product of the scattering amplitude (10.27) and e*. divided by Dg, is 

Se(x) ef Sey 
*. AO) 2 0 
ooAe ee | dx et * (10.31) 

Do da Fe aes x) 
+ (MX €*) + (My X €y) ~ 

where q = k(ny — n) is the difference of the incident and scattered wave vectors. 
The absolute square of (10.31) gives the differential scattering cross section 

(10.28). 
If the wavelength is large compared with the spatial extent of de and 6, the 

exponential in (10.3]) can be set equal to unity. The amplitude is then a dipole 
approximation analogous to the preceding section, with the dipole frequency 
dependence and angular distribution. To establish contact with the results already 
obtained, suppose that the scattering region is a uniform dielectric sphere of 
radius a in vacuum. Then ée is constant inside a spherical volume of radius a and 
vanishes outside. The integral in (10.31) can be performed for arbitrary |q|, with 
the result, 

> de sin ga — ga cos ga 1H fom=panal 
€o q 

In the limit g — 0 the square bracket approaches @’/3. Thus, at very low fre- 
quencies or in the forward direction at all frequencies, the Born approximation 
to the differential cross section for scattering by a dielectric sphere of radius a is 

; 
da bE im (22) = ge 

oo (a 36, Je* - €oP (10.32) 

Comparison with (10.6) shows that the Born approximation and the exact low 
frequency result have the expected relationship. 

C. Blue Sky: Elementary Argument 

The scattering of light by gases, first treated quantitatively by Lord Rayleigh 
in his celebrated work on the sunset and blue sky,* can be discussed in the present 

*Lord Rayleigh, Philos. Mag. XLI, 107, 274, (1871); ibid. XLVIL. 375 (1899); reprinted in his Scientific 
Papers, Vol. I. p. 87, and Vol. 4. p. 397. Rayleigh’s papers are well worth reading as examples of a 
masterful physicist at work. 
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framework. Since the magnetic moments of most gas molecules are negligible 
compared to the electric dipole moments, the scattering is purely electric dipole 
in character, In the preceding section we discussed the angular distribution ang 
polarization of the individual scatterings (see Fig. 10.2). We therefore confine 
our attention to the total scattering cross section and the attenuation of the in. 
cident beam. The treatment is in two parts. The first, elementary argument is 
adequate for a dilute ideal gas. where the molecules are truly randomly distrib. 
uted in space relative to each other. The second, based on density fluctuations 
in the gas, ts of more gencral validity. We now identify €, with the electric per- 
mittivity of free space. 

If the individual molecules, located at x,, are assumed to possess dipole mo- 
ments pj = €y¥moiE(x,}, the effective variation in diclectric constant Se(x) in 
(10.31) can be written as 

8e(X) = € D Ym CX — x,) (10.33) 

The differential scattering cross section obtained from (10.31) and (10.28) is 

4 

we = bm let = eo HQ) 
where #(q) is given by (10.19). For a random distribution of scattering centers 
the structure factor reduces to an incoherent sum, and the cross section is just 
that for one molecule, times the number of molecules. For a dilute gas the mo- 
lecular polarizability is related to the dielectric constant by €, = 1 + NYymoi, where 
Nis the number of molecules per unit volume. The total scattering cross section 
per molecule of the gas is thus 

2k* 

3aN* 
P= n—1P (10.34) 

4 
o= oe le - 1 

where the last form is written in terms of the index of refraction n, assuming 
Jn — 1] << 1. The cross section (10.34) represents the power scattered per mol- 
ecule for a unit incident energy flux. In traversing a thickness dx of the gas, the 
fractional loss of flux is No dx. The incident beam thus has an intensity /(x) = 
dye", where a is the absorption or attenuation coefficient (also called the extinc- 
tion coefficient) of (7.53) and is given by 

2k* 2 
a=No= San lt 1 (10.35) 

These results, (10.34) and (10.35), describe what is known as Rayleigh scattering, 
the incoherent scattcring by gas molecules or other randomly distributed dipole 
scatterers, each scattcring according to Rayleigh’s w* law. 

Rayleigh’s derivation of (10.35) was in the context of scattcring of light by 
the atmosphere. Evidently the k* dependence means that in the visible spectrum 
the red is scattered least and the violet most. Light received away from the di- 
rection of the incident beam is more heavily weighted in high-frequency (blue) 
components than the spectra! distribution of the incident beam, while the trans- 
mitted beam becomes increasingly red in its spectral composition, as well as di- 
minishing in overall intensity. The bluencss of the sky. the redness of the sunset, 
the waneness of the winter sun, and the ease of sunburning at midday in summer 
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are all consequences of Rayleigh scattering in the atmosphere. The index of 
refraction of air in the visible region (4100-6500 A) and at NTP is (z — 1) = 

2.78 X 1074. With N = 2.69 x 10'° molecules/em’, typical values of the attenu- 
ation length A = @ | are A = 30, 77, 188 km for violet (4100 A). grecn (5200 

A), and red (6500 A) light, respectively. With an isothermal model of the at- 
mosphere in which the density varies exponentially with hcight, the following 
intensities at the earth's surface relative to those incident on the top of the at- 

mosphere at each wavelength can be estimated for the sun at zenith and sunrise- 
sunset: 

Color Zenith Sunrise-Sunset 

Red (6500 A) 0.96 0.21 
Green (5200 A) 0.90 0.024 
Violet (4100 A) 0.76 0.000065 

These numbers show strikingly the shift to the red of the surviving sunlight at 
sunrise and sunset. 

The actual situation is illustrated in Fig. 10.4. The curve A shows the power 
spectrum of solar radiation incident on the earth from outside as a function of 
photon energy. Curve B is a typical spectrum at sea level with the sun directly 
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Figure 10.4 Power spectrum of solar radiation {in watis per square meter per electron 
volt) as a function of photon energy (in clectron volts). Curve A is the incident 
spectrum above the atmosphere. Curve 8 is a typical sea-level spectrum with the sun at 
the zenith. The absorption bands below 2 eV are chiefly from water vapor and vary 
from site lo site and day to day. The dashed curves give the expected sea-level 
spectrum at zenith and at sunrise-sunset if the only attenuation is from Rayleigh 

scattering by a dry, clean atmosphere. 
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overhead.* The upper dashed curve is the result expected from curve A if the 
only attenuation is Rayleigh scattering by a dry, clean, isothermal, exponential 
atmosphere, In reality the attenuation is greater. mainly because of the presence 
of water vapor, which has strong absorption bands in the infrared, and ozone, 
which causes absorption of the ultraviolet. as well as other molecular species and 
dust. The lower dashed curve indicates roughly the sunrise-sunset spectrum at 
sea level. Astronauts orbiting the carth see even redder sunsets because the at- 
mospheric path length is doubled. 

Detailed observations on the polarization of the scattered light from the sky 
have been reported.” Just as with the attenuation, the reality departs somewhat 
from the ideal of a dry, clean atmosphere of low density. At 90° the polarization 
is a function of wavelength and reachcs a maximum of approximately 75% at 
5500 A. It is estimated to be less than 100% because of multiple scattering (6%), 
molecular anisotropy (6%), ground reflection (5%, and especially important in 
the green when green vegetation is present), and aerosols (8%). 

The formula (10.35) for the extinction coefficient is remarkable in its pos- 

session of the factor N ' as well as macroscopic quantities such as the index of 
refraction. If there were no atomicity (N > 2), there would be no attenuation. 
Conversely, the observed attenuation can be used to determine N. This point 
was urged particularly on Rayleigh by Maxwell in private correspondence. If the 
properties of the atmosphere are assumed to be well enough known, the relative 
intensity of the light from a definite star as a function of altitude can be used to 
determine N. Early estimates were made in this way and agree with the results 
of more conventional methods. 

D. Density Fluctuations; Critical Opalescence 

An alternative and more general approach to the scattering and attenuation 
of light in gases and liquids is to consider fluctuations in the density and so the 
index of refraction. The volume V of fluid is imagined to be divided into cells 
smal comparcd to a wavelength, but each containing very many molecules. Each 
cell has volume v with an average number N, = vN of molecules inside. The 

actual number of molecules fluctuates around N,, in a manner that depends on 

the properties of the gas or liquid. Let the departure from the mcan of the num- 
ber of moleculcs in the jth cell be AN;. The variation in index of refraction Se 
for the jth cell is 

ae_AN, 
1 aN Te 

From the Clausius—Mossotti relation (4.70), this can be written 

gc, = DE FD) ay, (10.36) 
3Nv 

*The data in Fig. 10.4 were derived from W. E. Forsythe, Snrithsonian Physical Tables 9th revised 

edition, Smithsonian Institution, Washington, DC (1954), Tables 813 and 815, and from K. Ya 

Kondratyev, Radiation in the Atmosphere, Academic Press, New York (1969). Chapter 5. 
*T. Gehrels, #. Opt. Soc. Am. 52, 1164 (1962). 
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With this expression for Se for the jth cell, the integral (10.31), now a sum over 

cells, becomes 

e* - AW R(e, — ie, + 2) 
Me gt, - * ANjet™ 10.3 

D, 8 Tee, ANE (105) 
Tn forming the absolute square of (10.37) a structure factor similar to (10.19) will 
occur. If it is assumed that the correlation of fluctuations in different cells (caused 
indirectly by the intermolecular forces) only extends over a distance smal! com- 
pared to a wavelength, the exponential in (10.37) cap be put equal to unity. Then 
the extinction coefficient a, given by 

-7J 
is (10.38) 

_ (wie) \(e, = Ie, + 2) ANE 
6aN 3 NY 

where AN, is the mean square number fluctuation in the volume V, defined by 

ANY, = © ANAN; 7 

FAY 

the sum being over all the cells in the volume V. With the use of statistical 
mechanics* the quantity AN? can be expressed in terms of the isothermal com- 

pressibility By of the medium: 

ANY @ over -1(¥ NV: . Bre + (3) (10.39) 

The attenuation coefficient (10.38) then becomes 

_ 1 fe) [le =e +2))° 
6nN \c 3 

This particular expression, first obtained by Einstein in 1910, is called the 
Hinstein-Smoluchowski formula. For a dilute ideal gas. with |e — 1| << 1 and 
NkTB; = 1, it reduces to the Rayleigh result (10.35). As the critical point is 
approached, 8; becomes very large (infinite exactly at the critical point). The 
scattering and attenuation thus become large there. This is the phenomenon 
known as critical opatescence. The sarge scattering is directly related to the large 
fluctuations in density near the critical point. as stressed originally by 
Smoluchowski (1904). Very near the critical point our treatment so far fails be- 
cause the correlation fength for the density fluctuations becomes greater than a 
wavelength, as first pointed out by Ornstein and Zernicke (1914). 

For large correlation length A we must retain the exponential phase factors 
in (10.37). The absolute square of the scattering amplitude then involves a double 
sum of AN ANS ~?), which can be expressed as 2 Fourier transform of the 

density correlation function. Because there is now additional angular dependence 
from q, the angular distribution is no longer the simple dipole form. If a corre- 

- NKTBr (10.49) 

*See F. Reif, Fundamentals of Statistical and Thermal Physics, McGraw-Hill, New York (1965), 
pp. 300-1, or L. D. Landau and E. M. Lifshitz, Statistical Physics, 3rd edition, Pergamon Press, New 
York (1980), Chapter XII. 
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lation function of Yukawa form e~"*/r is assumed, it can be shown that the 
differential attenuation coefficient for unpolarized incident radiation takes the 
form 

da) _ 3 1 + costoy = (10.41) 
i+ A°g?’/NKTB,- 

dQ 167 1+ A’? 

where q’ = 2(w/c)*{1 — cos 6) and ais given by (10.40). For Ag << 1, integration 
over the normalized angular distribution gives back (10.40), but for A > ©, the 

angular integration yields attenuation proportional to (c/Aw)* In(Aw/c) times 
(10.40). The frequency dependence as w* away from the critical point is altered 
to roughly w”; the scattered light appears “whiter” close to the critical point, 

We note that, while our expressions diverge exactly at the critical point and 
therefore are unphysical, a better treatment yields large but finite attenuation, 
One consideration is that the correlation length A cannot become larger than the 
dimensions of the fluid container. 

References to the early literature can be found in Fabelinskii, who discusses 
the application of light scattering to critical point phenomena and second-order 
phase transitions. For treatments of the radial density correlation function, see 
Rosenfeld (Chapter V, Section 6), or Landau and Lifshitz (op. cit.). 

E, Attenuation in Optical Fibers 

It is of interest that the ultimate limiting factor setting the maximum distance 
between repeater units in optical fiber transmission is the unavoidable attenua- 

100 -— a r r r — 

g 
s 
§ > 
3 Rayleigh “~~ 
Ss ag ‘scattering 

ge q 

em! Loss fh, 
tS ~AL Ultraviotet are 

< ~~. absorption fa 

Ie are (f Infrared 
aa 2f. absorption | 
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Figure 10.5 Attenuation versus wavelength for a typical low-loss, single-mode silica 
optical fiber (schematic). Rayleigh scattering sets the lower limit until infrared 
absorption rises above 1.6 zm. The peaks in the observed attenuation are caused by 
watcr (OH ions) dissolved in the glass. 
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tion caused by Rayleigh scattering. and by infrared absorption at longer wave- 
lengths. The isothermal compressibility of silica glass is By = 7 < 107!) m?/N, 
while the relevant temperature 7° ~ 1400 K (called the fictive temperature) is 
where the fluctuations are frozen in (approximately the annealing temperature). 
The effective valuc of (e, — 1){e, + 2)/3 ~ 1.30 in (10.40) is somewhat smaller 
than the 1.51 infcrred from an index of refraction of n = 1.45 at A = 1.0 wm. The 

net result is that a (km~!) ~ 0.2/(A (um)]*. The conversion to decibels per kilo- 
meter (a factor of 4.343) gives a (dB/km) = 0.85/[A (m)]', shown as the dash- 
dotted curve in Fig. 10.5, which displays a schematic representation of typical 
data for a low-loss, single-mode optical fiber. For wavelengths less than 1.5 zm, 
the attenuation is dominated by Rayleigh scattcring, plus the absorption by im- 
purities such as the hydroxy! ions from very small amounts of water dissolved in 
the glass. At wavelengths longer than 1.6 um, infrared absorption sets in strongly. 
The minimum attenuation of about 0.2 dB/km occurs at A = 1.55 wm. The ab- 

sorption mean free path at the minimum is 22 km. 

10.3 Spherical Wave Expansion of a Vector Plane Wave 

In discussing the scattering or absorption of electromagnetic radiation by spher- 
ical objects, or localized systems in gencral. it is useful to have an expansion of 
a plane electromagnetic wave in spherical waves. 

For a scalar ficld (x) satisfying the wave cquation, the necessary expansion 
can be obtained by using the orthogonality properties of the basic spherical so- 
lutions j,{kr) Y;,,(8. 6). An alternative derivation makes use of the spherical wave 
expansion (9.98) of the Grecn function (e**/47R). We let |x’| > % on both sides 
of (9.98). Then we can put |x - x’| = r’ — n-x on the left-hand side, where nm is 
a unit vector in the direction of x’. On the right side r. = r’ and 7. = r, Fur- 
thermore we can use the asymptotic form (9.89) for h{'(kr’). Then we find 

eikr glk! oy, 
aa* OCS ale ra 2 CH FK)V In @ Vink, 6) (10.42) 

Canceling the factor e“”/r’ on cither side and taking the complex conjugate. we 
have the expansion of a plane wave 

* t 

eh = dS) Hilkry 3D Vin. B)Yin(@'. &') (10.43) 
Pn mat 

where k is the wave vector with spherical coordinates k, 6’. @'. The addition 
theorem (3.62) can be used to put this in a more compact form 

e** = ¥ #QE + Mjilkr)P;(cos y) (10.44) 
= 

where y is the angle between k and x. With (3.57) for P; cos(-y). this can also be 
written as 

ef = SIV aR OES 1) ier) Yio) (10.45) ro 
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We now wish to make an equivalent expansion for a circularly polarizeg 
plane wave with helicity + incident along the z axis, 

E(x) = (€ = ie2je™ 10. cB(x) = 6, X E= iE (10.46) 
Since the plane wave is finite everywhere, we can write its multipole expansion 
(9.122) involving only the regular radial functions j,(kr): 

E(x) = > [ew MLK )X yn + = bh m)V x jlkorX.| 

(10.47) 
Bw) - 5 [Z a.(L, MV X jfkXm, + b.(l mykr%n| tm 

To determine the coefficients @. (1, m) and b.(/, m) we utilize the orthogonality 
properties of the vector spherical harmonics X,,,. For reference purposes we 
summarize the basic relation (9.120), as well as some other useful relations: 

J 60% ad + Las OX in) AD = $78 Bro 
| LF X rm] + (VX B7)Xim] dQ = 0 

(10.48) 
Bf 1% 10% VX g(9Xie] dl 

: 1 a 
= bec 8 + Bp 2 [ = vs] 

In these relations f(r) and g)(r) are linear combinations of spherical Bessel func- 
tions, satisfying (9.81). The second and third relations can be proved using the 
operator identity (9.125), the representation 

for the gradient operator, and the radial differential equation (9.81). 
To determine the coefficients a.{/, m) and b..(!, 7) we take the scalar product 

of both sides of (10.47) with X4,,, and integrate over angles. Then with the first 
and second orthogonality relations in (10.48) we obtain 

a (lL m)j{kr) = | Xin + E(x) dQ (10.49) 

and 

5. myj(kr) = ef Xin + B(x) dO {10.50) 

With (10.46) for the electric field, (10.49) becomes 

(I, m)j{kr) = | (10.51) 
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where the operators L.. arc defined by (9.102), and the results of their operating 

by (9.104). Thus we obtain 

{E, m)j,(kr) ES Ole 2a Yj, ‘ AQ, (10.52) (I, m)j,(kr) = ————— mai .5 uy I+ 1) ie) 
If expansion (10.45) for e* is inserted, the orthogonality of the Y,,,’s evidently 

leads to the result, 

afl, m) = 'V4a(21 +1) 8,4 (10.53) 

From (10.50) and (10.46) it is clear that 

b (Lm) = Fia (1, m) (10.54) 

Then the multipole expansion of the plane wave (10.46) is 

E(x) =D ¢Vaa@I 1) [ie, Lt LW x jkN)X, ,| 
a k (10.55) 

Bix) =D Vin F 1) [z Vx j(k)%,.. = inkr..| 
‘1 

For such a circularly polarized wave the m values of m = +1 have the obvious 
interpretation of +1 unit of angular momentum per photon parallel to the prop- 
agation direction. This was established in Problems 7.28 and 7.29. 

10.4 Scattering of Electromagnetic Waves by a Sphere 

If a plane wave of electromagnetic radiation is incident on a spherical obstacle, 
as indicated schematically in Fig. 10.6, it is scattered, so that far away from the 
scatterer the fields are represented by a plane wave plus outgoing spherical 
waves. There may be absorption by the obstacle as weil as scattering. Then the 
total energy flow away from the obstacle will be less than the total energy flow 
towards it, the difference being absorbed. We will ultimately consider the simple 
cxample of scattering by a sphere of radius a and infinite conductivity, but will 
for a time keep the problem more general. 

The fields outside the sphere can be written as a sum of incident and scattcred 

Waves: 

E(x) = Eine + a] (10.56) 
B(x) = Bine + Boe 

> —~sf Scattered 
VA ee 

Incident + = JOT ~ \ 

Figure 10.6 Scattering of radiation by a localized object. 
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where Ej,, and B;,, are given by (10.55). Since the scattered fields are outgoing 
waves at infinity, their expansions must be of the form, 

E,, = o Si iVEnQl + 1) [e-coniraerma 2 + Bs BOY x AM GENX, | 

Bo = 5S INT [== FD 56 HOEK 4 FBO EDX, | % 
(10.57) 

The coefficients a. (/) and B.(2) will bc determined by the boundary conditions 
on the surface of the scatterer. A priori, it is necessary to keep a full sum over 
m as well as / in (10.57), but for the restricted class of spherically symmetric 
problems considered here, only m = +1 occurs. 

Formal expressions for the total scattered and absorbed power in terms of 
the coefficients of a(!) and B(/) can be derived from the scattered and total fields 
on the surface of a sphere of radius a surrounding the scatterer, with the scattered 
power being the outward component of the Poynting vector formed from the 
scattered fields, integrated over the spherical surface, and the absorbed power 
being the corresponding inward component formed from the total fields. With 
slight rearrangement of the we scalar products, these can be written 

Py = ->=— ae fae E..- (n x BE) dQ (10.58) 

Pans = Re E-(n x Bt) dQ. (10.59) 
a Ho 

Here n is a radially directed outward normal, E,, and B,, are given by (10.57), 
while E and B are the sum of the plane wave fields (10.55) and the scattered 
fields (10.57). Only the transverse parts of the ficlds enter these equations. We 
already know that X,,, is transverse. The other type of term in (10.55) and (10.57) 
IS 

inViE + 1) a 
VX Fl \Xim = > FrVin + 12 [rfilr)Jn x Xp, (10.60) 

where f; is any spherical Bessel function of order / satisfying (9.81). When the 
multipole expansions of the fields are inserted in (10.58) and (10.59), there results 
a double sum over / and ?' of various scalar products of the form X%¥j.*Xpyvy 

X7,(n x Xp,,) and (n x Xj,,)-(n x X;,,-). On integration over angles, the 
orthogonality relations (10.48) reduce the double sum to a single sum. Each term 
in the sum involves products of spherical Bessel functions and derivatives of 
spherical Besse! functions. Use of the Wronskians (9.91) permits the elimination 
of all the Besse! functions and yields the following expressions for the total scat- 
tering and absorption cross sections {the power scattered or absorbed divided by 
the incident flux, I/pyc): 

so = 32 & A+ Nilae + BOF cr 

Om = 525 D 2+ HR - Ja) + 1P = |B) + 1F] 
2k? 7 
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The total or extinction cross section is the sum of o,, aNd @ a4: 

a= re DY QF + 1) Relat) + BD] (10.62) i 
Not surprisingly, these expressions for the cross sections resemble closely the 
partial wave expansions of quantum-mechanical scattcring.* 

The differential scattering cross section is obtained by calculating the scat- 

tered power radiated into a given solid angle element dQ and dividing by the 

incident flux. Using the result of Problem 10.6a, we find the scattering cross 
section for incident polarization (€, + ie,) to be 

aoe = 3p DY VIET fa. (OX os * iB.) XX, at (10.63) 

The scattered radiation is in general clliptically polarized. Only if a..{/) = B-(/) 
for ali / would it be circularly polarized. This means that if the incident radiation 
is linearly polarized, the scattered radiation will be elliptically polarized; if the 
incident radiation is unpolarized, the scattered radiation will exhibit partial po- 

larization depending on the angle of observation. Examples of this in the long- 
wavelength limit were described in Section 10.1 (see Figs. 10.2 and 10.3). 

The coefficients a..(/) and 8, (1) in (10.57) are determined by the boundary 

conditions on the fields at r = a. Normally this would involve the solution of the 
Maxwell equations inside the sphere and appropriate matching of solutions 
across r = a. If, however, the scatterer is a sphere of radius a whose electromag- 
netic properties can be described by a surface impedance Z, independent of po- 
sition (for this the radial variation of the fields just inside the sphere must be 
rapid compared to the radius), then the boundary conditions take the relatively 
simple form 

Eqn = Zn * Bipy (10.64) 

where E and B are evaluated just outside the sphere. From (10.55), (10.57), and 
(10.60) we have 

Ew = > V4 + iyi all pls, 
7 

and 

cnx B=> NERO D|! 2 [+(i: + ft wr) bx 7 : 

=i + 20 nln ex, ; 

*Our results are not completely general. H{ the sum over m had been included in (10.57), the scattering 
cross section would have a sum over and nt with the absolute squares of af? om} and B(l, mm). The 
total cross section would stay as it is, with a(?) > a(f.mz = + 1) and BU) > BEE, m = +1), depending 
on the state of polarization of the incident wave (10.46). The absorption crass section can be deduced 
from taking the difference of 9; and o,.. 
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where x = ka and ail the spherical Bessct functions have argument x. The bound. 
ary condition (10.64) requires that, for each / value and for each term X,,, ang 
n x X,,, scparately, the coefficients of E,,, and m x B be proportional, according 
to 

a. jor 
ae a oa eel (i 2H )| (106 65) 4 mo Af? = (2) 14 [ofi+ B.() “| 

By means of the relation 2j, = hj’ + Af, the coefficients a.(/) and B.(/) can be 
written 

Z\1d 2 _ jf 4s @y Ay (2+ ae (why) 

a(j+1=- eta ge SRE (10.66) 
af 4s) @ pay wr (Fi) Fae 

with 8.(/) having the same form, but with Z,/Z,) replaced by its reciprocal, We 
note that with the surface impedance boundary condition the coefficients arc the 
same for both states of circular polarization. 

For a given Z,, all the multipole coefficients are determined and the scatter- 
ing is known in principle. All that remains is to put in numbers. Before Procecding 
to a specific limit, we make some observations. First, if Z, is purely i imaginary 
(no dissipation) or if Z, = 0 or Z, > %. [w.{2) + 1] and [8.(/) + 1] are numbers 
of modulus unity. This means that @.(/) and B.(/) can be written as 

a) =(e%—1), Bd) = (e — 1) (10.67) 

where the phase angles 6, and 5; are called scattering phase shifts, Specifically 

tan 8; = j(ka)inj(ka) 

da 
ae HO) 

+ (ands) 
(10.68) 

tan 6; = 

rmka 

if Z, = 0 (perfectly conducting sphere) and 6, = 8} for Z, > ~. 
The second observation is that (10.66) can be simplified in the low- and high- 

frequency limits. For ka << J, the spherical Bessel functions can be approximated 

according to (9.88). Then we obtain the long-wavelength approximation, 

=2i(kay"" x= il + IZ IZo 
Qb+ NIG = nnp | x + uZ,/Z, a.() ~ (10.69) 

and the same form for 8-(!), with (Z/Z,) replaced by its inverse. For ka >> 
we use (9.89) and obtain 

a) = (Be eye = (10.70) 
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with 8.(/) = —a.(2) via the usual substitution. In the long-wavelength limit, 

independent of the actual valuc of Z,, the scattering cocfficients a~(/), B.{/) 

become small very rapidly as / increases. Usually, only the lowest term (/ = 1) 

need be retained for each multipole scrics. In the opposite limit of ka >> 1, 

(10,70) shows that for / << ka, the successive coefficients have comparable mag- 
nitudes, but phases that fluctuate widely. For J ~ dna. = Xa, there is a transition 

region and for f >> fax. (10.69) holds. The use of a partial wave or multipole 

expansion for such a large number of terms is a delicate matter, necessitating the 

careful use of digital computers or approximation schemes of the type discussed 

in Section 10.10. 
We specialize now to the long-wavelength limit {ka << 1) for a perfectly 

conducting sphere (Z, = 9), and Ieave examples of slightly more complexity to 
the problems. Only the / = 1 terms in (10.63) are important. From (10.69) we 

find 

: 5) 
a(1) = 3B.) = -5 (ka) 

In this limit the scattering cross section is 

doy. 27 > a = 2 Te ye (kay |X F Zin X Xf (10.71) 

From Table 9.1 we obtain the absolute squared terms, 

In x XP = [XP = rad + cos’@) 

The cross terms can be casily worked out: 

‘ 73 
(tim x X,.)* +X...) = ra cos 6 

Thus the long-wavelength limit of the differential scattering cross section is 

ra = @(ka)*[2(1 + cos’@) — cos 6] (10.72) 

Equation (10.72) is the same as (10.16). found by other means and is valid for 

either state of circular polarization incident, or for an unpolarized incident beam. 
The generalizations to arbitrary incident polarization and to different surface 
boundary conditions are left to the problems at the end of the chapter. 

The general problem of the scattering of clectromagnetic waves by spheres 
of arbitrary electric and magnetic propertics when ka is not small is complicated. 
It was first systematically attacked by Mic and Debye in 1908-1909. By now, 
hundreds of papers have been published on the subject. Details of the many 
aspects of this important problem can be found in the books by Kerker, King 
and Wu, Bowman, Senior, and Uslenghi and other sources cited at the end of the 

chapter. The book by Bowman, Senior, and Uslenghi discusses scattcring by other 

regular shapes besides the sphere. 
For scatterers other than spheres, cylinders. cte., there is very little in the 

way of formal theory. The perturbation theory of Section 10.2 may be used in 

appropriate circumstances. 
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10.5 Scalar Diffraction Theory 

Although scattering and diffraction are not logically scparate, the treatments tend 
to be separated, with diffraction being associated with departures from geomet. 
tical optics caused by the finite wavelength of the waves. Thus diffraction tradi. 
tionally involves apertures or obstacics whosc dimensions are large compared to 
a wavelength. To lowest approximation the interaction of clectromagnetic waves 
is described by ray tracing (geometrical optics). The next approximation involves 
the diffraction of the waves around the obstacles or through the apertures with 
a conscqucnt spreading of the waves. Simple arguments based on Fourier trans. 
forms show that the angles of deflection of the waves are confined to the region 
0 = Ald, where A is the wavelength and d is a linear dimension of the aperture 
or obstacle. The various approximations to be discussed below ail work best for 
Ald << 1, and fail badly for A ~ d or A > d. 

The carliest work on diffraction is associated with the names of Huygens, 
Young, and Fresnel. The first systematic attempt to derive the Fresnel theory 
from first principles was made by G. Kirchhoff (1882). Kirchhoff’s theory, despite 
its mathematical inconsistency and its physical deficiencies, works remarkably 
well in the optical domain and has been the basis of most of the work on dif- 
fraction. We first derive the basic Kirchhoff integral and its operative approxi- 
mations, then comment on its mathematical difficulties, and finally describe the 
modifications of Rayleigh and Sommerfeld that remove the mathematical 
inconsistencies. 

The customary geometry in diffraction involves two spatial regions I and I, 
separated by a boundary surface $,, as shown in Fig. 10.7. The surface S, is 
generally taken to be “at infinity,” that is, remote from the region of interest, 
Sources in region I generate fields that propagate outward. The surface S, is 
supposed to be made up of “opaque” portions (the boundary conditions are 
discussed below) and apertures. The surface S, interacts with the fields gencrated 
in region I, reflecting some of the energy, absorbing some of it. and allowing 
some of the ficlds, modified by their interaction, to pass into region II. The an- 
gular distribution of the fields in region II, the diffraction region, is cafled the 
diffraction pattern. It is the diffracted fields in region II that we wish to express 
in terms of the ficlds of the sources and their interaction with the screen and 

apertures on S|, or more precisely. in terms of the ficlds on the surface S). It 

Sources 

Figure 10.7. Possible diffraction geometties. Region I contains the sources of radiation. 
Region 11 is the diffraction region, where the fields satisfy the radiation condition. The 

right-hand figure is also indicative of scattering, with a finite scatterer in region 1 instead 
of an active source, and the surface S, an arbitrary mathematical surface enclosing the 
scatterer rather than a material screen with apertures. 
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should be obvious that the geometry and mode of description is equally appli- 
cable to scattering, with the sources in region I replaced by a scatterer (thought 
of as a source being driven by the incident wave). 

Kirchhoff's method uses Green’s theorem {1.35) to express a scalar field (a 
component of E or B) inside a closed volume V in terms of the values of the field 
and its normal derivative on the boundary surface S. Let the scalar ficld be 

wx, 0), and let it have harmonic time dependence, e~“". The field y is assumed 

to satisfy the scalar Helmholtz wave equation, 

(VW? + K)u(x) = 0 (10.73) 

inside V. We introduce a Green function for the Helmholtz wave equation 

G(x, x’), defined by 

(V° + R)G(x, x’) = -8x — x’) (10.74) 

In Green’s theorem (1.35), we put d = G, & = ys, make use of the wave equations 
(10.73) and (10.74), and obtain, in analogy to (1.36), 

Wx) = ¢ [y(x')n' + V'G(x, x’) — G(x, x")n - V'y(x)] da’ (10.75) 

where n’ is an inwardly directed normal to the surface S. Equation (10.75) holds 

if x is inside V; if it is not, the left-hand side vanishes. 
The Kirchhoff diffraction integral is obtained from (10.75) by taking G to be 

the infinite-space Green function describing outgoing waves, 

aR 

ij S— G(x, x’) aaR (10.76) 

where R = x - x’. With this Green function, (10.75) becomes 

ose aia Ni iy on i\R F 
wx) = rs ars ns [° ab + a(t + ia) R | da (10.77) 

This is almost the Kirchhoff integrai. To adapt the mathematics to the diffraction 
context we consider the volume V to be that of region II in Fig, 10.7 and the 
surface § to consist of S, + S:. The integral over S is thus divided into two parts, 

one over the screen and its apertures (S,)}, the other over a surface “at infinity” 

(S.). Since the fields in region H] are assumed to be transmitted through S,, they 
are outgoing waves in the neighborhood of S,. The fields, hence w(x). will satisfy 

a radiation condition, 

b> £0, d) <, ib, (« = 1) (10.78) 

With this condition on y at S, it is easily seen that the contribution from S, in 
(10.77) vanishes at least as the inverse of the radius of the hemisphere or sphere 
as the radius goes to infinity. There remains the integral over S,. The Kirchhoff 

integral formula reads 

Dif eps el AR [ho v0) = 42 | Sen [ve a(t + &) Re ‘| da’ (10.79) 

with the integration only over the surface S, of the diffracting “screen.” 



480 Chapter 10 Scattering and Diffraction—SI 

To apply (10.79) it is necessary to know the values of & and au/an on the 
surface S,. Unless the problem has been solved by other means, these values are 
not known, Kirchhoff’s approach was to approximate the values of and oy/an 
on S; in order to calculate an approximation to the diffracted wave. The 
Kirchhoff approximation consists of the assumptions: 

1. yand ay/dn vanish everywhere on S, except in the openings. 

2. The values of % and di/dn in the openings are equal to the values of the 
incident wave in the absence of any screen or obstacles. 

The standard diffraction calculations of classical optics are all based on the 
Kirchhoff approximation. It is obvious that the recipe can have only limited va- 
lidity. There is, in fact, a serious mathematical inconsistency in the assumptions 
of Kirchhoff. It can be shown for the Helmholtz wave equation (10.73), as well 

as for the Laplace cquation, that if yand a/dn are both zero on any finite surface, 
then y% = 0 everywhere. Thus the only mathematically correct consequence of 

the first Kirchhoff assumption is that the diffracted field vanishes everywhere. 
This is, of course, inconsistent with the second assumption. Furthermore, (10.79) 
does not yield on S, the assumed values of ys and dy/an. 

The mathematical inconsistencies in the Kirchhoff approximation can be re- 
moved by the choice of a proper Green function in (10.75). Just as in Section 
1.10, a Green function appropriate to Dirichlet or Neumann boundary conditions 
can be constructed. If yr is known or approximated on the surface $,, a Dirichlet 
Green function Gp(x, x’), satisfying 

Gp{x, x‘) =0 for x’ on S (10.80) 

is required. Then a generalized Kirchhoff integral, equivalent to (10.79), is 

= 1 9G oy 9) da! 
W(x) = ie wx’) ant (x, x’) da (10.81) 

and a consistent approximation is that ¢ = 0 on S, except in the openings and p 

is equal to the incident wave in the openings. If the normal derivative of y is to 
be approximated, a Neumann Green function Gy(x, x’), satisfying 

aG, 

on 
*(x,x’)=0  forx’onS (10.82) 

is employed. Then the generalized Kirchhoff integral for Neumann boundary 

conditions reads 

wea) = — |  weycenen, ) dat (1083) 
1s On 

Again a consistent approximation scheme can be formulated. 
For the important special circumstance in which the surface S, is an infinite 

plane screen at z = 0, as shown in Fig. 10.8, the method of images can be used 

to give the Dirichlet and Neumann Green functions explicit form: 

1 [eit eat 
Gp ¥1) = 5 (5 Es = ) (10.84) 
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Figure 10.8 Diffraction geometry for a 
point source at P’, a plane screen with 
apertures, and an observation point at 
P. The distances from the clement of 

‘a area da’ in the aperture to the points P 
and P’ are rand r’, respectively. The 
angles @ and 6" are those between r and 
n, and r’ and —n, respectively. 

where R = x — x’, and R' = x — x”, x” being the mirror image of x’. Explicitly 
we have 

R=[@-xY+-yP+@- vy]? 
R=(x-x¥ + -yvPtiet zy]? 

The generalized Kirchhoff integral (10.81) (y approximated on S,) then takes 
the form, 

k elkk i\w-eR 
ux) mids, R (1 + a) R w(x’) da (10,85) 

An analogous expression can be written for (10.83), both results attributable to 
the ubiquitous Rayleigh.* 

Comparison of (10.85) with (10.79) shows that (10.85) can be obtained from 
(10.79) by omitting the first term in the square brackets and doubling the second 
term. The Neumann result (10.83) specialized to a plane screen is equivalent, on 

the other hand, to doubling the first term and omitting the second. It might thus 
appear that the three approximate formulas for the diffracted field are quite 
different and will lead to very different results. In the domain where they have 
any reasonable validity they yield, in fact, very similar results. This can be un- 
derstood by specializing the diffraction problem to a point source at position P’ 
on one side of a plane screen and an observation point P on the other side, as 
shown in Fig. 10.8. The amplitude of the point source is taken to be spherically 
symmetric and equal to e“”/r’. Both P and P’ are assumed to be many wave- 
lengths away from the screen. With the Kirchhoff approximation in (10.79) and 
equivalent assumptions in (10.85) and its Neumann boundary condition counter- 
part, the diffracted fields for all three approximations can be written in the com- 
mon form, 

eth pike 
yer) = 

2a apertures 7 
©(@, 6°) da’ (10.86) 

"Equation (10.85) was also used by Sommerfeld in his early discussions of diffraction. See 
Sommerfeld, Optics, pp. 197 ff 
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where the obliquity factor €(@, 6’) is the only point of difference. These factors 
are 

cos 8 (@ approximated on S,) 

(6, 8} = {cos 6 (2 approximated on s) 
m1 

(cos @ + cos é’) (Kirchhoff approximation) 

where the angles are defined in Fig. 10.8. For apertures whose dimensions are 
large compared to a wavelength, the diffracted intensity is confined to a narrow 
range of angles and is governed almost entirely by the interferenccs between the 
two exponential factors in (10.86). If the source point P’ and the observation 
point P are far from the screen in terms of the aperture dimensions, the obliquity 
factor in (10.86) can be treated as a constant. Then the relative amplitudes of the 
different diffracted fields will be the same. For normal incidence ail obliquity 
factors are approximatcly unity where there is appreciable diffracted intensity. 
In this case even the absolute magnitudes are the same. 

The discussion above explains to some extent why the mathematically in- 
consistent Kirchhoff approximation has any success at all. The use of Dirichlet 
or Neumann Green functions gives a better logical structure, but provides little 
practical improvement without further elaboration of the physics. An important 
deficiency of the discussion so far is its scalar nature, Electromagnetic fields have 
vector character. This must be incorporated into any realistic treatment, even if 
approximate. In the next section we proceed with the task of obtaining the vector 
equivalent of the Kirchhoff or generalized Kirchhoff integral for a plane screen. 

10.6 Vector Equivalents of the Kirchhoff Integral 

The Kirchhoff integral formula (10.79) is an exact format relation expressing the 
scattered or diffracted scalar field (x) in region II of Fig. 10.7 in terms of an 
integral of and ap/an over the finite surface S,. Corresponding vectorial rela- 
tions, expressing E and B in terms of surface integrals, arc useful as a basis for 
a vectorial Kirchhoff approximation for diffraction (Section 10.7) and scattering 
(Section 10.10), and also for formal developments such as the proof of the optical 
theorem (Section 10.11). 

To derive a Kirchhoff integral for the electric fieid, we begin with (10.75) for 
each rectangular component of E and write the obvious vectorial equivalent, 

E(x) = $ [E(n’ - V'G) - Gin’ - VE] da’ (10.87) 

provided the point x is inside the volume V bounded by the surface S. Here. as 
in (10.75), the unit normal n’ is directed into the volume V. Eventually we will 
specify G to be the infinite-space Green function, (10.76), but for the present we 
leave it as any solution of (10.74). Because we wish to use certain theorems of 

vector calculus that apply to well-behaved functions, while G is singular at 
x’ = x, we must exercise some care. We imagine that the surface S consists of an 
outer surface S’ and an infinitesimally smaller inner surface S” surrounding the 
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point x’ = x. Then, from Green’s theorem, the left-hand side of (10.87) vanishes. 

Of course, evaluation of the integral over the inner surface S”, in the limit as it 
shrinks to zero around x’ = x, gives —E{x). Thus (10.87) is restored in practice, 
but by excluding the point x’ = x from the volume V the necessary good math- 
ematical behavior is assured. With this understanding concerning the surface S, 

we rewrite (10.87) in the form 

o= $ [2E(n’ - V'G) — n’ - V"(GE)] da’ 

The divergence theorem can be used to convert the second term into a volume 
integral, thus yielding 

0= $ 2E(n’ - V'G) da’ + si V?2(GE) dx’ 

With the use of V7A = V(V-+ A) — ¥ x (¥ x A) for any vector ficld A, and the 
vector calculus theorems. 

i Vb d*x = f ng da 
v s (10.88) 

[vx aadx=4 (n x A) da 
y s 

where ¢ and A are any well-behaved scalar and vector functions (and n is the 
outward normal), we can express the volume integral again as a surface integral. 
We thus obtain 

O= f (2E(n’ - V’G) — n'(V’ - (GE)) + n’ x (¥! x (GE))] da’ 

Carrying out the indicated differentiation of the product GE, and making use of 
the Maxweil equations, V'. E = 0, V’ x E = iwB, we find 

= ¢ [io(n’ x B)G + 2E(n’ - VG) ~ n'(E+V'G) + a! x (V'G x E)] da’ 

Expansion of the triple cross product and a rearrangement of terms yields the 
final result, 

E(x) = ¢ [io(n’ x B)G + (W’ x E) x WG + (n' E)V'G] da’ (10.89) 

where now the volume V bounded by the surface S contains the point x’ = x. An 
analogous expression for B can be obtained from (10.89) by means of the sub- 
stitutions, E — cB and cB — —E. 

Equation (10.89) is the vectorial equivaient of the scalar formula (10.75). To 
obtain the analog of the Kirchhoff integral (10.79). we consider the geometry of 
Fig. 10.7 and let the surface S bc madc up of a finite surface $, surrounding the 
sources or scatterer and a surface S, ‘‘at infinity.’’ There is no loss of generality 
in taking S, to be a spherical shell of radius r, > «. The integral in (10.89) can 
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be written as the sum of two integrals, one over S; and one over $3. On the 
surface S, the Green function (10.76) is given, for large enough ry, by 

ther’ 
ed Ga € 

4ar 

and its gradient by 

VG = —ikn’'G 

Then the contribution from S; to (10.89) is 

$ = ix [e(n’ x B) — (’ x E) x n! — n(n’ - E)|G da’ 

or 

7 = inf [e(n’ x B) — E]G da’ 

The fields in region I are diffracted or scattered fields and so satisfy the condition 
of outgoing waves in the neighborhood of S$. In particular, the fields E and B 
are mutually perpendicular and transverse to the radius vector. Thus, on $3, 
E = cn’ X B + O(I/r2). This shows that 

4,77) 
and the contribution from the integral over S, vanishes as 7) > %. For the ge- 

ometry of Fig. 10.7, then, with S, at infinity, the electric ficld in region IT satisfies 
the vector Kirchhoff integral relation, 

E(x) = ¢ [io(n’ x B)G + (n’ x E) x WG + (n’ E)V'G] da’ (10.90) 

where G is given by (10.76) and the integral is only over the finite surface S,. 
It is useful to specialize (10.90) to a scattering situation and to exhibit a 

formal expression for the scattering amplitude as an integral of the scattered 
fields over S,. The geometry is shown in Fig. 10.9. On both sides of (10.90) the 

Scattered wave Incident wave ‘BBD 
(5, BD 

Figure 10.9 Scattering geometry. An incident plane wave with wave vector k, and 

fields (E;. B,) is scattered by an obstacle (the scatterer), giving rise to scattered fields 
(E,, B,) that propagate as spherically diverging waves at large distances. The surface 5, 
completely encloses the scatterer. 
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fields are taken to be the scattered fields (E,, B,), that is, the total fields (E, B) 

minus the incident wave (E,, B,). If the observation point P is far from the scat- 

terer, then the Green function and the scattered electric field take on their as- 
ymptotic forms, 

Gta, x) 7 LE one 

Ea) > Fok, ke) 
where k is the wave vector in the direction of observation, Ko is the incident wave 

vector, and F(k, ky) is the (unnormalized) vectorial scattering amplitude. In this 
limit, V’G = —ikG. Thus (10.90) can be written as an integral expression for the 

scattering amplitude F(k. k,): 

F(k, ky) = if, e **[o(n’ x B,) +k x (n’ x E,) — k(n’ E,)} da’ (10.91) 

Note carefully how F(k, ky) depends explicitly on the outgoing direction of k. 
The dependence on the incident direction specified by ky is implicit in the scat- 
tered fields E, and B,. Since we know that k « F = 0, it must be true that in (10.91) 
the component parallel to k of the first integral cancels the third integral. It is 
therefore convenient to resolve the integrand in (10.91) into components parallel 
and perpendicular to k, and to exhibit the transversality of F explicitly: 

F(k, ky) = - hy f one [ eae xB) 
; , k —n’x e| da’ (10.92) 

Alternatively, we can ask for the amplitude of scattered radiation with wave 
vector k and polarization €. This is given by 

€* Fk, ky) = af, o** [wet «(nx BY) + € + (ke x (n! x E,))] da’ 
(10.93) 

The terms in square brackets can be interpreted as effective electric and magnetic 
surface currents on 5, acting as sources for the scattered fields. The various equiv- 

alent forms (10.91)-(10.93) are valuable as starting points for the discussion of 
the scattering of short-wavelength radiation (Section 10.10) and in the derivation 
of the optical theorem (Section 10.11). 

10.7. Vectorial Diffraction Theory 

The vectorial Kirchhoff integral (10.90) can be used as the basis of an approxi- 
mate theory of diffraction in exactly the same manner as described below (10.79) 

for the scalar theory. Unfortunately, the inconsistencies of the scalar Kirchhoff 
approximation persist. 

For the special case of a thin, perfectly conducting. plane screen with aper- 
tures, however, it is possible to obtain vectorial relations, akin to the generalized 

Kirchhoff integral (10.81) or (10.85), in which the boundary conditions are sat- 
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isfied; these relations, moreover, are amenable to consistent approximations. The 

plane screen is taken at z = 0, with the sources supposed to be in the region 

z <0, and the diffracted ficlds to be observed in the region z > 0. It is convenient 
to divide the fields into two parts, 

E=EO+E, B= BY + B’ (10.94) 

where E“”, B® are the fields produced by the sources in the absence of any 
screen or obstacle (defined for both z < 0 and z > 0), and E’, B’ are the fields 
caused by the presence of the plane screen, For z > 0, E’, B’ are the diffracted 
fields, while for z < 0, they are the reflected fields. We wili call E’, B’ the scattered 
fields when considering both z < 0 and z > 0. The scattered fields can be con- 
sidered as having their origin in the surface-current density and surface-charge 
density that are necessarily produced on the screen to satisfy the boundary con- 

ditions. Certain reflection properties in z of the scattered fields follow from the 
fact that the surface-current and -charge densities are confined to the z = 0 plane, 
A vector potential A’ and a scalar potential ®’ can be used to construct E’ and 
B’. Since the surface current flow has no z component, A‘ = 0. Furthermore, 
Ay, Aj, and ®' are evidently even functions of z. The relation of the fields to the 
potentials shows that the scattered fields have the reflection symmetries, 

E\, ES, Bt are even in Zz 
10.95 

Et, By, By are odd in z (10.95) 

The fields that are odd in z are not necessarily zero over the whole plane z = 0. 
Where the conducting surface exists, E, # 0 implies an associated surface-charge 
density, equal on the two sides of the surface. Similarly, nonvanishing tangential 
components of B imply a surface-current density, equal in magnitude and direc- 
tion on both sides of the screen. Only in the aperture does continuity require 
that £;, Bi, By vanish. This leads to the statement that in the apertures of a 
perfectly conducting plane screen the normal component of E and the tangential 
components of B are the same as in the absence of the screen. 

The generalized Kirchhoff integral (10.83) for Neumann boundary condi- 
tions can be applied to the components of the vector potential A’. The normal 
derivatives on the right can be expressed in terms of components of B’. The 
result, written vectorially is 

ike 
AN(x) = x (n x B’) ra da’ (10.96) 

In view of the preceding remarks about the surface current and the tangential 
components of B’, (10.96) could perhaps have been written down directly. The 
scattered magnctic field can be obtained by taking the cur! of (10.96): 

ikR 
B’(x) = xY x ithe (n x B’) > da’ (10.97) 

In (10.96) and (10.97) the integrand can be evaluated on either side of the screen 
with n being normal to the surface. For definiteness, we specify that n is a unit 
normal in the positive z direction and the integrand is to be evaluated at z = 0*. 
The integration extends over the metallic part of the screen; Bi,, = 0 in the 

apertures. The electric field E’ can be calculated from E’ = (i/wpe)V x B’. 
Equation (10.97) can be used for approximations in a consistent way. It is 
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most uscful when the diffracting obstacles consist of one or more finite flat seg- 
ments at z = 0, for example, a circular disc. Then the surface current on the 

obstacles can be approximated in some way—for instance, by using the incident 
field B in the integrand. We then have a vectorial version of the generalized 
Kirchhoff's approximation of the preceding section, 

It is useful to construct an expression equivalent to (10.97) for the electric 
field. From the symmetry of the source-free Maxwell cquations with respect to 
E and B it is evident that the electric field E’ can be expressed by analogy with 
(10.97), as 

gikR 
E'(x) = me vx i (n x E’) — da’ (10,98) 

an Sy R 

where it is assumed that E’ is known on the whole surface S$, at z = 0*. The 

upper (lower) sign applies for z > 0 (z < 0). It can be verified that (10.98) satisties 
the Maxwell equations and yields consistent boundary values at z = 0. Phe reason 

for the difference in sign for z 2 (), as compared to (10.97) for B’, is the opposite 
reflection propertics of E’ compared to B’ [see (10.95)}. 

There is a practical difficulty with (10.98) as it stands. The integration in 
(10.98) is over the whole plane at z = 0. We cannot exploit the vanishing of the 
tangential components of the electric field on the metallic portions of the screen 
because it is the total electric field whose tangential components vanish, not those 
of E’. The difficulty can be removed by use of linear superposition. We add E‘”) 
to the integrand in (10.98) to obtain the full electric field, and subtract the cor- 

responding integral. We thus have, for the diffracted electric field, 

Hig) a eel i on id (2) Bin) = B52 Vx J nx BYE da’ — BMG) (10.99) 

where 

a) els yy) oe E = 2h x | xe ) R da’ (10.100) 

The integrand in (10.99) now has support only in the apertures of the screen, as 
desired. But what is the extra electric ficld E™? Just as (10.98) gives the extra 
(diffracted) field for z > 0 in terms of a surface integral of itself over the whole 

sercen, so (10,100) is equal to the “source” ficld E® in the region z > 0. But 
because E‘” is defined by an integral over the surface at z = 0. it respects the 
symmetries of (10.95). A moment's thought will show that this behavior means 
that for z <0 the sum E + E'” describes the ficlds of the sources in the presence 
of a perfectly conducting plane (with no apertures) at z = 0: E" (and its partner 
B‘) are the reflected fields! 

If in (10.99) we transfer E"” to the left-hand side, we find for z > 0 the total 
electric field, now called the diffracted field, given by 

ikke 
oR da’ (10.101) Egin(x) = x vx I (n x E) 

where the integration is only over the apertures in the screen and E is total 
tangential electric field in the apertures. In the illuminated region (z < 0) the 
total electric field is 

E(x} = E(x) + E(x) — Euin(x} (40.102) 
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where for both regions Eyie¢(x) is given by (10.101). This solution for the diffracteg 
electric field in terms of the tangential electric fieid in the apertures of a Perfectly 
conducting plane screen was first obtained by Smythe.* It can serve as the basis 
of a consistent scheme of approximation, with the approximate sofutions for Ban 
satisfying the required boundary conditions at z = 0 and at infinity. Some ex. 
amples are discussed in a later section and in the problems. 

10.8 Babinet’s Principle of Complementary Screens 

Before discussing examples of diffraction we wish to establish a useful relation 
called Babinet's principle. Babinet’s principle relates the diffraction fields of one 
diffracting screen to those of the complementary screen. We first discuss the 
principle in the scalar Kirchhoff approximation. The diffracting screen is assumed 
to lie in some surface S, which divides space into regions I and II in the sense of 
Section 10.5. The screen occupies all of the surface S except for certain aperturcs, 
The complementary screen is that diffracting screen which is obtained by replac- 
ing the apertures by screen and the screen by apertures. If the surface of the 
original screen is S, and that of the complementary screen is S,,, then S, + S, = 
S, as shown schematically in Fig. 10.10. 

If there are sources inside S {in region 1) that give rise to a field (x), then 
in the absence of either screen the field (x) in region I] is given by the Kirchhoff 
integral (10.79) where the surface integral is over the entire surface S. With the 
screen §, in position, the field w(x) in region II is given in the Kirchhoff ap- 
proximation by (10.79) with the source field y in the integrand and the surface 
integral only over S,, (the apertures). Similarly, for the complementary screen S,,, 
the field ,(x) is given in the same approximation by a surface integral over S,. 
Evidently, then, we have the following relation between the diffraction fields 4, 
and yy: 

Ye + by = (10.103) 

This is Babinet’s principle as usually formulated in optics. If w represents an 
incident plane wave, for cxample, Babinet’s principle says that the diffraction 

Sp 

Figure 10.10 A diffraction screen S,, and its 
complementary diffraction screen S,. 

*W_R. Smythe, Phys. Rev. 72, 1066 (1947). See also Suzythe, Section 12.18. 
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patterns away from the incident direction are the same for the original screen 

and its complement. 
The result (10.103) also follows from the generalized Kirchhoff integrals 

(10.81) or (10.83) if the amplitude or its normal derivative is taken cqual to that 
of the incident wave in the apertures and zero elsewhere, in the spirit of the 
Kirchhoff approximation. All these formulations of Babinet’s principle are un- 

satisfactory in two respects: They are statements about scalar fields, and they are 

based on a Kirchhoff approximation. 
A rigorous statement of Babinet's principie for electromagnetic ficids can be 

made for a thin, perfectly conducting plane screen and its complement. The result 
follows from the two alternative formulations of this diffraction problem given 
in the preceding section. The original diffraction problem and its compicmentary 
problem are defined by the source fields and screens as follows: 

ORIGINAL 

EE, B®; Sy (10.104) 

COMPLEMENT 

BY? = -E%, — S, 
The complementary situation has a screen that is the complement of the original 
and has source ficlds with opposite polarization characteristics. For the original 
screen S,, the electric ficld for z > 0 is, according to (10.101), 

1 @fk® 

E(x) = —- V x I x E) — da’ : (x) re a (n ) R da (10.105) 

For the complementary screen S,, we choose to use (10.97) instead of (10.101) to 
express the complementary scattered magnetic field B/ for z > 0 as 

AkR 

Bi(x) = x x i (n x BY) 72 da’ (10.106) 

Tn both (10.105) and (10.106) the integration is over the screen S$, because of the 
boundary conditions on E and B; in the two cases. Mathematically, (10.105) and 
(10.106) are of the same form. From the finearity of the Maxwell equations and 
the relation between the original and complementary source fields, it follows that 
in the region z > 0 the total electric field for the screen S,, is numerically equal 
to c times the scattered magnetic field for the complementary screen S,: 

E(x) = cBi{x) 

The other fields are related by 

B(x) = ~E/{x)/c 

where the minus sign is a consequence of the requirement of outgoing radiation 
flux at infinity, just as for the source fields. If use is made of (10.94) for the 
complementary problem to obtain relations between the total fields in the region 
z > 0, Babinet's principle for a plane, perfectly conducting thin screen and its 
complement states that the original fields (E, B) and the complementary fields 

{E,, B,) are related according to 

E - cB, = E® (10.107) 
B+ E/c = B” 
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B 

— 

£ Figure 10.11 Equivalent radiators according to Babinet’s 
= principle. 

for z > 0, provided the complementary diffraction problems are defined by 
(10.104). These relations are the vectorial analogs of (10.103); they are exact, not 
approximate, statements for the idealized problem of a perfectly conducting 
plane screen. For practical situations (finite, but large, conductivity; curved 
screens whose radii of curvature are large compared to aperture dimensions, 
etc.), the vectorial Babinet’s principle can be expected to hold approximately. It 
says thal the diffracted intensity in directions other than that of the incident field 
is the same for a screen and its compiement. The polarization characteristics are 
rotated, but this conforms with the altered polarization of the complementary 
source fields (10.104). 

The rigorous vector formulation of Babinet’s principle is very useful in mi- 
crowave problems. For example, consider a narrow slot cut in an infinite, plane, 
conducting sheet and illuminated with fields that have the magnetic induction 
along the slot and the electric field perpendicular to it, as shown in Fig. 10.11, 
The radiation paticrn from the siot will be the same as that of a thin linear 
antenna with its driving electric field along the antenna, as considered in Sections 
9.2 and 9.4. The polarization of the radiation will be opposite for the two systems. 
Elaboration of these ideas makes it possible to design antenna arrays by cutting 
suitable slots in the sides of waveguides.* 

10.9 Diffraction by a Circular Aperture; 
Remarks on Small Apertures 

The subject of diffraction has been extensively studied since Kirchhoff’s original 
work, both in optics, where the scalar theory based on (10.79) generally suffices. 
and in microwave generation and transmission, where more accurate solutions 
are needed. Specialized treatises are devoted entirely to the subject of diffraction 
and scattering. We will content ourselves with a few examples to illustrate the 
use of the scalar and vector theorems (10.79), (10.85) and (10.101) and to com- 
pare the accuracy of the approximation schemes. 

Historically, diffraction patterns were classed as Fresnel or Fraunhofer dif- 

fraction, depending on the relative geometry involved. There are three length 
scales to consider, the size d of the diffracting system, the distance r from the 
system to the observation point, and the wavelength A. A diffraction pattern only 
becomes manifest for r >> d. Then in expressions like (10.86) or (10.101) slowly 
varying factors in the integrands can be treated as constants. Only the phase 

*Sce, for example, Silver. Chapter 9. 
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Figure 10.12 

factor kR in e** needs to be handied with some care. With r >> d, it can be 
expanded as 

AR = kr knox +E fe? exe 

where n = x/r is a unil vector in the direction of observation. The successive 

terms are of order (kr), (kd), (kd)(dir),.... The term Fraunhofer diffraction 
applies if the third and higher terms are negligible compared to unity. For smal! 

diffracting systems this always holds, since kd << 1, and we have supposed 
dir << 1, But for systems that are large compared to a wavelength, (kd?/r) may 
be of order unity or larger even though d/r << 1. Then the term Fresnel diffraction 
applies. In most practical applications the simpler Fraunhofer limit is appropriate. 
Far enough from any diffracting system it always holds. We consider only the 
Fraunhofer limit here (except for Problem 10.11). 

If the observation point is far from the diffracting system. expansion (9.7) 
can be used for R = |x — x’|. Keeping only lowest order terms in (i/kr), the 
scalar Kirchhoff expression (10.79) becomes 

pikr e 
wx) = ” Ane 

i e** fn W(x’) + fe my(x’)] da’ (10.108) 

where x’ is the coordinate of the element of surface area da’, r is the length of 
the vector x from the origin O to the observation point P, and k = k(x/r) is the 
wave vector in the direction of observation, as indicated in Fig. 10.12. For a plane 
surface we can use the vector expression (10.101), which reduces in this limit to 

iei* 
E(x) = sk x f nx E(’)e*™™ da’ (10.109) 

As an example of diffraction we consider a plane wave incident at an angle 
aon a thin, perfectly conducting screen with a circular hole of radius a in it. The 
polarization vector of the incident wave lies in the plane of incidence. Figure 
10.13 shows an appropriate system of coordinates. The screen fies in the x-y plane 

with the opening centered at the origin. The wave is incident from below, so that 

the domain z > 0 is the region of diffraction ficlds. The plane of incidence is 

taken to be the x-z plane. The incident wave’s electric field, written out explicitly 

in rectangular components, is 

E, = Fy(e, cosa — €; sin aje®Genat sine) (10.110) 

In calculating the diffraction ficid with (10.108) or (10.109) we will make the 

customary approximation that the exact field in the surface integral may be re- 

placed by the incident field. For the vector relation (10.109) we need 

(n X E),-9 = Eyez cosa ener” (10.111) 
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Figure 10.13 Diffraction by a circular 
hole of radius a. 

Then, introducing plane polar coordinates for the integration over the opening, 
we have 

2s EG) = Es 208 = «) [ pdp | dpeltromavonB-sindeose-B)1 (40) 119) 

where 0, ¢ are the spherical angles of k. If we define the angular function, 

& = (sin’@ + sin’a — 2 sin @ sin a cos b)'? 

the angular integral can be transformed into 

l ne + oy tkpcos pg! 
ml Wem = Jolkpé) 

Then the radial integral in (10.112) can be done directly. The resulting electric 
field in the vector Smythe—Kirchhoff approximation is 

ie” Ji(ka 
E(x) = _ @Fy cos atk X €2) ae (10.113) 

The time-averaged diffracted power per unit solid angle is 

AP oy cog KA po a, am |2Akag)|” 
70> P, cosa 7 {cos’@ + cos’ sin?) Chae | (10.114) 

where 

» — { fo P, = (Bn cos a (10.115) 

is the total power normally incident on the aperture. If the opening is large com- 
pared to a wavelength (ka >> 1), the factor [2J,(ka&)/kaé]’ peaks sharply to a 
value of unity at € = 0 and falls rapidly to zcro (with small secondary maxima) 
within a region Aé ~ (1/ka) away from & = 0. This means that the main part of 
the wave passes through the opening in the manner of geometrical optics; only 
slight diffraction effects occur.* For ka ~ 1 the Besscl function varies compara- 

*To sce this explicitly we expand £ around the geometrical optics direction @ a. @ = 0: 

&= V(@- a) cosa + ¢ sin’a 

For ka >> 1 it is evident that kag > | as soon as @ departs appreciably from a, or $ from zero, OF 
both, 
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tively slowly in angle: the transmitted wave is distributed in directions very dif- 
ferent from the incident direction. For ka << 1, the angular distribution is entirely 
determined by the factor (k x €2) in (10.113). But in this limit the assumption of 

an unperturbed field in the aperture breaks down badly. 
The total transmitted power can be obtained by integrating (10.114) over all 

angles in the forward hemisphere. The ratio of transmitted power to incident 
power is called the fransmission coefficient T: 

(kag) |” _ 0S @ sin@d@ (10.116) Es df {cos?@ + cos’ sin?0) Hat 

In the two extreme limits ka >> 1 and ka << 1, the transmission coefficient 

approaches the values, 

Tf; ka >> 1 Toy, i 
3(ka)’ cos a, ka<<1 

The long-wavelength limit (ka << 1) is suspect because of our approximations, 

but it shows that the transmission is small for very small holes. For normal inci- 

dence (a = 0) the transmission coefficient (10.116) can be written 

2 
= 2 i ee a T [ Ji(ka sin (3, sin s) de 

With the help of the integral relations, 

is F(z sin er} ail, : nt Date 

wil 

i JU(z sin @)sin @ dé = 2: ai Jx,(t) dt 

(10.117) 

and the recurrence formulas (3.87) and (3.88). we can put the transmission co- 

efficient in the alternative forms 

Hae 
; b= a 2, Jamsi(2ka) 

tis i 2ka 

1 Sta d, MO a 

The transmission coefficient increases more or less monotonically as ka increases, 
with small oscillations superposed. For ka >> i, the second form can be used to 

obtain an asymptotic expression 

1 
T 

i : ca 
ka 2Vatkay™ sin(2ka 7) + (10.118) 

which exhibits the small oscillations explicitly. These approximate expressions 

for T give the general behavior as a function of ka, but they are not very accurate. 
Exact calculations, as well as more accurate approximate ones, have been made 
for the circular opening. These are compared with each other in the book by 
King and Wu (Fig. 41, p. 126}. The correct asymptotic expression does not contain 
the 1/2ka term in (10.118), and the coefficient of the term in (ka) ~*? is twice as 

large. 
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We now wish to compare our results of the vector Smythe—Kirchhoff ap. 
proximation with the usual scalar theory based on (10.79). For a wave not nor. 
mally incident, the question immediately arises as to what to choose for the scalar 
function (x). Perhaps the most consistent assumption is to take the magnitude 
of the electric or magnetic field. Then the diffracted intensity is treated consis. 
tently as proportional to the absolute square of (10.79). If a component of E or 
B is chosen for y, we must then decide whether to keep or throw away radia] 
components of the diffracted field in calculating the diffracted power. Choosing 
the magnitude of E for %, we have, by straightforward calculation with (10.108), 

ew op (es + cos *) Ji(kaé) 
eS — —— ag ge 

W(x) = ik r 2 kaé 

as the scalar equivalent of (10.113). The power radiated per unit solid angle in 
the scalar Kirchhoff approximation is 

aP _ p (kal? |. (cosa + cos 6 ; =P, Sa 
dQ 2 cosa 

2 
2F;{ka€) 

kag 
(10.119 

where P; is given by (10.115). If the alternative scalar formula (10.85) is used, 
the obliquity factor (cos a + cos 6)/2 in (10.119) is replaced by cos 0. 

If we compare the vector Smythe~Kirchhoff result (10.114) with (10.119), we 
see similarities and differences. Both formulas contain the same “diffraction” 
distribution factor [/,{kaé)/kag} and the same dependence on wave number. But 
the scalar result has no azimuthal dependence (apart from that contained in ), 
whereas the vector expression does. The azimuthal variation comes from the 
polarization properties of the field, and must be absent in a scalar approximation. 
For normal incidence (« = 0) and ka >> 1 the polarization dependence is un- 
important. The diffraction is confined to very small angles in the forward direc- 
tion, Then all scalar and vector approximations reduce to the common 
expression, 

J {ka sin 6) 

ka sin 0 
aP (kay! an 7 Pe (10.120) 

The vector and scalar approximations are compared in Fig. 10.14 for the 
angle of incidence equal to 45° and for an aperture one wavelength in diameter 
(ka = 7). The angular distribution is shown in the plane of incidence (containing 
the electric field vector of the incident wave) and a plane perpendicular to it. The 
solid (dashed) curve gives the vector (scalar) approximation in each case. We see 
that for ka = w there is a considerable disagreement between the two approxi- 
mations. There is reason to believe that the Smythe-Kirchhoff result is close 
to the correct one, even though the approximation breaks down seriously for 
ka = 1. The vector approximation and exact calculations for a rectangular open- 
ing yield resutts in surprisingly good agreement, even down to ka ~ 1.* 

*See J. A, Stratton and L. J. Chu, Phys. Rev., 56, 99 (1939), for a scries of figures comparing the 
vector Smythe-Kirchhoff approximation with exact calculations by P.M. Morse and P. J. Rubenstein, 
Phys, Rev. $4, 895 (1938). The alert reader may be puzsled by the apparent discrepancy in the dates 
of Smythe’s publication (oe. cit.) and of Stratton and Chu. The two calculations yield the same result, 
though quite different in appearance and detail of derivation, the earlier one involving a linc integral 
around the boundary of the aperture as well as a surface integral over it. 
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Figure 10.14 Fraunhofer diffraction pattern for a circular opening one wavelength in 
diameter in a thin, plane, conducting sheet. The plane wave is incident on the screen at 
45°. The solid curves are the vector Smythe—Kirchhoff approximation, while the dashed 
curves are the scalar approximation. (a) The intensity distribution in the planc of 
incidence (E plane). (b) The intensity distribution (enlarged 2.5 times) perpendicular to 
the plane of incidence (// planc). 

The diffraction by apertures or obstacles whose dimensions are small com- 
pared to a wavelength requires methods different from the Kirchhoff or 
Kirchhoff-like approximation. The exact formula (10.101) for a plane screen can 
be used as a starting point. If the radiation ficlds of (10.101) are expanded in 
multipoles, as in Scctions 9.2-9.3, effective multipole moments (9.72) and (9.74) 
can be identified in terms of integrals of the exact clectric field in the aperture. 
The derivation of these effective moments is left as Problem 10.10, Once the 
dipole moments of an aperture are known, the diffraction can be calculated 
merely by using the dipole fields of Sections 9.2 and 9.3. The example of a circular 
aperture with effective moments (9.75) is left to the problems. The whole dis- 
cussion of the physical picture parallels that of Section 9.5.C and is not repeated 
here. 

Scattering in the Short-Wavelength Limit 

Scattering in the long-wavelength limit was discussed in Sections 10.1 and 10.2. 
The opposite limit, similar to the Kirchhoff domain of diffraction, is a scattering 
by obstacles large compared to a wavelength. Just as for diffraction by a screen, 

the zeroth approximation is given by classical ray theory. The wave aspects of 
the fields give corrections to this, with the scattering confined to angular regions 
only slightly away {rom the paths of geometrical optics. For a thin, flat obstacle, 
the techniques of Scction 10.7, perhaps with Babinet’s principle, can be used. 
But for other obstacles we base the caiculation on the integral expression (10.93) 
for the scattering amplitude in terms of the scattered fields E,, B, on a surface 

S, just outside the scatterer. 
In the absence of knowledge about the correct fields E, and B, on the surface, 
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we must make some approximations. II the wavelength is short compared to the 
dimensions of the obstacle, the surface can be divided approximately into an 
illuminated region and a shadow region.* The boundary betwcen these Tegions 
is sharp only in the limit of geometrical optics. The transition region can be shown 
to have a width of the order of (2/kR)'"R, where R is a typical radius of curvature 
of the surface, Since R is of the order of magnitude of the dimensions of the 
obstacle, the short-wavelength limit will approximately satisfy the geometrical 
condition. In the shadow region the scattered ficlds on the surface must be very 
nearly equal and opposite to the incident ficlds, regardless of the nature of the 
scatterer, provided it is “opaque.” In the illuminated region, on the other hand, 
the scattered ficlds at the surface will depend on the properties of the obstacle. 
Uf the wavelength is short compared to the minimum radius of curvature, the 
Fresnel equations of Section 7.3 can be utilized, treating the surface as locally 
flat. Eventually we will specialize to a perfectly conducting obstacle, for which 
the tangential E, and the normal B, must be equai and opposite to the corre- 
sponding incident fields. while the tangential B, and normal E, will be approxi- 
matcly equal to the incident valucs [see (10.95)]. 

Because of the generality of the contribution from the shadow region, it is 
desirable to consider it separately. We write 

e*-F=e*- Fy + + Fy (10.121) 

If the incident wave is a plane wave with wave vector ky and polarization €), 

E, = Eyeve™* (10.122) 
B, = k, X Ej/ke 

the shadow contribution, from (10.93) with E, ~ —E,, B, ~ -B,, is 

ef Fa = 4 f, e* = [n! X (ky X €) +k x (n’ x €q)Je"™™ da’ (10.123) 

where the integration is only over the part of S, in shadow, A rearrangement of 
the vector products allows (10.123) to be written 

E q 
en Ry = i) OFLC + Ko) X (nt X eo) + (a + epee 9 ca’ 

(10.124) 

In the short-wavelength limit the magnitudes of ky+x’ and k +x’ are large com- 
pared to unity. The exponential factor in (10.124) will oscillate rapidly and cause 
the integrand to have a very small average value except in the forward direction 
where k = ky. In that forward region, # S UV/kR, the second term in the square 
bracket is negligible compared to the first because (€* - Ko)/k is of the order of 
sin 6 << i (remember e* - k = 0 and ky ~ k). Thus (10.124) can be approximated 
by 

e+e i ete", on!) da’ hn 

*For a very similar treatment of the scattering of a scalar wave by a sphere, see Morse and Feshback 
(pp. 1551-1555). 
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The integral over the shadowed side of the obstacle has, in this approximation, 

the remarkable property of depending only on the projected area normal to the 

incident direction and not at all on the detailed shape of the obstacle. This can 
be seen from the fact that (ky-n’) da’ = k dx’ dy’ = k d’x, is just k times the 
projected element of arca and (k, — k) +x’ = &(1 — cos #)z’ — k,-x_ = —k_ +x. 

Here we have chosen ky along the z axis, introduced two-dimensional vectors, 

x, =x'e, + y'e.,k. = ke, + ke, in the plane perpendicular to ky, and approx- 

imated to small angles. The final form of the shadow contribution to the scattering 

when KR >> 1 and @ << | is therefore 

et By = x E,(e* + €) I, oO dx, (10.125) 

In this limit all scatterers of the same projected area give the same shadow- 

scattering contribution. The polarization character of the scattered radiation is 

given by the factor €* + €o. Since the scattering is at small angles, the dominant 

contribution has the same polarization as the incident wave. In quantum- 

mechanical language we say that the shadow scattering involves no spin flip. 

For example, consider a scatterer whose projected area is a circular disc of 

radius a. Then 

Ji(ka sin 0) p kx, py = 220 f, e dx = 270’ kasi? (10.126) 

and the shadow-scattering amplitude is 

: J (ka sin 8) 
®, ret 2 x, el tet cae €® +» By, = ika’E,(€* + €) (ka sin 8) (10.127) 

‘The scattering from the iluminated side of the obstacle cannot be calculated 

without specifying the shape and nature of the surface. We assume, for purposes 

of illustration, that the illuminated surface is perfectly conducting. In utilizing 

(10.93) we must know the tangential components of E, and B, on S;. As men- 

tioned in the introductory paragraphs of this section, in the short-wavelength 
limit these are approximatcly opposite and equal. respectively, to the correspond- 

ing components of the incident fields. Thus the contribution from the illuminated 

side is 

Eo 
Fu 75 i e* + [-n! x (ky X €) + kX (nl X eee da’ (10.128) 

Comparison with the shadow contribution (10.123) at the same stage shows a 

sign difference in the first term. This is crucial in giving very different angular 

behaviors of the two amplitudes. The counterpart of (10.124) is 

By = ee J Ce Ke) X (Xe) = (as €o)kale"®™ da’ (10.129) 

For kR >> 1, the exponential oscillates rapidly as before, but now, in the forward 

direction, where we anticipate the major contribution to the integral, the other 

factor in the integrand goes to zero. This can be traced to the presence of (k — ky) 

in the first term, rather than the (k + ky) of the shadow amplitude (10.124), The 

illuminated side of the scatterer thus gives only a modest contribution to the 
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scattering at small angles. This makes perfect sense if we think of the limit of 
geometrical optics. The ifluminated side must give the reflected wave, and the 
reficction is mainly at angles other than forward. 

To proceed further we must specify the shape of the illuminated portion of 
the scatterer, as well as its clectromagnetic properties. We assume that the surface 
is spherical of radius a. Since the contribution is not dominantly forward. we must 
consider arbitrary scattering angles. The integrand in (10.129) consists of a rel- 
atively slowly varying vector function of angles times a rapidly varying exponen- 
tial. As discussed in Section 7.11, the dominant contribution to such an integral 
comes from the region of integration where the phase of the exponential is sta- 
onary. If (0, }) are the angular coordinates of k and (a, 8) those of n’‘, relative 
to Ko, the phase factor is 

f(a, B) = (ky — k)- x’ = kal(1 — cos 0) cosa — sin 6 sina cos(B — )] 

The stationary point is easily shown to be at angles a. By, where 

SF 8 
aH = 2 2 

Bo= oh 

These angles are evidently just those appropriate for reflection from the sphere 
according to geometrical optics. At this point the unit vector n’ points in the 
direction of (k — ky). If we expand the phase factor around a = a, B= Bo, we 
obtain 

f(a, B) = —2ka sin ; [1 - (x + cos? 7) + | (10.130) 

where x = a — a, y = B — By. Then integral (10.129) can be approximated by 
evaluating the square bracket there at @ = a, B = By: 

et Ky = aks sin Ge~2**sin(W2) ex, «fax elena dy eilkasin (ery ory? 

(10.131) 

where €, is a unit polarization vector defined by 

€, = —€y + 2(n, + €g)n, 

n, being a unit vector in the direction of (k — k,). The vector €, is just the 
polarization expected for reflection. having a component perpendicular to the 
surface equal to the corresponding component of €, and a component parallel to 
the surface opposite in sign, as shown in Fig. 10.15. The x and y integrals in 

(10.131) can be approximated using | e' dx = Voila provided 2ka sin(#/2) 

>> I, giving 

Ey g eAMsinU Det sg (10.132) 

For 2ka sin(/2) large, the reflected contribution is constant in magnitude as a 
function of angle, but it has a rapidly varying phase; as @ > 0, it vanishes as 6. 
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Figure 10.15 Polarization of the reflected wave relative to the incident polarization: n, 

is normal to the surface at the point appropriate for reflection according to geometrical 

optics. To avoid complexity in the figure, the wave vectors k, and k are not shown, but 

they are perpendicular to €, and €,, respectively, and so oriented as to make their 

difference parallel to n,. 

Comparison of the shadow amplitude (10.127) with the reflected amplitude 

(10,132) shows that in the very forward direction the shadow contribution dom- 

inates in magnitude over the reflected amplitude by a factor of ka >> 1, while at 

angles where ka sin@ >> 1, the ratio of the magnitudes is of the order of 

1(ka sin’ 6)"?. Thus, the differential scattering cross section (10.3), summed over 

the outgoing and averaged over the initial polarization states, is given in the two 

regions by 
. 2 

a’(ka)” ithe sin) > Os a 
do _ ka sin 0 ka 10.133) 

dQ a asset ae 
4° ka 

The scattering in the forward direction is a typical diffraction pattern with a 

central maximum and smatier secondary maxima, while at larger angles it is iso- 

tropic, At intermediate angles there is some interference between the two am- 

plitudes (10.127) and (10.132). causing the cross section to deviate from the sum. 

of the two terms shown in (10.133). Actually, in the present approximation this 

interference is very small for ka >> 1. There is more interference in the exact 

solution, as shown in Fig. 10.16, where the dips below unity are indicative of 

destructive interference.* 

The total scattering cross section is obtained by integrating over all angles. 

Neglecting the interference terms, we find from (10.133) that the shadow dif- 

fraction peak gives a contribution of 7a’, and so docs the isotropic part. The total 

scattering cross section is thus 27a’, onc factor of the geometrical projected area 

coming from direct reflection and the other from the diffraction scattering that 

must accompany the formation of a shadow behind the obstacic. The latter part 

of the total cross section can be shown to be independent of the detailed shape 

of the scatterer in the short-wavelength limit (Problem 10.16). Similarly, for a 

general scatterer that is “opaque,” the reflected or absorbed part of the total 

Cross section will also be equal to the projected area, although without specifying 

*For a linearly polarized wave incident, the amount of interference depends on the orientation of the 

incident polarization vector relative to the plane of observation containing k and ky. For € in this 

plane the interference is much greater than for €, perpendicular to it. See King and Wu (Appendix) 

or Bowman, Senior. and Ustenghi (pp. 402-405) for numerous graphs with different values of ka. 
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Figure 10.16 Semilogarithmic plot of the scattering cross section for a perfectly 
conducting sphere as a function of scattering angle, with an unpolarized plane wave 
incident and ka = 10, The solid curve is the exact result (King and Wu). The dashed 
curve is the approximation based on the sum of the amplitudes (10.127) and (10,132). 

the properties of the illuminated surface, we cannot say how it is divided between 
scattering and absorption. 

10.11 Optical Theorem and Related Matters 

A fundamental relation, called the optical theorem, connects the total cross sec- 
tion of a scatterer to the imaginary part of the forward scattering amplitude, The 
theorem follows from very general considerations of the conservation of energy 
and power flow, and has its counterpart in the quantum-mechanical scattering of 
particles through the conservation of probability. 

To establish the theorem, we consider the scattering geometry shown in Fig. 
10.9. A plane wave with wave vector k, and fields (E;, B,) is incident in vacuum 
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on a finite scatterer that lies inside the surface S,. The scattered fields (E,, B,) 

propagate out from the scatterer and are observed far away in the direction of 

k. The total fields at all points in space are, by definition, 

E=E,+E,, B=B,+ B, 

The scatterer is, in general, dissipative and absorbs energy from the incident 

wave. The absorbed power can be calculated by integrating the inward-going 

component of the Poynting vector of the total ficlds over the surface S,: 

Pray = 4 Re(E x B*)-n’ da’ (10.134) 
2pa 15, 

The scattered power is normally calculated by considering the asymptotic 

form of the Poynting vector for the scattered fields in the region where these are 

simple transverse fields falling off as U/r. But since there are no sources between 

S, and infinity, the scattered power can cqually well be evaluated as an integral 

over S; of the outwardly directed component of the scattered Poynting vector: 

Pre = 5 ef, Re(E, x BY} +n’ da’ (10.135) 
20 

The total power P taken from the incident wave, either by scattering or 

absorption, is the sum of (10.134) and (10.135). With some obvious substitutions 

and rearrangements, the total power can be written 

P= ede p Re[E. x BY + ET x BJ] +n’ da’ 

With the incident wave written explicitly as 

Eneye*™ (10.136) 
1 

cB, = a x E, 

the total power takes the form, 

ky X (n’ x =] aw’ 
Pet nef Ef omelet +(n’ X B,) + 5 

Sy ke 2p 

Comparison with (10.93) for the scattering amplitude shows that the total power 

is related to the forward (k = Ko, € = € ) scattering amplitude according to 

P= Ez Im[Fo €% - F(k = ko)] (10.137) 

This is the basic result of the optical theorem, although it is customary to express 

it in a form that is independent of the magnitude of the incident flux. The total 

cross section o, (sometimes called the extinction cross section in optics) is defined 

as the ratio of the total power P to the incident power per unit area, |EqP/2Zp. 

Similarly, the normalized scattering amplitude f is defined relative to the ampli- 

tude of the incident wave at the origin as 

(10.138) 
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E;, B, 

Figure 10.17 A plane wave incident normally on a slab of diclectric of thickness d. 

The scatterers in the slab give rise to a scattcred wave that adds coherently to the 
incident wave to give a modified wave at the observation point O behind the slab. 

In terms of o, and f the optical theorem reads 

4 j o, = 7 Imfes + £(k = ky)] (10.139) 

The notation in (10.139) corresponds to the standard quantum-mechanical con- 
ventions. For particles with spin the relevant forward scattering amplitude is the 
one in which none of the particles change thcir spin state. For electromagnetic 

radiation (photons) this is indicated by the presence of the amplitude €¢ + f for 
scattered radiation with the same polarization finally as it was initially. 

The optical theorem relates different aspects of the scattering and absorption 
of electromagnetic waves for a single scatterer. It is also possible to connect the 
forward scattering amplitude for a single scatterer to the macroscopic electro- 
magnetic propertics, namely the diclectric constant, of a medium composed of a 
large number of scatterers. We will content ourselves with a brief elementary 
discussion and refer the reader to the literature for more detailed and rigorous 
treatments.* Consider a plane wave (10.136) incident normally from the left on 
a thin slab of uniform material composed of N identical scattering centers per 
unit volume, as shown in Fig. 10.17). The incident wave impinges on the scattering 
centers, causing cach to generate a scattered wave. The coherent sum of the 
incident wave and of all the scattered waves gives a modified wave to the right 
of the slab. Comparison of this modified wave at the observation point O with 
that expected for a wave transmitted through a slab described by a macroscopic, 
electric susceptibility €(@) then leads to a relation between € and the scattering 

amplitude f. 

*See, for example, the very readable review by M. A. Lax, Rev. Mod. Phys. 23, 287 (195t). or M. L- 
Goldberger and K. M. Watson, Collision Theory, Wiley, New York (1964), Chapter 11, especially 
pp. 766-775 
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The thickness and the density of the slab are assumed to be so smail that 
only single scatterings in the slab need be considered and, as a consequence, the 
effective exciting field at each scatterer is just the incident ficld itself. The scat- 
tered field produced at the observation point O with cylindrical coordinates 
(0, 0, Zo) by the N dx scatterers in the infinitesimal yolume clement d?x at the 
point x(p, @, 2) in the slab is, in this approximation, 

ikR 
dE, = - £(k, & b)Eye*N Bx 

where we have written the scattering amplitude in terms of the scattering angles 
dand @, with sin 6 = p/R, and have assumed that the observation point is many 
wavelengths from the slab. The distance [rom the yolume element to O is 
R= ([p? + (2) ~ z)?]'”. The presence of the phase factor of the incident wave is 
necessary to account for the location of the scatterers at x, rather than at the 
origin of coordinates. The total scattered ficld is obtained by integration over the 
volume of the slab: 

ehh Qn a = 
E, = NEy [ dg [ dz et [ pdp R f(k, 8, db) (10.140) 

Since p dp = R dR, this expression can be written 

2m 7 ~ 
E, = NE, [ do f dz e'* { __ aR e™* fk, & b) (10.141) 

where cos 8 = (zy — z/R. We now treat e** dR as a differential and integrate 
by parts to obtain for the R integration, 

| AR e** fk, 8b) = L e** Fk, 0, b) 
Fo" 2] ik waiget 

i Zo> 2) axe 4 
+ ke Sico=t ar( R )e woos 6) MK & 4) 

Provided the indicated derivative of f is well behaved, the remaining integral is 
of the order of 1/(k |Z» — z|) times the original. Since we have assumed that the 
observation point is many wavelengths from the slab, this integral can be ne- 
glected. Neglecting the oscillating contribution at the upper limit R + © (this 
can be made to vanish somewhat more plausibly by assuming that the number 
N of scattering centers per unit volume falls to zero at very large p), we have the 
result 

| AR &®® tk, 0, 6) = = eI F(K, 0) 
a2) 

The scattered field at O is therefore 

Qni ee ean 
E, = — NEof(k, 0) | dz ef! tors 

k 0 

Since z) > ¢ by assumption, we have finally 

E, = = NE E(k. Ole d (10.142) 
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The total electric field at the observation point O is 

2aiNd 

k E= Eee + Fk, | (10.143) 

correct to first order in the slab thickness ¢. The amplitude at O for a wave with 
the same polarization state as the incident wave is 

2miNd 
6): E= ret + €)- £(k, | (10.144) 

Suppose that we now consider the slab macroscopically, with its clectromag- 
netic properties specified by a dielectric constant €(w)/€, appropriate to describe 
the propagation of the wave of frequency w = ck and polarization €y. A simple 
calculation using the formulas of Chapter 7 shows that the transmitted wave at 
Z = wis given by 

d 
i, + E(macroscopic) = Ee + ik(eley — U) $| (10.145) 

correct to first order in d. but with no approximation concerning the smallness of 
J e/ey ~ 1]. Comparison of (10.144) and (10.145) shows that the dielectric constant 
can be written in terms of the forward scattering amplitude as 

4a 
e(@yey = 1 + aon ei - f(, 0) (10.146) 

A number of observations are in order. It is obvious that our derivation has been 
merely indicative, with a number of simplifying assumptions and the notion of a 
macroscopic description assumed rather than derived. More careful consider- 
ations show that the scattering amplitude in (10,146) should be evaluated at the 
wave number k’ in the medium, not at the free-space wave number k, and that 
there is a multiplier to the second term that gives a measure of the effective 
exciting field at a scatterer relative to the total coherent field in the medium. The 
reader can consult the literature cited above for these and other details. Suffice 
it to say that (10.146) is a reasonable approximation for not too dense substances 
and provided correlations among neighboring scatterers are not important. It is 
worthwhile to illustrate (10.146) with the simple electronic oscillator model used 
in Chapter 7 to describe the dielectric constant. The dipole moment of the atom 
is given by (7.50), summed over the various oscillators: 

€ fo ane Boo he 
PS a = fla — @ = ivy) Ev€o 

From (10.2) we infer that the atomic scattering amplitude is 

2 ne 2 jey)7) FO) = Te pm De FG ~ oF ~ iar)" X 9) XK 

The scalar product of e} with the forward scattering amplitude is then 

ek 

Amey 
€§ - (k = ky) = D fle} ~ oF ~ fay) : 
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Substitution into (10.146) yields the dielectric constant 
Net 

(weg = 1 + Dd flo? — oF — iwy)! (10.147) 
em F 

in agreement with (7.51). 
Contact can be established between (10.146) and the optical theorem 

(10.139) by recalling that the attenuation coefficient a is related to the total cross 
section of a single scatterer through a = Na, and to the imaginary part of the 
wave number in the medium through @ = 2 Im(k’). From (10.146) and the re- 

lations (7.54) for the real and imaginary parts of k' in terms of e(w) we find 

4nN 
Re(k’) 

where I have improved (10.146) by evaluating f at the wave number in the me- 
dium, as described above. Equation (10.148) indicates that, if we consider scat- 
tering by a single scatterer embedded in a medium, the optical theorem and other 

relations will appear as before, provided we describe the “kinematics” correctly 
by using the local wave number k’ in the medium. The same situation holds in 
the scattering of electrons in a solid, for example, where the effective mass or 
other approximation is used to take into account propagation through the lattice. 

As a final comment on the optical theorem we note the problem of approx- 
imations for f. The optical theorem is an exact relation. If an approximate ex- 
pression for f is employed, a manifestly wrong result for the total cross section 
may be obtained. For example, in the long-wavelength limit we find from (10.2) 
and (10.5) that the scattering amplitude for a dielectric sphere of radius a is 

_f{e-l1)\, t= (SA Jea x eo xk 

The forward amplitude is 

a= No, = Imfe% - f(Re k’, 0)] (10.148) 

* 2 = pat fe a1 €5 + f(k = ky) = ka ( es :) (10.149) 

For a lossless dielectric, this amplitude is real; the optical theorem (10.139) then 
yields o, = 0. On the other hand, we know that the total cross section is in this 

case equal to the scattering cross section (10.11): 

6-1 = 87 pao 
alias tee e,+2 

- (10.150) Fxg 

Even with a lossy dielectric (Im € # 0), the optical theorem yields a total cross 

section, 

_ 127ka* Im e, 15 ie FOE (10.151) or 

while the scattering cross section remains (10.150). These secming contradictions 
are reflections of the necessity of different orders of approximation required to 
obtain consistency between the two sides of the optical theorem. In the long- 

wavelength limit it is necessary to evaluate the forward scattering amplitude to 
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higher order in powers of to find the scattering cross section contribution in 
the total cross section by means of the optical theorem. For lossless or nearly 
lossless scatterers it is therefore simplest to determine the total cross section 

directly by integration of the differential scattering cross section over angles, For 
dissipative scatterers, on the other hand, the optical theorem yields a nonzero 

answer that has a different (usually a lower power) dependence on w and other 
parameters from that of the scattering cross section. This contribution is, of 
course, the absorption cross section to lowest explicit order in w. It can be cal- 

culated from first principles with (10.134), but the optical theorem provides an 

elegant and convenient method. Examples of these considerations are given in 
the problems. An analogous situation occurs in quantum-mechanical scattering 
by a real potential where the first Born approximation yields a real scattcring 
amplitude, The second Born approximation has an imaginary part in the forward 
direction that gives, via the optical theorem, a total cross section in agreement 
with the integrated scattering cross section of the first Born approximation. 
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2nd edition, PWN-Springer, Warsaw-Berlin (1966) 
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Entirely omitted from this chapter is the use of variational principles for diffraction 
and scattering. The reader may fill this gap by consulting 

Bouwkamp, op. cit. 
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Morse and Feshbach, Section 11.4 

Problems 

10.1 (a) Show that for arbitrary initial polarization, the scattering cross section of a 
perfectly conducting sphere of radius a, summed over outgoing polarizations, 
is given in the long-wavelength limit by 

do 5 Pare | ‘ 
ag, (Eo Mon) = wear - Jey a — i |n- (ny X €)[? — m+ o| 

where np and n are the directions of the incident and scattercd radiations, 
respectively, while €, is the {perhaps complex) unit polarization vector of the 

incident radiation (€% - €) = 1: mo + €» = 0). 
(b) If the incident radiation is linearly polarized, show that the cross section is 

a 3 
a (€, My, n) = wa[5a + cos’@) — cos 8 ~ 5 sin?@ cos 22] 

where n- n, = cos @and the azimuthal angle ¢ is measured from the direction 

of the linear polarization. 
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10.2 

10.4 

10.5 

(c) What is the ratio of scattered intensities at @ = a/2, 6 = 0 and @ = a 

¢ = 7/2? Explain physically in terms of the induced multipoles and theit 
radiation patterns. 

Electromagnetic radiation with elliptic polarization, described (in the notation of 
Section 7.2) by the polarization vector, 

1 
“ire © + re“e = ) 

is scattered by a perfectly conducting sphere of radius a. Generalize the amplitude 
in the scatiering cross section (10.71), which applies for r = 0 or r = , and 
calculate the cross section for scattering in the long-wavelength limit. Show that 

do 
d@& 

5 3for = pgs > Sipe cee fies sin?0 & - ka! [ic + cos*d) — cos @— 5 ( 7 3) sin?0 cos(2h | 

Compare with Problem 10.1 

A solid uniform sphere of radius R and conductivity o acts as a scatterer of a 
plane-wave beam of unpolarized radiation of frequency w, with wR/c << 1, The 
conductivity is large enough that the skin depth 6 is small compared to R. 

(a) Justify and use a magnetostatic scalar potential to determine the magnetic 
field around the sphere, assuming the conductivity is infinite. (Remember 
that w # 0.) 

(b) Use the technique of Section 8.1 to determine the absorption cross section 
of the sphere. Show that it varies as (w)'? provided o is independent of 
frequency 

An unpolarized wave of frequency = ck is scattered by a stightly lossy uniform 
isotropic dielectric sphere of radius R much smaller than a wavelength. The sphere 
is characterized by an ordinary real dielectric constant €, and a real conductivity 
«. The parameters are such that the skin depth 6 is very farge compared to the 

radius R. 

{a) Calculate the differential and total scattering cross sections. 

(b) Show that the absorption cross section is 

(RZ yo) 
yn = 12a? — s— > 

(e, + 29 + (ZyotkyY 

(c) From part a write down the forward scattering amplitude and use the optical 
theorem to evaluate the total cross section. Compare your answer with the 
sum of the scattering and absorption cross sections from parts a and b. 

Comment. 

The scattering by the dielectric sphere of Problem 10.4 was treated as purely elec- 
tric dipole scattering. This is adequate unless it happens that the real dielectric 
constant e/e, is very large. In these circumstances a magnetic dipole contribution, 

even though higher order in &R, may be important. 

(a) Show that the changing magnetic Mux of the incident wave induces an azi- 
muthal current flow in the sphere and produces a magnetic dipole moment, 

roZo ¢y 
= Rs Kita KRY a “ 
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(b) Show that application of the optical theorem to the coherent sum of the 

electric and magnetic dipole contributions leads to a total cross section. 

1 i 
= RRZ, oo tn (ery ee aR le Tay 4 Zaike * 90 **) | 

(Compare Landau and Lifshitz, Electrodynamics of Continuous Media, 
p. 323). 

{a) Show that for the scattered wave (10.57) the normalized scattering amplitude 
(10.138) is 

ZY VIF TeX 2 Bn XX] ~ 
1 f=-— 
ky 

where the polarization vector of the incident wave is (€, + i€))/V2. 

(b) Deduce an expression for the total cross section of a, from the optical the- 
orem (10.139) and the above expression for f. 

Discuss the scattering of a plane wave of electromagnetic radiation by a nonper- 

meable. diclectric sphere of radius a and dielectric constant €,. 

(a) By finding the fields inside the sphere and matching to the incident plus 
scattered wave outside the sphere, determine without any restriction on ka 
the multipole coefficients in the scattered wave. Define suitable phase shifts 
for the problem. 

(b) Consider the long-wavelength limit (ka << 1) and determine explicitly the 
differential and total scattering cross sections. Compare your results with 
those of Section 10.1.B. 

(c) In the limit ¢, > %& compare your results to those for the perfectly conducting 
sphere 

Consider the scattering of a plane wave by a nonpermeable sphere of radius a and 
very good, but not perfect, conductivity following the spherical multipole field 
approach of Section 10.4. Assume that ka << | and that the skin depth 6 < a. 

(a) Show from the analysis of Section 8.1 that 

(b) In the long-wavelength limit. show that for / = | the coefficients a.{/) and 

B.D in (10,65) are 

a.(1) = =F (kay? 

i 
B.C) = 5 (kay 

(c} Write out explicitly the differential scattering cross section, correct to first 

order in S/a and lowest order in ka. 

(a) Using (10.61), evaluate the absorption cross section. Show that to first order 
in 8 it is o, = 37(k5)a®. How different is the value if 5 = a? 

In the scattering of light by a gas very near the critical point the scattered light is 
observed to be “whiter” {ie., its spectrum is less predominantly peaked toward 
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10.10 

10.11 
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the blue) than far from the critical point. Show that this can be understood by the 
fact that the volumes of the density fluctuations become large enough that 
Rayleigh’s law fails to hold. [n particular, consider the lowest order approximation 
to the scattering by a uniform dielectric sphere of radius a whose dielectric constant 
¢, differs only slightly from unity. 

(a) Show that for ka >> 1, the differential cross section is sharply peaked in the 

forward direction and the total scattering cross section is approximately 

ox HM (ka)?|e, — 1Pe 

with a k*, rather than &*, dependence on frequency. 

(b) Show that for arbitrary ka the total cross section to lowest order in (€, ~ 1) 

is the expression given in part a, multiplied by the function 

F(z) = 1 + 52°? — 3-1 — cos2z) - z 

~ 4272 = vyf Lat 
fl 

where z = 2ka. [This result is due to Lord Rayleigh, 1914.] 

The aperture or apertures in a perfectly conducting plane screen can be viewed 
as the location of effective sources that produce radiation (the diffracted fields), 
An aperture whose dimensions are small compared with a wavelength acts as a 
source of dipole radiation with the contributions of other multipoles being 
negligible, 

(a) Beginning with (10.101) show that the effective electric and magnetic dipole 
moments can be expressed in terms of integrals of the tangential electric field 
in the aperture as follows: 

sin 2z 

en { (X% © Bun) da (9.72) 

2 
=fa X Enyy) da iow 

where E,,, is the exact tangential electric field in the aperture, nis the normal 
to the plane screen, directed into the region of interest, and the integration 
is over the area of the openings. 

(b) Show that the expression for the magnetic moment can be transformed into 

mate if x(n + B) da (9.74) 
Bw 

Be careful about possible contributions from the edge of the aperture where 
some components of the fields are singular if the screen is infinitesimally 
thick. 

A perfectly conducting flat screen occupies half of the x-y plane (i.e. x <0). A 
plane wave of intensity /, and wave number & is incident along the z axis from the 
Tegion z < 0. Discuss the values of the diffracted fields in the plane parallel to the 
x-y plane defined by z = Z > 0. Let the coordinates of the observation point be 

(X,0, 2). 
(a) Show that, for the usual scalar Kirchhoff approximation and in the limit 

Z >> X and VkZ >> 1. the diffracted field is 

142 we [)%eh7-i BE oa (XO, Z, 0) = Lyre” (4 ) el dt 

where & = (K/2Z)!2X. 



10.12 

10.13 

10.14 

10.15 

Ch.10 Problems 511 

(b) Show that the intensity can be written 

r= luk = Bnc@ +P + 8H +9) 
where C(g) and S(é) are the so-called Fresnel integrals. Determine the as- 
ymptotic behavior of / for & large and positive (illuminated region) and é 
iarge and negative (shadow region). What is the value of / at ¥ = 0? Make 
a sketch of / as a function of X for fixed Z. 

(ec) Use the vector formula (10.101) to obtain a result equivalent to that of part a. 

Compare the wo expressions. 

A linearly polarized plane wave of amplitude Fy and wave number k is incident 
on a circular opening of radius a in an otherwise perfectly conducting fiat screen, 
‘The incident wave vector makes an angle @ with the normal to the screen. The 
polarization vector is perpendicular to the plane of incidence. 

(a) Calculate the diffracted fields and the power per unit solid angle transmitted 
through the opening, using the vector Smythe-Kirchhoff formula (10.101) 
with the assumption that the tangential electric field in the opening is the 

unperturbed incident ficld. 

(b) Compare your result in part a with the standard scalar Kirchhoff approxi- 
mation and with the result in Section 10.9 for the polarization vector in the 
plane of incidence. 

Discuss the diffraction of a plane wave by a circular hole of radius @, following 

Section 10.9, but using a vector Kirchhoff approximation bascd on (10.90) instead 
of the Smythe formula (10.101). 

(a) Show that the diffracted electric ficld in this approximation differs from 
(10.112) in two ways, first, that cos « is replaced by (cos @ + cos @)/2, and 
second, by the addition of a term proportional to (k x €;). Compare with 
the obliquity factors © of the scalar theory. 

(b) Evaluaic the ratio of the scattered power for this vector Kirchhoff approxi- 
mation to that of (10.114) for the conditions shown in Fig. 10.14. Sketch the 

two angular distributions. 

A rectangular opening with sides of length a and 6 = a defined by x = +(a/2), 

y = +(b/2) exists in a flat, perfectly conducting plane shect filling the x-y plane, 
A plane wave is normally incident with its polarization vector making an angle 6 

with the long cdges of the opening. 

{a) Calculate the diffracted fields and power per unit solid angle with the vector 
Smythe-Kirchhoff relation (10.109), assuming that the tangential electric 
ficld in the opening is the incident unperturbed field 

(b) Calculate the corresponding result of the scalar Kirchhoff approximation. 

(ce) For b = a, 8 = 45°. ka = 47, compute the vector and scalar approximations 
to the diffracted power per unit solid angle as a function of the angle @ for 
¢ = 0. Plot a graph showing a comparison between the two results. 

A cylindrical coaxial transmission line of inner radius a and outer radius b has its 

axis along the negative z axis. Both inner and outer conductors end at z = 0, and 
the outer one is connected to an infinite planc copper flange occupying the whole 
x-y plane (except for the annulus of inner radius @ and outer radius b around the 
origin). The transmission line is excited at frequency in its dominant FEM mode, 
with the peak voltage between the cylinders being V. Use the vector Smythe— 
Kirchhoff approximation to discuss the radiated fields, the angular distribution of 

radiation, and the total power radiated. 
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10.16 (a) Show from (10.125) that the integral of the shadow scattering differential 

10.17 

10.18 

10,19 

cross section, summed over outgoing polarizations, can be writicn in the 

short-wavelength limit as 

On = if x J x; Z { eH Pk, 

and therefore is equal to the projected area of the scaticrer, independent of 
its detailed shape. 

(b) Apply the optical theorem to the “shadow” amplitude (10,125) to obtain the 
total cross section under the assumption that in the forward direction the 

contribution from the illuminated side of the scatterer is negligible in 
comparison. 

{a) Using the approximate amplitudes of Section 10.10, show that, for a linearly 
polarized plane wave of wave number & incident on a perfectly conducting 
sphere of radius @ in the limit of large ka. the differential scattering cross 
section in the F plane (€p, ky. and k coplanar) is 

4 taney = =| 4 cot20 F3(ka si an (E plane) = | covo ska sin 6) + 1 

— 4 cot 6 J,(ka sin 0) sin(2 ka sin | 

and in the // plane (€y perpendicular to ky and k) is 

do onc) = = | 4 cosec26 Jka si So 6H plane) = [: cosec?# Fi(ka sin 8) +1 

2. 

(The dashed curve in Fig. 10.16 is the average of these two expressions.) 

{b) Look up the exact calculations in King and Wa (Appendix) or Bowman, 
Senior and Uslenghi (pp. 402-405). Are the qualitative aspects of the inter- 
ference between the diffractive and reflective amplitudes exhibited in part a 
in agreement with the exact results? What about quantitative agreement? 

+ 4 cosee 6 J,{ka sin #) sin(2 ka sin ‘| 

Discuss the diffraction due to a small, circular hole of radius a in a flat, perfectly 
conducting sheet, assuming that ka << 1. 

(a) If the fields near the screen on the incident side are normal Eye!" and 

tangential Bye ‘”, show that the diffracted clectric field in the Fraunhofer 

zone is 

Comaaes k k k 
E= Jar ea 2 ral B, + rag (& x *)| 

where k is the wave vector in the direction of observation. 

{b) Determine the angular distribution of the diffracted radiation and show that 

the total power iransmiticd through the hole is 

a he? 

271Z, 

Specialize the discussion of Problem 10.18 to the diffraction of a plane wave by 

the smail, circular hole. Treat the general case of oblique incidence at an angle & 
to the normal, with polarization in and perpendicular to the plane of incidence. 

(a) Calculate the angular distributions of the diffracted radiation and compare 
them to the vector Smythe-Kirchhoff approximation results of Section 10.9 

and Problem 10.12 in the limit ka < 1. 

kid'(4c°By + Fi) 
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For the conditions of Fig. 10.14 (but for ka << 1) compute the diffraction 
intensity in the plane of incidence and compare the relative values with the 
solid curve in Fig. 10.14. (Use a protractor and a ruler to read off the values 

from Fig. 10.14 at several angles.) 
Show that the transmission coefficient [defined above (10.116)] for the two 

states of polarization are 

% inta 

sie Soo(S 4 cosa ) 

T= 
64 ka)* Faq (hay cos a 

Note that these transmission coefficients are a factor (ka) smaller than those 
given by the vector Smythe-Kirchhoff approximation in the same limit. 

10.20 A suspension of transparent fibers in a clear liquid is modeled as a collection of 

scatterers, each being a right circular cylinder of radius a and length /. of uniform 

dielectric material whose electric susceptibility differs from the surrounding me- 
dium by a small fractional amount de/e. 
(a) 

{b) 

(c) 

Show that to first order in Se/e the scattering cross section per scatterer for 
unpolarized radiation of wave number & is 

do _ |be|” katt? 
dQ € 32 

where J,(z) is the Bessel function of order unity and q, (q,) is the component 
of the wave number transfer parallel (perpendicular) to the cylinder axis. 

In the limit of very slender cylinders (ka << 1), show that the scattering cross 
section, averaged over the orientation of the cylinder (appropriate for an 
ensemble of fone) oriented fibers), is 

4 2 oi > (#) - | ee ‘a nL ite eovo| sgt) - (a2) | 
qLir 

where Si(x) = | [(sin x)/x] dx is the sine integral (Abramowitz and Stegun, 
i 

p. 231) and q? = 2k(1 = cos 8). 
Plot the square-bracketed quantity in part b as a function of g*/ on the 
range (0, 100). Verify that the cross section is the expected one when 
kL < 1 and show that when AL >> | (but ka << 1) the total scattering cross 

section is approximately 

1 in(kL} AL + Ka’ x1 of fe. aE: }} lim? |de|" 
€ 

Comment on the frequency dependence. 

2(q.a)_ sin(g-L/2))" 
WO aa gh. 

r 

Feat ~ 



CHAPTER 11 

Special Theory of Relativity 

Beginning with Chapter 11 we employ Gaussian units instead of SI units for electro- 
magnetic quantities. Explicit factors of ¢ appear in a natural manner in these units, 

making them more appropriate than SI units for relativistic phenomena. The issue of 

“rationalization” (suppression of explicit factors of 47 in the Maxwell equations) is 
another matter. Some workers, especially quantum field theorists, prefer Heaviside— 
Lorentz units—see the Appendix. 

514 

The special theory of relativity has, since its publication by Einstein in 1905, 
become a commonplace in physics, as taken for granted as Newton's laws 
of classical mechanics, the Maxwell equations of electromagnetism, or the 
Schridinger equation of quantum mechanics. Daily it is employed by scientists 
in their consideration of precise atomic phenomena, in nuclear physics, and above 
all in high-energy physics. 

The origins of the special theory of relativity lie in electromagnetism. In fact, 
one can say that the development of the Maxwell equations with the unification 
of electricity and magnetism and optics forced special relativity on us. Lorentz 
above all laid the groundwork with his studies of electrodynamics from 1890 
onwards. Poincaré made important contributions, but it fell to Einstein to make 
the crucial generalization to all physical phenomena, not just electrodynamics, 
and to stress the far-reaching consequences of the second postulate. The special 

theory of relativity is now believed to apply to all forms of interaction except 
large-scale gravitational phenomena. It serves as a touchstone in modern physics 
for the possible forms of interaction between fundamental particles. Only theo- 
ries consistent with special relativity need to be considered. This often severely 
limits the possibilities. 

The experimental basis and the historical development of the special theory 

of relativity, as well as many of its elementary consequences, are discussed in 
many places. A list of books and articles is given at the end of the chapter. We 
content ourselves with a summary of the key points and some examples of recent 
definitive experimental confirmations. Then the basic kinematic results are sum- 

marized, including coordinate transformations, proper time and time dilatation, 
the relativistic Doppler shift, and the addition of velocities. The relativistic energy 
and momentum of a particle are derived from general principles, independent of 
the force equation. Then the idea of the Lorentz group and its mathematical 
description is presented and a specific representation in terms of 4 x 4 matrices 
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is given. The important phenomenon of Thomas precession is then discussed. 
The experimental basis for the invariance of electric charge, the covariance of 
electrodynamics, and the explicit transformation properties of electric and mag- 

netic fields follow. The chapter concludes with a treatment of the relativistic 
equations of motion for spin and a remark on the notation and conventions of 
relativistic kinematics. 

11.1 The Situation Before 1900, Einstein’s Two Postulates 

In the 40 years before 1900 electromagnetism and optics were correlated and 
explained in triumphal fashion by the wave thcory based on the Maxwell equa- 

tions. Since previous experience with wave motion had always involved a medium 

for the propagation of waves, it was natural for physicists to assume that light 
needed a medium through which to propagate. In view of the known facts about 
light, it was necessary to assume that this medium, called the ether, permeated 

all space, was of negligible density, and had negligible interaction with matter. It 

existed solely as a vehicle for the propagation of electromagnetic waves. 
The hypothesis of an ether set electromagnetic phenomena apart from the 

test of physics. For a long time it had been known that the laws of mechanics 
were the same in different coordinate systems moving uniformly relative to one 
another. We say that the laws of mechanics are invariant under Galilean trans- 
formations. To emphasize the distinction between classical mechanics and elec- 
tromagnetism let us consider explicitly the question of Galifean relativity for 
each. For two reference frames K and K’ with coordinates (x. y, z, f) and 

(x, y', 2’, ’), respectively, and moving with relative velocity v, the space and 
time coordinates in the two frames are related according to Galilean relativity 

by 

(itl) 

provided the origins in space and time are chosen suitably. As an example of a 
mechanical system, consider a group of particles interacting via two-body central 
potentials. In an obvious notation the equation of motion of the éth particle in 
the reference frame K’ is 

dvi 
in ap = VED Ville — G1) (11.2) 

7 
From the connections {11.1) between the coordinates in K and K’ it is evident 

that vi = v, — v. V; = V,, dv,/dt' = dv,/dt, and x; — x} = x; — x,. Thus (11.2) can 

be transformed into 

aye = = 
ae ve V,(Ix: — x/|) (11.3) m; 

namely Newton’s equation of motion in the reference frame K. 
The preservation of the fornt of the equations of classical mechanics under 

the transformation {11.1} is in contrast to the change in form of the equations 
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governing wave phenomena. Suppose that a field s(x’, 1’) satisfies the wave 
equation 

(s oa Z)w-0 (11.4) ax? ar? 

in the reference frame K’. By straightforward use of (11.1) it is found that in 
terms of the coordinates in the reference frame K the wave equation (114) 
becomes 

veVy-V)p=0 (115) 

The form of the wave equation is not invariant under Galilean transformations, 
Furthermore, no kinematic transformation of yy can restore to (11.5) the appear- 

ance of (11.4).* For sound waves the lack of invariance under Galilean transfor- 
mations is quite acceptable. The wind throws our voices. Sound waves are com- 
pressions and rarefactions in the air or in other materials, and the preferred 
reference frame K’ in which (11.4) is valid is obviously the frame in which the 
transmitting medium is at rest. 

So it also appeared for electromagnetism. The vital difference is this. Sound 
waves and similar wave phenomena are consequences of Galilean classical me- 
chanics. The existence of preferred reference frames where the phenomena are 
simple is well understood in terms of the bulk motions of the media of propa- 
gation. For electromagnetic disturbances, on the other hand, the medium seemed 
truly ethereal with no manifestation or purpose other than to support the 
propagation. 

When Einstein began to think about these matters there existed several 
possibilities: 

1. The Maxwell equations were incorrect. The proper theory of electromag- 
netism was invariant under Galilean transformations. 

2. Galilean relativity applicd to classical mechanics, but electromagnetism had 
a preferred reference frame, the frame in which the luminiferous ether was 

at rest. 

3. There existed a relativity principle for both classical mechanics and electro- 

magnetism, but it was not Galilean relativity. This would imply that the laws 
of mechanics were in need of modification. 

The first possibility was hardly viable. The amazing successes of the Maxwell 
theory at the hands of Hertz, Lorentz. and others made it doubtful that the 

*The reader might wish (o ponder the differences between the wave equation and the Schrédinget 
equation under Galilean transformations. if in K’ the Schrédinger equation reads 

R ‘ 
-Svtw ty 
am 

then in K the equation has the same (orm for the wave function ¥ provided V is a Galilean invariant 
and g = y explifmlh)v-x — i(mv?/2A)i]. The Schrédinger cquation is invariant under Galilean 
transformations. 
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equations of electromagnetism were in serious error. The second alternative was 
accepted by most physicists of the time. Efforts to observe motion of the earth 
and its laboratories relative to the rest frame of the ether, for example, the 

Michelson-Morley experiment, had failed. But for this important experiment at 
least, the null result could be explained by the FitzGerald—Lorentz contraction 
hypothesis (1892) whereby objects moving at a velocity y through the ether are 
contracted in the direction of motion according to the formula 

(11.6) 

This rather unusual hypothesis apparently lics outside electromagnetism, since it 
applics to bulk matter, but Lorentz later argued that it was rooted in electrody- 
namics. He and Poincaré showed that the Maxwell! cquations are invariant in 
form under what are known as Lorentz transformations (see Section 11.9) and 

that the contraction (11.6) held for moving charge densities, etc., in electrody- 

namics. With the idea that matter is electromagnetic in nature (the discovery of 

the electron encouraged this hypothesis), it is plausible to assume that (11.6) 
holds for macroscopic aggregates of electrons and atoms. Lorentz thus saved the 
ether hypothesis from contradiction with the Michelson—Morley experiment, 

Other experiments caused embarrassment to the ether idea. Fizeau’s famous 
experiments (1851, 1853) and later similar experiments by Michelson and Morley 
(1886) on the velocity of light in moving fluids could be understood only if one 
supposed that the ether was dragged along partially by the moving fluid, with 
the effectiveness of the medium in dragging the ether related to its index of 
refraction! 

Apparently it was the implausibility of the explanation of the Fizeau obser- 
vations, more than anything else, that convinced Einstein of the unacceptability 
of the hypothesis of an ether. He chose the third alternative above and sought 
principles of relativity that would encompass classical mechanics, electrodynam- 
ics, and indeed all natural phenomena. Einstein's special theory of relativity is 
based on two postulates: 

1. POSTULATE OF RELATIVITY 

The laws of nature and the results of all experiments performed in a given 
frame of reference are independent of the translational motion of the system 
as a whole. More precisely, there exists a triply infinite set of equivalent 
Euclidean reference frames moving with constant velocities in rectilinear 
paths relative to one another in which all physical phenomena occur in an 

identical manner. 

For brevity these equivalent coordinate systems are called inertial reference 
frames. The postulate of relativity, phrased here more or less as by Poincaré, is 

consistent with all our experience in mechanics where only relative motion be- 
tween bodies is relevant. and has been an explicit hypothesis in mechanics since 
the days of Copernicus, if not before. It is also consistent with the Michelson— 
Morely experiment and makes meaningless the question of detecting motion 
relative to the ether. 
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2. POSTULATE OF THE CONSTANCY OF THE SPEED OF LIGHT 

The speed of light is finite and independent of the motion of its source, 

This postulate, untested when Einstein proposed it (and verified decisively only 
in recent years—see Section 11.2.B). is simplicity itself. Yet it forces on us such, 
a radical rethinking of our ideas about space and time that it was resisted for 
many years. 

Because special relativity applies to everything, not just light, it is desirable 
to express the second postulate in terms that convey its generality: 

2’, POSTULATE OF A UNIVERSAL LIMITING SPEED 

In every inertial frame, there is a finite universal limiting speed C for physica] 
entities. 

Experimentally, the limiting speed C is equal to the speed c of light in vacuum, 
Postulate 2' (with the first postulate) can be used equally to derive the Lorentz 
transformation of coordinates (see Problem 11.1), Our own derivation in Section 
11.3 is the traditional one, based on Postulates 1 and 2, but, as Mermin has 
emphasized,” the general structure of the Lorentz transformation can be deduced 
from the first postulate alone, plus some obvious assumptions, without reference 
to the speed of light, except as the empirical parameter that distinguishes the 
transformation from the Galilean (see Problem 11.2). 

The history of the special theory of relativity and its gradual establishment 
through experiments is dealt with in an extensive literature. Some references are 
given at the end of the chapter. Of particular note is the “Resource letter on 
relativity” published in the American Journal of Physics (30, 462 (1962)], This 
article contains references to books and journal articles on the history, experi- 
mental verification, and laboratory demonstrations on all aspects of special 
relativity. 

In passing we remark that Einstein's postulates require modification of the 
laws of mechanics for high-speed motions. There was no evidence at the time 
indicating a failure of Galilean relativity for mechanics. This is basically because 
relativistic particles and their dynamics were unknown until the discovery of beta 
rays around 1900. Poincaré had speculated that the speed of light might be a 
limiting speed for material particles, but Einstein's special theory of relativity 
originated from his desire to treat all physical phenomena in the same way rather 
than from any need to “fix up” classical mechanics. The consequences of the 
special theory for mechanical concepts like momentum and energy are discussed 
in Section 11.5. 

11.2 Some Recent Experiments 

Although we omit discussion of the standard material, appealing to the reader's 
prior knowledge and the existence of many books on the special theory of rela- 
tivity, there are two experiments worthy of note. One concerns the first postulate, 
namely the search for an “ether drift” (evidence of motion of the laboratory 

relative to the ether) and the other the second postulate. 

*N. D. Mermin, Relativity without light. Am. /. Phys. 52, 119-124 (1984). 
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A. Ether Drift 

The null result of the Michelson—Morley experiment (1887) established that 

the velocity of the carth through the presumed ether was less than one-third of 
its orbital speed of approximately 3 x 16* m/s. The experiment was repeated 
many times with various modifications, always with no firm evidence of motion 
relative to the ether. A summary of all available evidence is given by Shankland 
ct al. [Rev. Mod. Phys. 27, 167 (1955)]. 

As already noted, these null results can be explained without abandoning 
the concept of an ether by the hypothesis of the FitzGerald—Lorentz contraction. 
The discovery by Méssbauer (1958) of “recvilless” emission or absorption of 
gamma rays (called the Mésshauer effect) atlows comparison of frequencies to 
astounding precision and gives the possibility of very accurate ether drift exper- 
iments based on the Doppler shift. In the Mossbauer effect the recoil momentum 
from the emission or absorption of a gamma ray is taken up by the whole solid 
rather than by the emitting or absorbing nucleus. This means that the energy of 
recoil is totally negligible. A gamma ray is emitted with the full energy E, of the 
nuclear transition, not the reduced energy E = Ey — E3/2Mc*, where M is the 

mass of the recoiling nucleus, resulting from the recoil. Furthermore, with such 
recoilless transitions there are no thermal Doppler shifts. The gamma-ray line 
thus approaches its natural shape with no broadening or shift in frequency. By 
employing an absorber containing the same material as the emitter, onc can study 
nuclear resonance absorption or usc it as an instrument for the study of extremely 
small changes of frequency. 

To understand the principle of an ether drift cxpcriment based on the 
Massbauer effect, we need to recall the classic results of the Doppler shift. The 
phase of a plane wave is an invariant quantity, the same in all coordinate frames. 
This is because the elapsed phase of a wave is proportional to the number of 
wave crests that have passed the observer. Since this is merely a counting oper- 
ation, it must be independent of coordinate frame. If there is a plane electro- 
magnetic wave in vacuum its phase as observed in the inertial frames K and K'. 
connected by the Galilean coordinate transformation (11.1), is 

o= ol: ~ 2%) = a(r ogee *) a7 

Since this equality must hold for all ¢ and x’, it is necessary that the coefficients 
of (", x[, 3, £4 on both sides be separately cqual. We therefore find 

n=n 

‘! ney 
w= of! =) (11.8) 

e=ece-nev 

These are the standard Doppler shift formulas of Galilean relativity. 
The unit wave normal n is seen from (11.8) to be an invariant, the same in 

all inertial frames. The direction of energy flow changes. however. from frame 
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to frame. To see this, consider the segments of a plane wave sketched in Fig. 11.1, 
The segments can be thought of as schematic representations of wave packets 
Att =f = 0 the center of the segment is at the point A in both K and Kk’, Tt 

inertial frame K is the preferred reference frame (cther at rest) the wave packet 
moves in the direction n, arriving after one unit of time at the point B in frame 
K. The distance AB is equal to c. In frame K' the center of the wave packet 
arrives at the point B’ after one unit of time. Because of the Galilean transfor. 
mation of coordinates (11.1) the point B' differs from B by a vectorial amount 
—y, as indicated in the bottom half of Fig. 11.1. The direction of motion of the 
wave packct, assumed to be the direction of energy flow, is thus not parallel 19 
nin XK’, but along a unit vector m shown in Fig. 11.1 and specified by 

on- vy 
“lala (19) 

Since the experiments involve photon propagation in the laboratory, it js 
convenient to have the Doppler formulas (11.8) expressed in terms of the m 
appropriate to the laboratory rather than n. It is sufficient to have min terms of 
m correct to first order in o/c. From (11.9) we find 

n=(i- (11.10) 

Figure 11.1 
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Consider now a plane wave whose frequency is w in the ether rest frame, wy) 

in the laboratory, and «, in an inertial frame K, moving with a velocity vy, = 
u, + vy relative to the ether rest frame. From (11.8) the observed frequencies 

7 (1-84) 
(1-22) 

If w is expressed in terms of the laboratory frequency w) and the wave normal 
n is eliminated by means of (11.10), the result, correct to order v*/c’, is easily 
shown to be 

w= al) - 2. (m +¥)| (uit) 
sg Cc 

where u, is the velocity of the frame K, relative to the laboratory, m is the 

direction of energy propagation in the laboratory, «wy is the frequency of the wave 
in the laboratory, and vy is the velocity of the laboratory with respect to the ether. 

Equation (11.11) forms the basis of the analysis of the Méssbauer ether drift 
experiments. It is a consequence of the validity of both the wave equation in the 
ether rest frame and Galilean relativity to transform to other inertial frames. 
Since it involves vy, it obviously predicts an ether drift effect. Consider two 

Mossbauer systems, one an emitter and the other an absorber, moving with ve- 
locities u; and ws in the laboratory. From (11.11) the difference in frequency 
between emitter and absorber is 

w= 8 = Lg, uy (m +") 
‘e c 

If the emitter and absorber are located on the opposite ends of a rod of length 
2R that is rotated about its center with angular velocity ©, as indicated in Fig. 
11.2, then (u, — u,)+m = 0 and the fractional frequency difference is 

ee _ 208 Sin OF (v0)ah (1.12) 
@y 

wr 

Oo 

e 

where (vj), is the component of vp perpendicular to the axis of rotation. 
A resonant absorption experiment of this type was performed in 1963 in 

Birmingham.* The Méssbauer line was the 14.4 keV gamma ray in *’Fe, following 
the B* decay of *’Co. The isotope *’Fe is stable and occurs with a natural abun- 
dance of 2.2%: the absorber was made with iron enriched to $2% in *’Fe. The 
cobalt source was emplanted in **Fe. The emitter and absorber foils were located 
as in Fig. 11.2 with R = 4 cm. The observed fractional width of the Méssbauer 
line was Aw/w = 2 x 107". Counters fixed in the laboratory and located sym- 
metrically along a diameter of the circle in the plane of the source and absorber 
recorded the gamma rays transmitted through the absorber. Two rotational 
speeds, 2, = 1257 s~’ and Q,, = 7728 s”'. were alternated during each 4-hour 
cycle that data were taken and a diurnal effect connected to the earth's rotation 

=D. C. Champeney, G. R. Isaak, and A. M. Khan, Phys. Let. 7, 24] (1963). See also G. R. Isaak. 

Phys, Bult. 21, 255 (1970). 
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ce 

ae | ©, 

tS 

we Figure 11.2 

was sought. From (11.12) it can be seen that with 2 ~ 6000 s~! and R = 4m, 
an ether drift velocity of 200 m/s would produce a total change of frequency of 
the magnitude of the Mossbauer line width. The data showed no diurnal change 
in transmission to an accuracy of 1 or 2%, The authors conclude that the mag. 
nitude of the component of vq past the earth in a plane perpendicular to the 
earth’s axis of rotation is |{v)),| = 1.6 + 2.8 mvs, a null result. An improved 
experiment along the same lines in 1970 gave a limit of 5 cm/s (see Isaak, op. cit.). 

A conceptually similar experiment was performed in 1958 using ammonia 
masers.* The ammonia molecules have a well-defined direction and nonzero 
speeds when they enter the maser cavity. According to (11.11) there is therefore 
a shift in the frequency. If the frequencies of two masers whose ammonia mol- 
ecules travel in opposite directions are compared, there should be an observable 
beat frequency. Furthermore, if the two masers are rotated together through 180°, 
the beat frequency should change by A@/ap = 4 |Unoi* Vol/e?. The null result of 

this experiment set the component of ether drift velocity at less than 30 m/s. 
These two Doppler shift experiments set observable ether drift speed limits 

6000 and 1000 times smailer than the speed of the earth in its orbit and make 
the idea that we can ever detect any motion relative to some “absolute” reference 
frame quite implausible. 

B. Speed of Light from a Moving Source 

The second postulate of Einstein, that the speed of light is independent of 
the motion of the source, destroys the concept of time as a universal variable 
independent of the spatial coordinates. Because this was a revolutionary and 
unpalatable idea, many attempts were made to invent theories that would explain 
all the observed facts without this assumption. The most notable and resilient 
scheme was Ritz’s version of electrodynamics (1908-1911), Ritz kept the two 
homogeneous Maxwell equations intact, but modified the equations involving 

the sources in such a way that the speed of light was equal to c only when mea- 
sured relative to the source. The Ritz theory is in accord with observation for 
the aberration of star positions, the Fizeau experiments, and the original 

*C. J. Cedarholm, G. F. Bland, B. L. Havens, and C. H. Townes, Phys. Rev. Leit, 1, 342 (1958), See 
also T. 8. Jaseja. A. Javan, J. Murray. and C. H. Townes, Phys. Rev. 133, A1221 (1964), 
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Michelson-Morley experiment. It is customary, however. to cite Michelson— 

Morley experiments performed with extraterrestrial light sources (the sun or 
other stars) and light from binary stars as establishing the second postulate and 
ruling out Ritz’s theory. Unfortunately, it seems clear that most of the early 
evidence is invalid because of the interaction of the radiation with the matter 
through which it passes before detection.* 

There are, however, some more recent experiments that do not suffer from 
the criticism of Fox. The most definitive is a beautiful experiment performed at 
CERN, Geneva, Switzerland, in 1964.‘ The speed of 6 GeV photons produced 

in the decay of very energetic neutral pions was measured by time of flight over 
paths up to 8) meters. The pions were produced by bombardment of a beryllium 
target by 19.2 GeV protons and had speeds {inferred from measured speeds of 
charged pions produced in the same bombardment) of 0.99975c. The timing was 
done by utilizing the rf structure of the beam. Within experimental error it was 

found that the speed of the photons emitted by the extremely rapidly moving 
source was equal to c. If the observed speed is written as c! = c + kv, where v 
is the speed of the source, the experiment showed k = (0 + 1.3) x 107%. 

The CERN experiment established conclusively and on a laboratory scale 
the validity of the second postulate (2) of the special theory of relativity. Other 
experiments’ on charged particles and neutrinos independently establish the 
validity of postulate 2’. See also Section 11.5. 

C. Frequency Dependence of the Speed of Light in Vacuum 

The speed of light is known to an accuracy of a few parts in 10° from mea- 
surements at infrared frequencies and lesser accuracy at higher frequencies (or 
equivalently, the meter is defined to this precision). One can ask whether there 
is any evidence for a frequency dependence of the speed of electromagnetic 
waves in vacuum. One possible source of variation is attributable to a photon 
mass. The group velocity in this case is 

A 
V2 1) (11.13) o 

where the photon rest energy is fimy. As discussed in the Introduction, the 
mere existence of normal modes in the earth-ionosphere resonant cavity sets a 

limit of w) < 10e/R where R is the radius of the earth. From radiofrequencies 

(@ ~ 10° s~') to w > , the change in velocity of propagation from a photon 
mass is therefore less than Acic = 107'°. 

Another source of frequency variation in the speed of light is dispersion of 

the vacuum, a concept lying outside special relativity but occurring in models 
with a discrete space-time. The discovery of pulsars make it possible to test this 

*See the papers of criticism by J. G. Fox, Am. J. Phys. 30, 297 (1962), 33. 1 (1965): J. Opt. Soe. 87, 
967 (1967). The second paper cited is a detailed discussion of Ritz's emission theory and a critique 
of the various arguments against it. See also T. Alvager. A. Nilsson. and J. Kjetlman, Ark. Fys, 26, 
209 (1963). 
"T. Alvager, J. M. Bailey, F. J. M. Farley, J. Kjellman, and I. Wallin, Phys. Leu 12, 260 (1964): Ark. 

31, 145 (1965). 
'G, R. Kalbfleisch, N. Baggett, E. C. Fowler and J. Alspector, Phys. Rev. Lett. 43, 1361 (1979). 
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idea with high precision. Pulsar observations cover at least 13 decades of fre. 
quency, with any one observing apparatus having a certain “window” iN, the 

frequency spectrum. The quite small time duration of the pulse from some Pulsars 
permits a simple estimate for the upper limit of variation on the speed of light 
for two frequencies @, and @, inside the frequency window of each apparatus; 

(ai) — lor) 
c 

car 
D 

where At is the pulse duration and D is the distance from the source to observer, 
For the Crab pulsar Np 0532, Ar = 3 x 107° s and D = 6 X 10° light-years 50 
that (¢ At/D} = 1.7 x 107'*. Various overlapping observations from ~4 « 10* Hy 
through the optical region and up to photon energies of 1 MeV indicate constancy 
of the speed at the level of Ac/c < 10°'* by this simple estimation.* For higher 
energies, an experiment at the Stanford Linear Accelerator’ compared the speed 
of 7 GeV photons with that of visible light and found Ac/c < 107%. Up to very 
high energies, then, there is no evidence for dispersion of the vacuum. The speed 
of light is a universal constant, independent of frequency. 

11.3 Lorentz Transformations and Basic Kinematic 
Results of Special Relativity 

As is well known, the constancy of the velocity of light, independent of the mo- 
tion of the source, gives rise to the relations between space and time coordinates 
in different inertial reference frames known as Lorentz transformations. We de- 
tive these results in a more formal manner in Section 11.7, but for the present 

summarize the elementary derivation and important consequences, omitting the 
details that can be found in the many textbooks on relativity. The reader who 
wishes more than a reminder can consult the books listed at the end of the 
chapter. 

A. Simple Lorentz Transformation of Coordinates 

Consider two inertial reference frames K and K' with a relative velocity v 
between them. The time and space coordinates of a point are (t, x, y, z) and 

(, x,y,z’) in the frames K and K', respectively. The coordinate axes in the 

two frames are parallel and oriented so that the frame K’ is moving in the positive 
z direction with speed v, as viewed from K. For simplicity, let the origins of the 

coordinates in K and K" be coincident at ¢ = #' = 0. Ifa light source at rest at 
the origin in K (and so moving with a speed v in the negative z direction, as seen 

from K’) is flashed on and off rapidly at ¢ = 1’ = 0, Einstein's second postulate 
implies that observers in both K and K' will see a spherical shell of radiation 
expanding outward from the respective origins with speed c. The wave front 
reaches a point (x, y, z) in the frame K at a time ¢ given by the equation, 

oP -(+y+2y=0 (11.14) 

*], M. Rawls, Phys. Rev. DS, 487 (1972). 

*B. C. Brown et al.. Phys. Rev. Lett. 30, 763 (1973). 
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Similarly, in the frame K’ the wave front is specified by 

P-GP ty? 427) =0 (1.14) 

With the assumption that space-time is homogeneous and isotropic. as im- 
plied by the first postulate, the connection between the two sets of coordinates 
is linear. The quadratic forms (11.14) and (11.14") are then related by 

t? — (x + y? + 2) = Wc? — 2 + y? + 279] (11.15) 

where A = A(v) is a possible change of scale between frames. With the choice of 
orientation of axes and considerations of the inverse transformation from K’ to 
K it is straightforward to show that A(v} = | for all v and that the time and space 

coordinates in K’ are related to those in K by the Lorentz transformation 

x6 = ¥(Q%0 — Br) 
x1 = ¥(t1 — Br) eg (11.16) 

xh=ay 

where we have introduced the suggestive notation x, = cf, x; = 2. t2 7X, 
x3 = vy and also the convenient symbols, 

v 
B=. 8 = [BI (17) 

yal ey" 
The inverse Lorentz transformation is 

Xu = yrs + Bri) 

a= ye + Bxo) (1.48) 
Xy =X} 

xy xh 

It can be found from (11.16) by direct calculation, but we know from the first 
postulate that it must result from (11.16) by interchange of primed and unprimed 
variables along with a change in the sign of 8. According to (11.16) or (11.18), 

the coordinates perpendicular to the direction of relative motion are unchanged 
while the parallel coordinate and the time are transformed. This can be contrasted 

with the Galilean transformation (11.1). 
Equations (11.16) and (11.17) describe the special circumstance of a Lorentz 

transformation from one frame to another moving with velocity v parallel to the 
x, axis. If the axes in K and K' remain parallel, but the velocity v of the frame 
K' in (rame KX is in an arbitrary direction, the generalization of (11.16) is 

x6 = ¥Ko — Bex) at9) 

oe DB -xB - Bx : 

The first equation here follows almost trivially from the first equation in (11.16). 

The second appears somewhat complicated. but is really only the sorting out of 
components of x and x’ parallel and perpendicular to v for separate treatment 

in accord with (11.16). 

x=xt 
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The connection between 8 and y given in (11.17) and the ranges 0 < g < 1 

| = y= & allow the alternative parametrization, 

6 = tanh¢é 

and so 
y = cosh¢ (11.20) 

yB = sinh 

where ¢ is known as the boost parameter or rapidity. In terms of ¢ the first two 
equations of (11.16) become 

XG = Xq cosh f — x, sinh & (11.21) 
Xj = —Xp sinh { + x, cosh & 

The structure of these equations is reminiscent of a rotation of coordinates, but 
with hyperbolic functions instead of circular, basically because of the relative 
negative sign between the space and time terms in (11.14) [see Section 11.7 and 
(11.95)]. 

B. 4-Vectors 

The Lorentz transformation (11.16), or more generally (11.19), describes the 

transformation of the coordinates of a point from one inertial frame to another, 
Just as for rotations in three dimensions, the basic transformation law is defined 
in terms of the coordinates of a point. In three dimensions we call! x a vector and 
speak of x1, x2, 4; as the components of a vector. We designate by the same name 
any three physical quantities that transform under rotations in the same way as 
the components of x. It is natural therefore to anticipate that there are numerous 
physical quantities that transform under Lorentz transformations in the same 
manner as the time and space coordinates of a point. By analogy we speak of 
4-vectors. The coordinate 4-vector is (x9..41, Xo, X53); we designate the components 

of an arbitrary 4-vector similarly as (Ay, Ay, Az, Ax),* where A,, A>, A, are the 
components of a 3-vector A. The Lorentz transformation law equivalent to 
(11.16) for an arbitrary 4-vector is 

Ag = WAo — B+ A) 

Al = y{A. — BAo) (11.22) 

AL=A, 

where the parallel and perpendicular signs indicate components relative to the 

velocity v = cB. The invariance from one inertial frame to another embodied 
through the second postulate in (11.15) has its counterpart for any 4-vector in 
the invariance, 

O° — [A'P = Ab - [AP (11.23) 

*Because we are deferring the explicit algebraic treatment of the Lorentz, group to Section 11.7, we 
do not write a single symbol for this 4-vector. As written, they are the components of the contravariant 
4-vector A” 
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where the components (Aj, A‘) and (Ay. A) refer to any two inertial reference 

frames. For two 4-vectors (Ay. A), A>, Aa) and (B,, B;, Bp, B3) the “scalar prod- 

uct” is an invariant, that is, 

AjBi — A's BY = AyBo — A+B (11.24) 
This result can be verified by explicit construction of the left-hand side, using 
(11.22) for the primed components, or using (11.23) for the sum of two 4-vectors. 
It is the Lorentz transformation analog of the invariance of A - B under rotations 

in three dimensions. 

C. Light Cone, Proper Time, and Time Dilatation 

A fruitful concept in special relativity is the idea of the light cone and “space- 
like” and “timelike” separations between two events. Consider Fig. 11.3, in which 

the time axis (actually ct) is vertical and the space axes are perpendicular to it. 
For simplicity only one space dimension is shown. At ¢ = 0a physical system, say 

a particle, is at the origin. Because the velocity of light is an upper bound on all 
velocities, the space-time domain can be divided into three regions by a ‘“‘cone,” 
called the light cone, whose surface is specified by x7 + y? + 2 = Cr. Light 
signals emitted at ¢ = 0 from the origin would travel out the 45° lines in the figure. 
But any material system has a velocity less than c. Consequently as time goes on 
it would trace out a path, called its world line, inside the upper hal{-cone: for 
example, the curve OB. Since the path of the system lies inside the upper half- 
cone for times ¢ > 0, that region is called the future. Similarly the lower half-cone 
is called the past. The system may have reached O by a path such as AO lying 
inside the lower half-cone. The shaded region outside the light cone is called 
elsewhere. A system at O can never reach or come from a point in space-time in 
elsewhere. 

The division of space-time into the past-future region (inside the light cone) 
and elsewhere (outside the light cone) can be emphasized by considering the 
invariant separation or interval s,2 between two events P;(t,, x,) and P(t), Xz) in 

space-time (we are reverting to ¢ and x temporarily to avoid proliferation of 
subscripts). The square of the invariant interval is 

So = OH — bY = Px) = XP (1.25) 

For any two events P, and P, there are three possibilities: (1) st2 > 0, (2) siz <0. 
(3) 5], = 0. If s?, > 0, the events are said to have a timelike separation. It is always 

Bh et 
Future 

Figure 11.3 World linc of a system and the light 
cone. The unshaded interior of the cone represents 
the past and the future. while the shaded region 
outside the cone is called “elsewhere.” A point 
inside (outside) the light cone is said to have a 
timelike (spacelike) separation from the origin. 
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possible to find a Lorentz transformation* to a new coordinate frame K‘ such 

that x} = x}. Then 

sie = W - BP > 0 
In the frame K’ the two events occur at the same space point, but are separated 
in time. Referring to Fig. 11.3, one point can be located at the origin and the 
other lies in the past or future. If s7, < 0, the events are said to have a spacelike 
separation. Now it is possible to find an inertial frame K” where t{ = 4. Then 

Siz = — [xf - xP <0 
In K" the two events occur at different space points at the same instant of time, 
In terms of Fig. 11.3, one event is at the origin, while the other lies in the else. 
where region. The final possibility, s}) = 0, implies a lightlike separation. The 
events lie on the light cone with respect to each other and can be connected only 
by light signals. 

The division of the separation of two events in space-time into two 
classes—spacelike separations or timelike separations with the light cone as the 
boundary surface between—is a Lorentz invariant one. Two events with a space- 
like separation in one coordinate system have a spacelike separation in all co- 
ordinate systems. This means that two such events cannot be causally connected, 
Since physical interactions propagate from one point to another with velocities 
no greater than that of light, only events with timelike separations can be causally 
related. An event at the origin in Fig. 11.3 can be influenced causally only by the 
events that occur in the past region of the light cone. 

Another useful concept is proper time. Consider a system, which for defi- 
niteness we will think of as a particle, moving with an instantaneous velocity u(z) 
relative to some inertial system K. In a time interval d¢ its position changes by 
dx = u dt. From (11.25) the square of the corresponding infinitesimal invariant 
interval ds is 

ds? = 2 dP — |dxP = 2 dP — B*) 

where here B = u/c. In the coordinate system K’ where the system is instanta- 
neously at rest the space-time increments are dt’ = dz, dx’ = 0). Thus the invariant 
interval is ds = c dz. The increment of time dz in the instantaneous rest frame 
of the system is thus a Lorentz invariant quantity that takes the form, 

dr = divi — BY = aa (11.26) 

The time 7is called the proper time of the particle or system. ILis the time as seen 

in the rest frame of the system. From (11.26) it follows that a certain proper time 

interval 7. — 7, will be seen in the frame K as a time interval, 

dr 
a 

a rc) 
Equation (11.27) or (11.26) expresses the phenomenon known as time dila- 

tation. A moving clock runs more slowly than a stationary clock. For equal time 

= i : y(a)dz (11.27) 

“By considering equations (11.16), the reader can verify that there exists a Lorentz transformation 
with 8 < | provided s7, > 0. Explicitly, |B! = |x; — x:'ve | — @l. 
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intervals in the clock’s rest frame. the time intervals observed in the frame K are 
greater by a factor of y > 1. This paradoxical result is verified daily in high- 
energy physics laboratories where beams of unstable particles of known lifetimes 
% are transported before decay over distances many many times the upper limit 
on the Galilean decay distance of cz). For example, at the Fermi National Ac- 

celerator Laboratory charged pions with energies of 200 GeV are produced and 
transported 300 meters with less than 3% loss because of decay. With a lifetime 
of % = 2.56 X 107" s, the Galilean decay distance is cz, = 7.7 meters. Without 
time dilatation, only e“"*?? = 107"? of the pions would survive. But at 200 GeV, 

1400 and the mean free path for pion decay is actually ye7) = 11 km! 

A careful test of time dilatation under controlled laboratory conditions is 
afforded by the study of the decay of mu-mesons orbiting al nearly constant speed 

in a magnetic field. Such a test, incidental to another experiment, confirms fully 
the formula (11.27). [See the paper by Bailey et al. cited at the end of Section 
Wi] 

A totally different and entertaining experiment on time dilatation has been 

performed with macroscopic clocks of the type used as official time standards.* 
The motion of the clocks was relative to the earth in commercial aircraft, the 
very high precision of the cesium beam atomic clocks compensating for the rel- 
atively small speeds of the jet aircraft. The four clocks were flown around the 
world twice, once in an eastward and once in a westward sense. During the 
journeys logs were kept of the aircrafts’ location and ground speed so that 
the integral in (11.27) could be calculated. Before and after each journey the 

clocks were compared with identical clocks at the U.S. Naval Observatory. With 
allowance for the earth’s rotation and the gravitational “red shift” of general 
relativity, the average observed and calculated time differences in nanoseconds 
are —59 + 10 and —40 + 23 for the eastward trip and 273 + 7 and 275 + 21 for 
the westward. The kinematic effect of special relativity is comparable to the gen- 
eral relativistic effect. The agreement between observation and calculation es- 
tablishes that people who continually fly eastward on jet aircraft age less rapidly 
than those of us who stay home, but not by much! 

D, Relativistic Doppler Shift 

As remarked in Section 11.2.A, the phase of a wave is an invariant quantity 
because the phase can be identified with the mere counting of wave crests in a 
wave train, an operation that must be the same in all inertial frames. In Section 
11.2 the Galilean transformation of coordinates (11.1) was used to obtain the 

Galilean (nonrelativistic) Doppler shift formulas (11.8). Here we use the Lorentz 

transformation of coordinates (11.16) to obtain the relativistic Doppler shift. Con- 
sider a plane wave of frequency w and wave vector k in the inertial frame K. In 
the moving frame K’ this wave will have, in general, a different frequency w’ and 
wave vector k’. but the phase of the wave is an invariant: 

@= of —k-x= 0 — kx’ (11.28) 

[Parenthetically we remark that because the equations of (11.16) are linear the 
plane wave in K with phase ¢ indeed remains a plane wave in frame K"'.] Using 

4+]. C. Hafele and R. E. Keating, Science 177. 166, 168 (1972). 
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(11.16) and the same arguments as we did in going from (11.7) to (11.8). we.fing 
that the frequency w' = ck, and wave vector k’ are given in terms of w = ck, 

and k by 

Ky = y(ko — B+ ky 
ki = (ky — Bo) (11.29) 

ko =k, 

The Lorentz transformation of (k», k) has exactly the same form as for (x, x), 
The frequency and wave number of any plane wave thus form a 4-vector. The 
invariance (11,28) of the phase is the invariance of the “scalar product” of two 
4-vectors (11.24), This correspondence is, in fact, an alternate path from (11.28) 
to the transformation law (11.29). 

For light waves, |k| = ky, |k’| = &}. Then the results (11.29) can be expressed 
in the more familiar form of the Doppler shift formulas 

w@' = ya(1 — B cos A) (11.30) 
erg sin @ 

“ yicos @ — B) 

where @ and 6’ are the angles of k and k’ relative to the direction of y. The 
inverse equations are obtained by interchanging primed and unprimed quantities 
and reversing the sign of B. 

The first equation in (11.30) is the customary Doppler shift, modified by the 
factor of y. Its presence shows that there is a transverse Doppler shift, even when 
4 = 7/2. This relativistic transverse Doppler shift has been observed spectro- 
scopically with atoms in motion (Ives—Stilwell experiment, 1938). It also has been 

observed using a precise resonance-absorption Méssbauer experiment, with a 
nuclear gamma-ray source on the axis of a rapidly rotating cylinder and the ab- 
sorber attached to the circumference of the cylinder.* 

11.4 Addition of Velocities, 4-Velocity 

The Lorentz transformation (11.16) or (11,18) for coordinates can be used to 

obtain the law for addition of velocities. Suppose that there is a moving point P 

whose velocity vector u’ has spherical coordinates (u’, 6", @’) in the inertial frame 

K’, as shown in Fig. 11.4. The frame K’ is moving with velocity v = cB in the 
positive x, direction with respect to the inertial frame K. We wish to know the 
components of the velocity a of the point P as seen from K. From (11.18) 
the differential expressions for dx, dx), dxz, dx3 are 

dxy = y.(dxi + B dxi) 

dx, = y.dxj + B dx$) 

dx, = dx4 

deh = il 

*H. J. Hay. J. P. Schiffer, T. E. Cranshaw. and P. A. Egelstaff, Phys. Rev. Lett, 4, 165 (1960). See 
also T. E. Cranshaw in Proceedings of the international School of Physics, Varenna, Covrse XX, 1961, 
Academic Press. New York (1962). p. 208. 
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Figure 11.4 Addition of velocitics. 

where we have put a subscript on y to distinguish it below from y, = 
(1 = wie?) and y,. = (1 — we?) "'?. The velocity components in each frame 
are wu) = ce dx} /dx¢ and u, = c dx;/dxy. This means that the components of velocity 

transform according to 

om (1131) 

The notation x, and u. refers to components of velocity parallel and perpendic- 
ular, respectively, to v. The magnitude of u and its polar angles 0, d in the frame 
K are easily found. Since up/u5 = u/5, the azimuthal angles in the two frames 

are equal. Furthermore, 

ian = u’ sin 

y.(u’ cos 6 + v) 

and (11.32) 

f , 2 ’y sin 6 
ful? + v? + 2u'v cos 6" — (seen) 

c 

uv 5 
1+ —> cos@’ 

¢ 

The inverse results for u’ in terms of u can be found, as usual. from (11.31) and 

(11.32), by interchanging primed and unprimed quantities and changing the sign 

of v. 
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For speeds x’ and v both smalt compared to c, the velocity addition lay 
(11.31) reduces to the Galilean result, u = u’ + y. but if either speed is compa. 
rable to c modifications appear. It is impossible to obtain a speed greater than 

that of light by adding two velocities, even if each is very close to c. For the 
simple case of parailel velocities the addition law is 

uotou 
= (11.33) 

vu" 
l+3 

Ifa’ = c, then « = c also. This is an explicit cxample of Einstein's second pos- 
tulate. The reader can check from the second equation in (11.32) that u’ = ¢ 
implies u = c for nonparaliel velocities as weil. 

‘The formula for the addition of velocities is in accord with such observational 

tests as the Fizeau experiments on the specd of light in moving liquids and the 
aberration of star positions from the motion of the earth in orbit. 

The structure of (11.3!) makes it obvious that the law of transformation of 
velocities is not that of 4-vectors. as given by (11.22) and of which (11.16) and 

(11.29) are examples. There is however, a 4-vector closely related to ordinary 
velocity. To exhibit this 4-vector we rewrite (11.31). From the second equation 
in (11.32) it can be shown directly that the factor (1 + y+ u'/c’) can be expressed 
alternatively through 

Ye = vere + “ ) (11.34) 

where y,, ¥,, Yj are the gammas defined by (11.17) for v, u, and u’, respectively. 
When (11.34) is substituted into (11.31) those equations become 

Yl, = Ye(Yetl! + VY) cai (11.38) 

Comparison of (11.34) and (11.35) with the inverse of (11.22) implies that the 
four quantities (y,,c, y,u) ttansform in the same way as (x), x) and so form a 
4-vector under Lorentz transformations. These four quantities are called the 

time and space components of the 4-velocity (Uo. U), 
An alternative approach to the 4-velocity is through the concept of proper 

time 7. Ordinary velocity u is defined as the time derivative of the coordinate 
x(t). The addition taw (11.31) for velocities is not a 4-vector transformation law 

because time is not invariant under Lorentz transformations. But we have seen 
that the proper time 7 is a Lorentz invariant. We can thus construct a 4-vector 
“velocity” by differentiation of the 4-vector (x, x) with respect to 7 instead of f 
Using (11.26) we have 

U.= dx) dty dt 
= = ee dr di dt a8) 

pa _ ea _ 
“dr dids 

We show in the next section that the components of 4-velocity of a particle are 
proportional to its total energy and momentum. 
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11.5 Relativistic Momentum and Energy of a Particle 

We next consider the relativistic generalizations of the momentum and kinetic 
energy of a particle. These can be obtained for charged particles from the Lorentz 
force equation and the transformation properties of electromagnetic fields al- 
ready established by Lorentz before 1900, but it is useful to give a more general 
derivation based only on the laws of conservation of energy and momentum and 
on the kinematics of Lorentz transformations. This approach shows clearly the 

universality of the relationships. independent of the existence of electromagnetic 
interactions for the particle in question. 

For a particle with speed small compared to the speed of light its momentum 
and energy are known to be 

pre 

E = E(0) + 4m? (tb 37) 

where m is the mass of the particle, u is its velocity, and E(0) is a constant 
identified as the rest energy of the particle. In nonrelativistic considerations the 
test energies can be ignored; they contribute the same additive constant to both 
sides of an energy balance equation. In special relativity, however, the rest energy 
cannot be ignored. We wil] see below that it is the total energy (the sum of rest 
energy plus kinetic energy) of a particle that is significant. 

We wish to tind expressions for the momentum and energy of a particle 
consistent with the Lorentz transformation law (11.31) of velocities and reducing 

to (11.37) for nonrelativistic motion. The only possible generalizations consistent 
with the first postulate are 

p= A(u)u 
E = &(u) 

where .(() and €(z) are functions of the magnitude of the velocity u, Compar- 
ison with (11.37) yiclds the limiting values, 

(11.38) 

(0) = mm 
a _m (11.39) 

au? ) 2 

We make the reasonable assumption that (i) and €(i) are well-behaved mono- 
tonic functions of their arguments. 

To determine the forms of A(z) and €(u) we consider the elastic collision 

of two identical particles and require that conservation of momentum and energy 
hold in all equivalent inertial frames. as implied by the first postulate. In partic- 
ular, we consider the collision in two frames K and K‘ connected by a Lorentz 

transformation parallel to the z axis. A certain amount of algebra is unavoidable. 
To keep it to a minimum. two approaches are open. One is to set up the velocities 
and directions of the particles in such a clever way that the algebra shakes down 
quickly into an clegant and transparent result. The other is to pick a straight- 
forward kinematic situation and proceed judiciously. The first approach lacks 
motivation. We adopt the second. 

Let the inertial frame K‘ be the “center of mas: * frame with the two identical 
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ul =v 

Ug’ = ¥ 7 ———, 
uy =-v 

mene Figure 11.5 Initial and final velocity vectors in the 
frame K’ for the collision of two identical particles, 

particles having initial velocitics u; = v. uj; = —v along the z axis. The particles 
collide and scatter, emerging with final velocities, uj = v', uj = v". The various 
velocitics are indicated in Fig. 11.5. In K’ the conservation cquations for 
momentum and energy read 

Pi + Ps = Bo + Pe 
E+ &, = E+ E} 

or, with the forms (11.38), 

Mvjyy — Avy 

Ev) + 6) 
Because the particles are identical it is necessary that €(v') = €(v") and, with 
the hypothesis of monotonic behavior of €(v), that v' = v". The second equation 
in (11.40) then demands v’ = v" = v. The first equation requires v” = —v’. All 
four velocities have the same magnitude with the final velocities equal and op- 
posite, just as are the initial velocities. This rather obvious state of affairs is shown 
in the right-hand diagram of Fig. | 1.6 where the scattcring angle in K’ is denoted 
by @, 

We now consider the collision in another inertial frame K moving with a 
velocity —y in the z direction with respect to K'. From the transformation equa- 

4 A(v')w? + Alte" )v" 
€(v') + EO") (11.40) 

Figure 11.6 Initial and final velocity vectors in frames K and K’ for the collision of iwo 
identical particles. The lengths and angles of the solid lines representing the velocities 
correspond to 6" = 30° and 8? = 4, The dashed lines in K are the results of a Galilean 
transformation from K’ to K. 
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tions (11.31) for velocity it can be seen that particle is at rest in K while particle a 
is incident along the z axis with a velocity 

2v cB (11.41) 

where B = w/e. The velocity components of the final velocities u, and uy in K are 

similarly 

_ Bing” _ cBUL + cos 6’) 
(ods = SLB? cos) Wo: = TE BF eos 6 Ae 

_ ___¢Bsing" _ BU — cos 6’) (U42) 

(us = “Ter preosty M1 — Br cosa 
with y = (1 — B?)7". 

The equations of conservation of momentum and energy in the inertial frame 
K read 

Alaa + Mutya, = Meu + Mey ey 

Elu,) + Ely) = ECue) + E(tta) 

It is apparent from (11.41) and (11.42) or the left-hand diagram of Fig. 11.6 that 
while particle b is at rest the other three velocities are all different in general. 
Thus the determination of (22) and €(i) from (11.43) seems obscure. We can, 

however, consider the limiting situation of a glancing collision in which 6” is very 
small. Then in the frame K, u, will be nonrelativistic and u, will differ only slightly 
from u,. We can therefore make appropriate Taylor series expansions around 
@' = 0 and obtain equations involving Al(u), €(u), and perhaps their first deriva- 
tives. Explicitly, the x component of the momentum conservation equation in 
(11.43) is 

(11.43) 

cB sin & a 

yl + B cos 4’) 
cB sin 0 

y(l — BP cos 6)" 
Canceling common factors and rearranging terms. we have 

0 = Mu.) Mea) 

i + B cosé Mtl.) = (; =F) us) 
This relation is valid for all @ and in particular for 6’ = 0*. Inspection of (11.42) 
shows that in that limit u, = u,, u, = 0. Thus we obtain 

1+ 
A(u,) = ( B a0 (11.44) 

i-B 

From (11.41) it is easy to demonstrate that 

1+8° 1 == =x (11.45) 
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With the value .((0} = m from (11.39) we thus have 

At.) = yarn 

or equivalently that the momentum of a particle of mass » and velocity w is 

aa 
(11.46) 

Determining the functional form of €(z) requires more than the straightfor. 
ward evaluation of the conservation of energy equation at @” = 0*. We must 
examine the equation for small 6’. From (11.43) we have 

€(u,) + EO) = E(u) + lua) (1847) 

where u, and uw, are functions of 6’. From (11.42) or (11.32) we find, correct to 
order #9" inclusive, 

=u - 2 + OG?) 
Ya 

ui = 9 + OCP) 

where y, is given by (11.45) and n = ¢*p’0’(1 — 6?) is a convenient expansion 
parameter. We now expand both sides of (11.47) in Taylor series and equate 
coefficients of different powers of 7: 

dE) | ») 
a0 

E(u) + CO) = E(u) + He ( ae an 

% s 

+++ SO) + 9° (“a2 : a) + 
pay du an 

The zcroth-order terms give an identity, but the first-order terms yicld 

= —+ Be) i Lela) 
Ya dus dt Juy-o 

With the known nonrelativistic value of the second term from (11.39), we find 

d&(u,) ms m 

ae 7% <f iB\e 
afr -% 

Integration yields the expression, 

E(u) = cz + [&(0) — me?| (11.48) me 
2 “ 

(: > :) € 

for the energy of a particle of mass m and velocity u, up to an arbitrary constant 
of integration. Parenthetically we remark that in an clastic scattering process the 
conservation of energy condition can be expresscd in terms of kinetic energics 
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alone. Thus the undetermined constant in (11.48) is necessary and is not, as the 

reader might have conjectured, the result of our Taylor series expansions, Note 

that the Ainetic energy T(#) is given unambiguously by 

Tu) = €(u) — (0) = me? -1 (1.49) 

Equations (11.46) and (11.48) are the necessary relativistic generalizations 
for the momentum and energy of a particle. consistent with the conservation laws 
and the postulates of special relativity. The only remaining question is the value 
of the rest energy €(0). We can appeal directly to experiment or we can examine 
the theoretical framework. First, experiment. Although €(0) cannot be deter- 

mined from elastic scattering, it can be found from inelastic processes in which 
one type of particle is transformed into another or others of different masses. 
Decay processes are particularly transparent. Consider, for example, the decay 

of a neutral K-meson into two photons, K” — yy. In the rest frame of the 
K-meson, conservation of energy requires that the sum of the energies of the two 
photons be equal to €,(@). For another decay mode of a neutral K-meson, into 

two pions, the kinetic energy of each pion in the K-meson’s rest frame must be 

T,, = $€x(0) — €,(0) 

Measurement of the pion kinetic energy (11.49) and knowledge of &,(0) allows 
determination of €,(0). In these examples and every other case it is found that 
the rest energy of a particle (or more complicated system) of mass mis given by 

the famous Einstein mass-energy relation, 

(0) = me? (11.50) 

Thus the second, square-bracketed, term in (11.48) is absent. The total energy 
of a particle of mass m and velocity u is 

(USL) 

A second path to the results (11.50) and (11.51) is theoretical. Although the 
expressions (11.46) and (11.48) for the momentum and energy of a particle were 
found by applying the principles of special relativity to the conservation of energy 
and momentum, the properties of p and £ under Lorentz transformations are 
not yet explicit. The conservation equations are a set of four equations assumed 
to be valid in all equivalent incrtial frames. Momentum conservation consists of 
three equations relating the spatial components of vectors. Within the framework 
of special relativity it is natural to attempt to identify the four equations of con- 
servation as relations among 4-vectors. We observe that the momentum (11.46) 

is proportional to the spatial components of the 4-velocity (U,, U) defined in 
(11.36), that is p = mU. The time component of this 4-vector is py = mUy = 

my,c. Comparison with (11.48) shows that the energy of a particle differs from 

po by an additive constant [(() — mc’]. This means that the four equations of 
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cnergy and momentum conscrvation for an arbitrary collision process can he 
written as 

= (oda & (Pods = do 
initiat final 

D pe Dp =4 (1152) 
@ > 

initial final 

where (Ap, A) is a 4-vector with A = 0 and 

cdo = & LE) — mye?] - DX [6.(0) — mac?) 
& a 

final initial 

From the first postulate, (11.52) must be valid in all equivalent inertial frames, 
But if A = 0 in all inertial frames it can be seen from (11.22) that it is necessary 

that A, = 0; the 4-vector (Ay, A) is a null vector. If different types or numbers of 
particles can occur in the initial and final states of some process, the condition 
Ay = O.can only be met by requiring that (11.50) hold for each particle separately, 
We are thus led to (11.51) as the correct form of the total energy. 

The velocity of the particle can evidently be expressed in terms of its 
momentum and energy from (11.46) and (11.51) as 

(11.53) 

The invariant “length” of the energy-momentum 4-vector (p, = Elc, p) is 

Ps - psp = (mc)? (11,54) 

We see that the invariant property that characterizes a particle's momentum and 
energy is its mass, m, sometimes called its rest mass.* Equation (11.54), combined 
with the conservation equations, forms a powerful and elegant means of treating 
relativistic kinematics in collision and decay processes (see the problems at the 
end of the chapter). Note that (11.54) permits the energy E to be expressed in 
terms of the momentum as 

E = Veep + met (11.55) 

The relations (11.46), (11.51), and (11.53) for momentum, energy, and ve- 

locity of a particle are so universally accepted that it seems superfluous to speak 
of experimental tests. It is perhaps worthwhile, nevertheless, to cite some Iabo- 
ratory demonstrations. One is the connection between the kinetic energy (11.49) 
of a particle and its speed.’ The speeds of electrons of known kinetic energies 
from 0.5 to 1S MeV (accelerated through a known voltage in a Van de Graaff 

generator, verilied at the beam catcher by calorimetry) are measured by having 
bursts of clectrons (At = 3 X 107” s) travel a flight path of 8.4 meters. As the 
energy increases the transit time falls toward a limiting value of 2.8 x 10 *s, in 
good agreement with (11.49). Verification of c as a limiting speed for material 

*Some authors define the mass of a particle to be Fic’, designating it as m or mn(1) and reserving the 
symbol m, for the rest mass. We always use the word “mass” for the Lorentz invariant quantity whose 
square appears in (11.54) 
'W. Bertozzi, Am. J. Phys. 32, 551 (1964). 
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particics has been carried out for 11 GeV electrons (y = 2 X 10”) in the Stanford 

experiment cited at the end of Section 11.2, where it was found that the electrons’ 
speed differed fractionally from c by less than 5 X 107°. An undergraduate ex- 
periment to verify the relation (11.55) between momentum and energy employs 

a simple magnet with roughly !0 cm radius of curvature for the momentum mea- 
surement and a Nal crystal for the encrgy measurement on beta rays.* 

The specification of the kinematic properties of a particle (velocity, momen- 
tum, energy) in any inertial frame can be accomplished by giving its mass and 

either its velocity u or its momentum p in that frame. A Lorentz transformation 
(11.22) of (po, p) gives the results in any other frame. It is sometimes convenient 

to use the two components of p perpendicular to the z axis and a rapidity ¢ 
(11.20) as kinematic variables. Suppose that a particle has momentum p in (rame 
K, with transverse momentum p, and a z component p.. There is a unique Lorentz, 
transformation in the z direction to a frame K’ where the particle has no z com- 
ponent of momentum. In X' the particle has momentum and energy, 

p' =p. Ea = vit me (11.56) 

Let the rapidity parameter associated with the Lorentz transformation from K 
to K’ be ¢. Then from the inverse of (11.21) the momentum components and 
energy of the particle in the original frame K can be written 

PB. p= QsinhZ, 2 = Moshe (11.57) 

with Q = Vp; + wr. The quantity Q/c is sometimes called the transverse mass 
(because it depends on p_) or the longitudinal mass (because it is involved in a 
longitudinal boost). If the particle is at rest in K’, that is, p, = 0, then the cx- 

pressions (11.57) become 

p=mesinhg,  E = me coshg (11.58) 

alternatives to (11.46) and (11.51). 

One convenience of p{? and ¢‘” as kinematic variables is that a Lorentz 
transformation in the z direction shifts all rapiditics by a constant amount, {“” > 

g — Z, where Z is the rapidity parameter of the transformation. With these 
variables, the configuration of particles in a collision process viewed in the lab- 
oratory frame differs only by a trivial shift of the origin of rapidity from the same 
process viewed in the center of mass frame. 

11.6 Mathematical Properties of the Space-Time 
of Special Relativity 

The kincmatics of special relativity presented in the preceding sections can be 
discussed in a more profound and elegant manner that simultancously simplifies 
and illuminates the theory. Three-dimensional rotations in classical and quantum 
mechanics can be discussed in terms of the group of transformations of the co- 

#8. Parker, Am. J. Phys. 40, 241 (1972). 
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ordinates that leave the norm of the vector x invariant. In the special theory of 
relativity, Lorentz transformations of the four-dimensional coordinates (Go, x) 
follow from the invariance of 

Ss xp xp a} 3 (11.59) 
We can therefore rephrase the kincmatics of special relativity as the considera. 
tion of the group of all transformations that leave s? invariant. Technically, this 
group is called the homogeneous Lorentz group. Vt contains ordinary rotations 
as well as the Lorentz transformations of Section 11.3. The group of transfor. 
mations that leave invariant 

(8. Y) = Qo = Yo)? = Gr = yi)? = (2 = 2)? = rs — yn? 

is called the inhomogeneous Lorentz group or the Poincaré group. It containg 
translations and reflections in both space and time, as well as the transformations 
of the homogeneous Lorentz group. We shail restrict our discussion (o the ho- 

mogencous transformations and subsequently omit “homogeneous” when refer- 
ring to the Lorentz group. 

From the first postulate it (ollows that the mathematical equations expressing 
the laws of nature must be covariant, that is, invariant in form, under the trans- 
formations of the Lorentz, group. They must thercfore be relations among 
Lorentz scalars, 4-vectors, 4-tensors, etc., defined by their transformation prop- 
erties under the Lorentz group in ways analogous to the familiar specification of 
tensors of a given rank under three-dimensional rotations. We are thus led to 
consider briefly the mathematical structure of a space-time whose norm is defined 
by (11.59), 

We begin by summarizing the clements of tensor analysis in a non-Euclidean 
vector space. The space-time continuum is defined in terms of a four-dimensional 
space with coordinates x°, x', x?, 1°, We suppose that there is a well-defined 
transformation that yields new coordinates x", x", x’?, 3, according to some 
tule, 

®) (@=0,1,2.3) (11.60) x7 = xe" xl, 

For the moment the transformation law is not specified. 

Tensors of rank & associated with the space-time point x are defined by their 
transformation propertics under the transformation x — x’, A scalar (tensor of 
rank zcro) is a single quantity whose value is not changed by the transformation. 
The interval s? (11.59) is obviously a Lorentz scalar. For tensors of rank one, 
called vectors, two kinds must be distinguished. The first is called a contravariant 
vector A® with four components A®, A', A?, A* that are transformed according 
to the rule 

_ax'e 
At 

axt 
Ae (1L.61) 

In this equation the derivative is computed from {11.60} and the repeated index 

B implies a summation over 8 = 0, 1, 2, 3. Thus explicitly we have 

te ax’ axt® 
> At 4 SET 2 4 

ax: ax 

ax'™ ax Alt Ao + 
ax® ax 
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We will henceforth employ this summation convention for repeated indices. A 
covariant vector or tensor of rank one B,, is defined by the rule 

ax® pate, 11.62 ae = re Bes ) 

or, explicitly, by 

ax" ax! ax? ax* 
poe Bot a B+ B, +— Bs ax? ar”? ax’? ax'* 

The partial derivative in (11.62) is to be calculated from the inverse of (11.60) 
with x® expressed as a function of x" x"! x7, x, 

Note that contravariant vectors have superscripts and covariant vectors have 
subscripts, corresponding to the presence of ax’’/ax® and its inverse in the rule 
of transformation. It can be verified from (11.61) that if the law of transformation 
(11.60) is lincar then the coordinates x°, x', x”, x* form the components of a 
contravariant vector. 

A contravariant tensor of rank two F* 
form according to 

“® consists of 16 quantities that trans- 

crap = OX" ax" F a ae (11.63) 

A covariant tensor of rank two, G,,,, transforms as 

= ax® ax® 
Gia = ax" aye Ow (11.64) 

and the mixed second-rank tensor H*, transforms as 

ax* ve8 OX apy Hy ax? ax’t Hs (11.65) 

The generalization to contravariant, covariant, or mixed tensors of arbitrary rank, 
should be obvious from these examples. 

The inner or scalar product of two vectors is defined as the product of the 
components of a covariant and a contravariant vector, 

B-A= BA" (11.66) 

With this definition the scalar product is an invariant or scalar under the trans- 
formation (11.60). This is established by considering the scalar product B'- A’ 
and employing (11.61) and (11.62): 

xP ax'® ax? i ac 2 = 58 =B- BY At = 2 ByA® = <S ByA? = 5°,BpAY = BA 

The inner product or contraction with respect to any pair of indices, either on 
the same tensor or one on one tensor and the other on another, is defined in 
analogy with (11.66). One index is contravariant and the other covariant always. 

The results or definitions above are general. The specific geometry of the 
space-time of special relativity is defined by the invariant interval s*, (11.59). In 
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differential form, the infinitesimal interval! ds that defines the norm of our Space 
is . 

(ds? = (de? — (dx'? — (dx? — (dP? (11.67) 

Here we have used superscripts on the coordinates because of our present con. 
ventions. This norm or metric is a special case of the generat differential length 
element, 

(asP° = gap dx® dx® (11.68) 

where gug = gg. is called the metric tensor. For the flat space-time of special 
relativity (in distinction to the curved space-time of general relativity) the Metric 
tensor is diagonal, with elements 

Bu = 1, Bu = 82 = 8s = —1 (11.69) 

The contravariant metric tensor g“* is defined as the normalized cofactor of Bop 
For flat space-time it is the same: 

8? = Bap (11.70) 

Note that the contraction of the contravariant and covariant metric tensors gives 
the Kronecker delta in four dimensions: 

Bask = 8P (1L71) 

where 6,” = 0 for a # Band 6,“ = | for a = 0, 1.2, 3. 
Comparison of the invariant length element (ds)’ in (11.68) with the similarly 

invariant scalar product (11.66) suggests that the covariant coordinate 4-vector 
x,, can be obtained from the contravariant x” by contraction with g,,, that is, 

ta Bat? (11.72) 
and its inverse, 

xT = g%xq (11.73) 

In fact, contraction with g,., ot g”? is the procedure for changing an index on any 
tensor from being contravariant to covariant, and vice versa. Thus 

P= Py 

and (11.74) 

= Sap! 

With the metric tensor (11.69) it follows that if a contravariant 4-vector 
has components, A°, A', A*, A*, its covariant partner has components, Ay = 
A’, A, = —A', A, = —A®, A; = —A®. We write this concisely as 

Av = (AA). A, = (A", -A) (11.75) 

where the 3-vector A has components A', A”, A>. The scalar product (11.66) of 
two 4-vectors is 

B-A=B,A“ = BA°-B-A 

in agreement with (11.24). 
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Consider now the partial derivative operators with respect to x” and x,. The 
transformation properties of these operators can be established directly by using 

the rules of implicit differentiation. For example, we have 

a ax? a 
ax’? ax’ ax® 

Comparison with (11.62) shows that differentiation with respect to a contravariant 
component of the coordinate vector transforms as the component of a covariant 
vector operator. From (11.72) it follows that differentiation with respect to a 
covariant component gives a contravariant vector operator. We therefore employ 
the notation, 

reda(%,-¥} 
OX, Ox’ (11.76) 

The 4-divergence of a 4-vector A is the invariant, 

aA, = 8,A° = = 400A (11.77) 

an equation familiar in form from continuity of charge and current density, the 
Lorentz condition on the scalar and vector potentials, etc. These examples give 
a first inkling of how the covariance of a physical law emerges provided suitable 
Lorentz transformation properties are attributed to the quantities entering the 
equation. 

The four-dimensional Laplacian operator is defined to be the invariant 
contraction, 

(11.78) 

This is, of course, just the operator of the wave equation in vacuum. 

11.7 Matrix Representation of Lorentz Transformations, 
Infinitesimal Generators 

We now turn to the consideration of the Lorentz group of transformations. To 
make the manipulations explicit and less abstract, it is convenient to use a matrix 
representation with the components of a contravariant 4-vector forming the el- 
ements of a column vector. The coordinates”, x’, x7, x* thus define a coordinate 
vector whose representative is 

Peo we (11.79) 
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Matrix scalar products ol 4-vectors («, b) are defined in the usual way by summing 
over the products of the elements of a and b, or equivalently by matrix multipli- 
cation of the transpose of a on b: 

(a, b) = ab (11.80) 

The metric tensor g,,, has as its representative the square 4 x 4 matrix 

i 0. 6 6 
_{o -t 0 06 

§=lo o -1 0 (12.81) 
oO 0 @ -1 

with g? = /, the 4 X 4 unit matrix. The covariant coordinate vector is 

gx = _ (11.82) 
=x = 

obtained by matrix multiplication of g (11.81) on x (11.79). Note that in the present 
notation the scalar product (11.66) of two 4-vectors reads 

a+b = (a, gb) = (ga, b) = dgh (11.83) 

On the basis of arguments already presented in Section 11.3 we scek a group 
of linear transformations on the coordinates, 

x’ = Ax (11,84) 

where A is a square 4 X 4 matrix, such that the norm (x, gx) is left invariant; 

Rigx’ = kgx (11.85) 

Substitution of (11.84) into the left-hand side yields the equality, 

FAgAx = Sex 

Since this must hold for all coordinate vectors x, A must satisfy the matrix 
equation, 

AgA = g (11.86) 

Certain properties of the transformation matrix A can be deduced immedi- 
ately from (11.86). The first concerns the determinant of A. Taking the deter- 
minant of both sides of (11.86) gives us 

det (AgA) = det g (det A)’ = det g 

Since det g = —1 #0, we obtain 
det A = +] 

There are two classes of transformations: proper Lorentz transformations, con- 
tinuous with the identity transformation and so necessarily having det A = + 1, 
and improper Lorentz transformations. For improper transformations it is suffi- 
cicnl, but not necessary, to have det A = —1. The fact that det A = +1 does not 
unambiguously sort out the two classes is a consequence of the indefinite metric 

of space-time. Two examples of improper transformations, A = g (space inver- 
sion) with det A = —| and A = —/ (space and time inversion) with det A = +1, 
illustrate this point. 
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The second property of A is the number of parameters needed to specify 

completely a transformation of the group. Since A and g are 4 X 4 mairices, 
(11.86) represents !6 equations for the 47 = 16 elements of A. But they are not 

all independent because of symmetry under transposition, There arc thus 
16 — (1 + 2 + 3) = 10 linearly independent cquations for the 16 elements of A. 
‘This means that there arc six free parameters—the Lorentz group is a six-param- 
eter group. The six parameters can be conveniently thought of as (a) three pa- 
rameters (¢.g., Euicr angles) to specify the relative orientation of the coordinate 
axes and (b) three parameters (e.g.. components of B) to specify the relative 
velocity of the two incrtial frames. Parenthctically we remark that for every 
six-parameter A giving a proper Lorentz transformation, there is an improper 
one represented by —A. From now on we consider only proper Lorentz 

transformations. 
The explicit construction of A can proceed as follows. We make the ansatz 

A=el (11.87) 

where L is a 4 X 4 matrix. The determinant of A is* 

det A = det (e’) =e" 

If L is a real matrix, det A = —1 is excluded. Furthermore. if L is traceless, then 
det A = +1. Thus, for proper Lorentz transformations, L is a real, traceless 
4 x 4 matrix. Equation (11.86) can be written 

gAg=A'! (11.88) 

From the definition (1.87) and the fact that g? = / we have 

A=e  ghg=els, Als et 

Therefore (11.88) is equivalent to 

or (11.89) 

gL = —gh 

The matrix gL is thus antisymmetric. From the properties of g (11.8!) itis evident 

that the general form of L is 

11,90) 
-Ly GO Ly ( ) 

imi-bi -Iin 0 
The dashed lines are inserted to set off the 3 x 3 antisymmetric spatial matrix 
corresponding to the familiar rotations in a fixed inertiat frame from the sym- 
metric space-time part of the matrix corresponding to Lorentz transformations 

or boosts from one inertial frame to another. 

“To prove this, note first that the value of the determinant or the trace of a matrix is unchanged by 
a similarity transformation. Then make such a transformation to put in diagonal form. The matrix 
A will then be diagonal with clements that are the exponentials of the corresponding elements of £. 
‘The result follows immediately 
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The matrix (11.90). with its six parameters is an explicit construction [through 
(11.87)] of the transformation matrix A. It is customary, however, to systematize 
L and its six parameters by introducing a set of six fundamental matrices defined 

by 

(11.91) 

The matrices S; evidently generate rotations in three dimensions, while the ma- 
trices K, produce boosts. For reference, we note that the squares of these six 
matrices are all diagonal and of the form, 

0 0 0 0 
a 0 2 a 

sre -1 SE 0 . 
0 -1 0 =I 

0 0 

Sa ae 

0 9, (11.92) 
1 0 I 0 

2a 1 2 0 
Ar 0 p R= i 

0 0 0 0 

1 0 
a 0 

AS 0 
0 1 

Furthermore, it can be shown that (e+ $)° = —e-S and (¢' - K)* = e+ K, where 
e and e’ are any real unit 3-vectors. Thus any power of one of the matrices can 
be expressed as a multiple of the matrix or its square. 

The general result (11.90) for L can now be written alternatively as 

L=-w-+S-¢-K 
and (11.93) 

A = ero s-bk 
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where w and ¢ are constant 3-vectors. The three components cach of w and ¢ 
correspond to the six patameters of the transformation. To establish contact with 
earlier results such as (11.16) or (11.21), we consider first a simple situation in 
which @ = 0 and £ = ge,. Fhen L = —£K, and with the heip of (11.92} and 
Ki = K, we find 

A =e! = (f— Kj) — K, sinh{ + Kj coshg (11,94) 

Explicitly, 

coshg -sinhg 0 0 
-sinhg coshf 0 0 

0 0 10 

0 o 01 

A= (11.95) 

This matrix corresponds exactly to the transformation (11.21).* If ¢ = 0 and 

) = we,, the transformation is similarly found to be 

1 0 0 0 

0 cosw sinw 0 
0 <-sinw cosw 6 (11,96) 
0 0 Of 

A= 

corresponding to a rotation of the coordinate axes in a clockwise sense around 
the 3-axis. 

For a boost (without rotation) in an arbitrary direction, 

A=etk 

The boost vector { can be written in terms of the relative velocity f as 

= Ptanh 'g 

where is a unit vector in the direction of the relative velocity of the two inertial 
frames. The pure bvost is then 

AvsalB) = PS t's (11.97) 

Tt is lefl as an exercise to verify that this transformation gives the explicit matrix: 

y — YB — YB> — ¥Bs 

needed Gye (y a (y= BiB 

Arwn(B) =| ig (ADB, (Y= DBE (y= NB 2 2 > 3 
B B B 

— 188: — 1) BBs = 18% yb: ea ae & eo (4 oo e 

(11.98) 

“The reader is reminded that in Scetions 11.3, 11 4. and 11.5 no distinction is made between subscripts 
and superscripts. All components of vectors there arc lo be interpreted as contravarianl components, 
in accordance with (11.75). 
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The equation x’ = Aj,,..{B)x is a matrix statement of the four cquations of 
(11.19), 5 

The six matrices (11.91) are a representation of the infinitesimal generators 
of the Lorentz group. StraighVlorward calculation shows thal they satisfy the 
following commutation relations, 

(Sc. SH] = eeSx 

[S;, Kj] = €Kx (1L.99) 
[Ki, Kj] = —€nSe 

where the commutator notation is [A, B] = AB — BA. The first relation corre. 
sponds to the commutation relations for angular momentum, the second relation 
mercly shows that K transforms as a vector under rotations, and the final relation 
shows that boosts do not in general commute. The commutation relations (1 1.99), 
with the characteristic minus sign in the last commutator, specify the algebraic 
structure of the Lorentz group to be SL{2, C) or O(3, 1). 

11.8 Thomas Precession 

The description of Lorentz. transformations in terms of noncommuting matrices 
demonstrates that in general the result of successive Lorentz transformations 
depends on the order in which they are performed. The commutation relations 
(11.99) imply that two successive Lorentz transformations are equivalent to a 
single Lorentz transformation plus a three-dimensional rotation. An example of 
the kinematic consequences of the noncommutativity of Lorentz transformations 
is the phenomenon known as Thomas precession.* To motivate the discussion 
we first describe the physical context. 

In 1926 Uhlenbeck and Goudsmit introduced the idea of electron spin and 
showed that, if the electron had a g factor of 2, the anomalous Zeeman effect 
could be explained, as well as the existence of multiplet splittings. There was a 
difficulty, however, in that the observed fine structure intervals were only half 
the theoretically expected values. If a g factor of unity were chosen, the fine 
structure intervals were given correctly, but the Zeeman effect was then the 
normal one. The complete explanation of spin, including correctly the g factor 
and the proper fine structure interaction, came only with the relativistic electron 
theory of Dirac. But within the framework of an empirical spin angular momen- 
tum and a g factor of 2, Thomas showed in 1927 that the origin of the discrepancy 
was a relativistic kinematic effect which, when included properly, gave both the 
anomalous Zecman effect and the correct fine structure splittings. The Thomas 
precession, as it is called, also gives a qualitative explanation for a spin-orbit 
interaction in atomic nuclei and shows why the doublets are “inverted” in nuctci. 

The Uhlcnbeck-Goudsmit hypothesis was that an cicctron possesses a spin 

angular momentum s (which can take on quantized values of +#/2 atong any 
axis) and a magnetic moment yp related to s by 

ge = 11.100) BB s ( ) 

*L. H. Thomas. Phil. Mag. 3,1 (1927). 
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where the g factor has the value g = 2. Suppose that an electron moves with a 
velocity v in external fields E and B. Then the equation of motion for its angular 
momentum in its rest [rame is 

(2) =pxB (11.101) 
dE frost frame 

where B’ is the magnetic induction in that frame. We wil] show in Section 11.10 
that in a coordinate system moving with the electron the magnetic induction is 

ie a” B= (B <x e) (11.102) 

where we have neglected terms of the order of (u/c). Then (11.101) becomes 

ds 
¥ 

(#)., mae C =a r) 
(11.103) 

Equation (11.103) is equivalent to an energy of interaction of the electron spin: 

U'= -u-(B-¥xe) (11.104) 

In an atom the electric force eE can be approximated as the negative gradient 
of a spherically symmetric average potential energy V(r). For one-electron atoms 
this is, of course, exact. Thus 

eE = -1— (11.105) 

Then the spin-interaction energy can be written 

Lav u= -82 5.848.601 
r dr ame ~ 2mPc? (11.106) 

where L = m(r X y) is the electron’s orbital angular momentum. This interaction 
energy gives the anomalous Zeeman effect correctly, but has a spin-orbit inter- 
action that is twice too large. 

The error in (11.106) can be traced to the incorrectness of (11.101) as an 
equation of motion for the electron spin. The left-hand side of (11.101) gives the 
rate of change of spin in the rest frame of the electron. If. as Thomas first pointed 

out, that coordinate system rotates, then the total time rate of change of the spin, 
or more generally, any vector G is given by the well-known result,* 

dG dG a _ (dG Fi 

Ge a (F im alan nae (11.107) 

where w, is the angular velocity of rotation found by Thomas. When applied to 
the electron spin, (11.107) gives an equation of motion: 

ds is. ge! 

Gs 7° (= o] (11.108) 

*Sce, for example, Goldstein (pp. 174-177). 
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The corresponding energy of interaction is 

U=U' +s-wy (11.169) 

where U' is the electromagnetic spin interaction (11.104) or (11.106). 
‘The origin of the Thomas precessional frequency a is the acceleration ex. 

perienced by the electron as it moves under the action of external forces. Cop. 
sider an electron moving with velocity v(t) with respect to a laboratory inertial 
frame. The electron’s rest frame of coordinates is defined as a co-moving se- 
quence of inertial frames whose successive origins move at each instant with the 
velocity of the electron. Let the velocity of the rest frame with respect to the 
laboratory at laboratory time 1 be v(‘) = cB, and at laboratory time ¢ + & be 
v(t + dt) = c(B + 6B). The connection between the coordinates in the elcctron's 
rest [rame at time ¢ and the coordinates in the laboratory frame is 

X= Aboosi(B)X (11.110) 

At times + 6 the connection is 

x" = Ag(B + SB)x (ULAL) 

It is important to note that these transformations of coordinate from the labo- 
ratory to the rest frame are defined here in terms of pure Lorentz boosts without 
rotations. We are interested in the behavior of the coordinate axes of the elec- 
tron’s rest frame as a function of time. Thus we want the connection between 
the two sets of rest-frame coordinates, x’ at time ¢ and x" al time ¢ + 6¢. This 
relation is 

x" = A;x' 

where 

Ar = AbwoulB + SBA joo(B) = Aroou(B + SB)Apoou(=B) (11.112) 

For purposes of calculating A; a suitable choice of axes in the laboratory frame 
is shown in Fig. 11.7. The velocity vector B at time fis parallel to the | axis and 
the increment of velocity 5B lies in the 1-2 plane. From (11.98) it follows that 

y B00 
00 

Abvoos(—B) = ae a 10 (11.113) 
0 0 01 

3 Figure 11.7 
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Similarly we obtain from (11.98), keeping only first-order terms in 88, 

y+ BSB —-OB+Y 8B) -yib 9 
et 

-(B + ¥ 8B) y+ 7B 5B (3) dfr 0 
Abnon(B + 6B) = ox 

—y 6B, (=) 5B, 1 0 

0 0 0 1 
(4a 

Straightforward matrix multiplication according to (11.112) yields 

1 —¥ 5B; -7 6B, 0 
St 

~¥ 6B, 1 a ) 68, 0 
Ars , (11.115) 

~7 5B, -(7=4) 3B 1 0 
0 0 0 1 

This represents an infinitesimal Lorentz. transformation that can be written in 
terms of the matrices S and K as 

Ay = I~ CH)e x BB) +S ~ (7° 8B, + ¥ 8B) -K (11.116) 
where 5B, and 6B, are the components of 5B parallel and perpendicular to 8, 
respectively. To first order in 5B. (11.116) is equivalent to 

Ap = Apyos(AB)R(AQ) = R(AQ) A poos(5B) (1.117) 

where 

Aioos(AB) = 1 — ABO K 
R(AQ) = 1 - AQ-S 

are commuting infinitesimal boosts and rotations, with velocity, 

AB = y° 5B, + y 5B, 

and angle of rotation, 

2 
—fP=d ete 

sa =( ra px op - Xp x op 

Thus the pure Lorentz boost (11.111) to the frame with velocity c(B + 5B) is 

equivalent to a boost (11.110) to a frame moving with velocity cB, followed by 
an infinitesimal Lorentz transformation consisting of a boost with velocity ¢ AB 
and 4 rotation AQ. 

In terms of the interpretation of the moving frames as successive rest frames 

of the electron we do not want rotations as weil as boosts. Nonrelativistic equa- 
tions of motion like (11.101) can be expected to hoid provided the evolution of 

the rest frame is described by infinitesimal boosts without rotations. We are thus 
led to consider the rest-frame coordinates al time t + 6 that are given from those 
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at time ¢ by the boost Apoou{AB) instead of Ay. Denoting these coordinates by 
', we have 

X= Abou ( AB)’ 

Using (11.117), (11.112), and (11.110) we can express x” in terms of the labora. 
tory coordinates as 

x” = R{-AD)A,,.(B + 5B)x (11.118) 

The rest system of coordinates defined by x” is rotated by —AQ relative to the 
boosted laboratory axes (x”). If a physical vector G has a (proper) time rate of 
change (dG/dr) in the rest frame, the precession of the rest-frame axes with 
respect to the laboratory makes the vector have a total time rate of change with 
respect to the laboratory axes of (11.107), with 

@; = -lim — = jim = eT (11.119) 

where a is the acceleration in the laboratory frame and, to be precise, 
(dG ld8)ces1 feame = Y¥'(AG/AT) cose Framer 

The Thomas precession is purely kinematical in origin. If a component of 
acceleration exists perpendicular to v, for whatever reason, then there is a 
Thomas precession, independent of other effects such as precession of the mag- 
netic moment in a magnetic field, 

For electrons in atoms the acceleration is caused by the screened Coulomb 
field (11.105), Thus the Thomas angular velocity is 

“1 Vo o-1 4av ope a a Shy a (11.120) 

Tt is evident from (11.109) and (11.106) that the extra contribution to the energy 

from the Thomas precession reduces the spin-orbit coupling, yielding 

u=-S5.p+ E50, 1 
2me Ime? r dr 

With g = 2 the spin-orbit interaction of (11.106) is reduced by } (sometimes called 
the Thomas factor), as required for the correct spin-orbit interaction energy of 
an atomic electron. 

In atomic nuclei the nucleons experience strong accelerations because of the 
specifically nuclear forces. The electromagnetic forces are comparatively weak. 
In an approximate way one can treat the nucleons as moving separately in a 
short-range, spherically symmetric, attractive, potential well, Vy(r). Then each 
nucleon will experience in addition a spin-orbit interaction given by (11.109) with 
the negligible electromagnetic contribution U' omitted: 

Uy = 8+ wy (11.122) 

(11.121) 

where the acceleration in o»; is determined by V(r). The form of w, is the same 
as (11.120) with V replaced by Vy. Thus the nuclear spin-orbit interaction is 
approximately 

1 1dvVy eel gp he 123 Un ange 8 Nae aL) 
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In comparing (11.123) with atomic formula (11.121) we note that both Y and Vy 
ate attractive (although Vy is much larger), so that the signs of the spin-orbit 

energies are opposite. This means that in nuclei the single particle levels form 
“inverted” doublets. With a reasonable form for Vx, (11.123) is in qualitative 

agreement with the observed spin-orbit splittings in nuclei.* 
The phenomenon of Thomas precession is presented from a more sophisti- 

cated point of view in Section 11.11 where the BMT equation is discussed. 

11.9 Invariance of Electric Charge; 
Covariance of Electrodynamics 

The invariance in form of the equations of electrodynamics under Lorentz trans- 
formations was shown by Lorentz and Poincaré before the formulation of the 
special theory of relativity. This invariance of form or covariance of the Maxwell 
and Lorentz force equations implies that the various quantities p, J. E, B that 
enter these equations transform in well-defined ways under Lorentz transfor- 
mations. Then the terms of the equations can have consistent behavior under 

Lorentz transformations. 
Consider first the Lorentz force equation for a particle of charge q, 

dj a 7 dle + . x B) (11.124) 

We know that p transforms as the space part of the 4-vector of energy and 
momentum, 

PD" = (Py p) = m(Up, UY 

where py = Ele and U* is the 4-velocity (11.36). If we use the proper time 7 

(11.26) instead of ¢ for differentiation, (11.124) can be written 

dp =f 2 de ce (UE + U x B) (11.125) 

The left-hand side is the space part of a 4-vector. The corresponding lime com- 
ponent equation is the rate of change of energy of the particle (6.110): 

dpo 4 dr UE (11.126) 

If the force and energy change equations are to be Lorentz covariant, the 
right-hand sides must form the components of a 4-vector. They involve products 
of three factors, the charge g, the 4-velocity, and the electromagnetic fields. If 
the transformation properties of two of the three factors are known and Lorentz 
covariance is demanded, then the transformation properties of the third factor 

can be established. 
Electric charge is absolutely conserved, as far as we know. Furthermore, the 

magnitudes of the charges of elementary particles (and therefore of any system 

*See, for example, Section. 2.4c of A. Bohr and B. R. Moticlson, Nuclear Structure, Vol. 1. W. A. 
Benjamin, New York (1969). 
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of charges) are integral multiples of the charge of the proton. In the published 
literature,* it is experimentally established that the fractional difference between 
ihe magnitude of the electron’s charge and the proton’s charge is less than 10719 
and unpublished results of King push this limit almost two orders of magnitude 
further.’ The results of these experiments can be used to support the invariance 
of electric charge under Lorentz transformations or, more concrctely, the inde. 
pendence of the observed charge of a particle on its speed. In his experiments 
King searched for a residual charge remaining in a container as hydrogen or 
helium gas is allowed to escape. No effect was observed and a limit of less than 
10° °e was established for the net charge per molecule for both H, and He. Since 
the electrons in He move at speeds twice as fast as in Ho, the charge of the 
electron cannot depend significantly on ils speed, at least for speeds of the order 
of (0.01-0.02)e. In the experiment of Fraser, Carlson, and Hughes an atomic 
beam apparatus was used in an attempt to observe electrostatic deflection of 
beams of “neutral” cesium and potassium atoms. Again. no effect was obscrved, 
and a limit of less than 3.5 X 10’ was set on the fractional difference between 
the charges of the proton and electron. Cesium and potassium have Z = 55 and 
19, respectively. Thus the K-shell electrons in cesium at least move with speeds 
of order 0.4c. The observed neutrality of the cesium atom at the level of 
107'*-107"° is strong evidence for the invariance of electric charge.* 

The experimental invariance of electric charge and the requirement of 
Lorentz covariance of the Lorentz force equation (11.125) and (11.126) deter- 
mines the Lorentz transformation properties of the electromagnetic field. For 
example, the requirement from (11.126) that U+ E be the time componcat of a 
4-vector establishes that the components of E are the time-space parts of a second 
rank tensor F**, that is, E- U = F°*U,, Although the explicit form of the field 
strength tensor F” can be found along these lines, we now proceed to examine 
the Maxweil equations themsclves. 

For simplicity. we consider the microscopic Maxwell equations, without D 
and H. We begin with the charge density p(x, /) and current density J(x, #) and 
the continuity equation 

Bay.sso (1.127) 
a 

From the discussion at the end of Section 11.6 and especially (11.77) it is natural 
to postulate that p and J together form a 4-vector J*: 

I= (cp, I) (11.128) 

“J. G, King, Phys. Rev. Lett. 5, 562 (1960); V. W. Hughes, L. J. Fraser, and E. R. Carlson, Z. Phys: 
D-Atoms, Motecutes and Clusters 10, 145 (1988). The latter tabulates many of the different methods 
and results. 

“The limits on the measured charge per molecule in units of the electronic charge for H>, He, and 
SF, were determined as 1.8 + 5.4, -0.7 + 4.7, 0 = 4.3, respecuvely, all times 107?'. Private com- 
munication from J. G. King (1975). 
*Mentioning only the electrons is somewhat misicading. The protons and neutrons inside nuclei move 
with speeds of the order (0.2-0.3)c. Thus the helium resuils of King already test the invariance of 
charge at appreciable speeds. OF course, if one is content with invariance al the level of 10 1 for 
vie ~ 10 * the observed electrical neutrality of bulk matter when heated or cooled will suffice 
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Then the continuity equation (11.127) takes the obviously covariant form, 

aJ* = 0 (11.129) 

where the covariant differential operator @,, is given by (11.76). That J* is a le- 
gitimate 4-vector follows from the invariance of electric charge: Consider a large 
number of clementary charges totaling 4g at rest* in a small-volume element dx 
in frame K. They are idealized by a charge density p. The total charge 5g = 
p d°x within the small-volume element is an experimental invariant, il is thus 

true that p' d°x’ = pd°x. But the four-dimensional volume element d*x = dx" d*x 
is a Lorentz invariant: 

dx = det A d*x = d*x 

The equality p' d°x’ = pd°x then implics that cp transforms like x°, namely, the 
time component of the 4-vector (11,128). 

In the Lorenz family of gauges the wave equations for the vector potential 

A and the scalar potential ® are 

(11.130) 

with the Lorenz condition, 

1 oy.azo (11.131) 
ce at 

The differential operator form in (11.130) is the invariant four-dimensional 

Laplacian (11.78), while the right-hand sides are the componcnis of a 4-vector. 
Obviously, Lorentz covariance requires that the potentials ® and A form a 

4-vector potential, 

A® = (@, A) (11.132) 

Then the wave equations and the Lorenz condition take on the manifestly co- 
variant forms, 

4 
Oa" =“ 

and (11.133) 
aA° = 0 

‘Lhe fields E and B are expressed in terms of the potentials as 

c at (11.134) 
B=VxA 

*If there is a conduction current J as well as the charge density p in K, the total charge within dv is 
not an invariant. See Moller. Section 7.5. (His argument assumes the 4-vector character of cp and 5. 
however.) 
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The x components of E and B are explicitly 

E,=- -— = -(s'A' - a'A*) 
co ax (11.135) 

aA, 9A, 
B, = — - — = -(P A? - HA? "= ay az @ aA*y 

where the second forms follow from (11.132) and 6° = (/8.x,, —¥). These equa- 
tions imply that the electric and magnetic fields, six components in all, are the 
elements of a second-rank, antisymmetric field-strength tensor, 

£8 = ar A® — hae (11.136) 

Explicitly, the field-strength tensor is, in matrix form, 

0 -E, -E, E 

poole 0 -B B, SUE te cat ee (11.137) 

‘The elements of #,, are obtained from F°® by putting E—» —E. Another useful A DY PI E 
quantity is the dual field-strength tensor #*. We first define the totally antisym- 
metric fourth-rank tensor €"8”*: 

+1 fora = 0, 6 = 1, y = 2, 6 = 3, and 

erty = any even permutation 

—1 for any odd permutation (11.139) 

0 if any two indices are equal 

Note that the nonvanishing elements all have one time and three (different) space 

indices and that €,y.5 = —€°***. The tensor €“®” is a pseudotensor under spatial 
inversions. This can be seen by contracting it with four different 4-vectors and 
examining the space inversion properties of the resultant rotationally invariant 
quantity. The dual ficld-strength tensor is defined by 

0 -B, -B, —-B, 
E ee Bs W a he (11.140) 

B, -E, 0 

The elements of the dual tensor #“# arc obtained from F** by putting E> B 
and B — —E in (11.137). This is a special case of the duality transformation 
(6.151). 

To compleie the demonstration of the covariance of electrodynamics we 
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must write the Maxwell equations themselves in an explicitly covariant form. The 

inhomogencous equations are 

V-E = 4ap 

vxp-i2.% 
ar c 

In terms of /*? and the 4-current J“ these take on the covariant form 

4 
a,Fee = y8 (1.141) 

c 

Similarly, the homogeneous Maxwell equations 

1 0B 
V-B=0, VxE+—-* c 

(11.142) 

In terms of F“, rather than ¥°*, these homogencous equations are the four 
equations 

AF py + ABE yy + AyFagys = 0 (11.143) 

where a, 8, y are any three of the integers 0, 1, 2, 3. 
With the definitions of J* (11.128), A“ (11.132), and F (11.136), together 

with the wave equations (11.133) or the Maxwell equations (11.141) and (11.142), 
the covariance of the equations of electromagnetism is established. To complete 
the discussion, we put the Lorentz force and rate of change of energy equations 
(11.125) and (11.126) in manifestly covariant form, 

(11.144) 

‘The covariant description of the conservation laws of a combined system of elec- 
tromagnetic ficlds and charged particles and a covariant solution for the fields of 
a moving charge are deferred to Chapter 12, where a Lagrangian formulation is 

presented. 
For the macroscopic Maxwell equations it is necessary to distinguish two 

field-strength tensors, F°* = (£, B) and G° = (D, B). where F** is given by 
(11.137) and G°* is obtained from (11.137) by substituting E> D and B > H. 
‘The covariant form of the Maxwell equations is then 

a,.G°h = oh AFF = 0 (11.145) 

it is clear that with the fields (E, B) and (D, H) transforming as antisymmetric 

second-rank tensors the polarization P and the negative magnetization —M form 
a similar sccond-rank tensor. With thesc quantities given meaning as macroscopic 
averages of atomic properties in the rest frame of the medium, the electrodynam- 
ics of macroscopic matter in motion is specified. This is the basis of the electro- 
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11.10 

dynamics of Minkowski and others. For further information on this rather large 
and important subject, the reader can consult the literature cited at the end of 
the chapter. 

Transformation of Electromagnetic Fields 

Since the ficlds E and B are the elements of a second-rank tensor /°*, their values 
in one inertial frame K’ can be expressed in terms of the valucs in another incttial 
frame K according to 

ax’ ax’? FB = 
ax” ax? 

Fe (11.146) 

In the matrix notation of Section 11.7 this can be written 

PF = AFA (11.147) 

where F and /” are 4 X 4 matrices (11.137) and A is the Lorentz transformation 

matrix of (11.93). For the specific Lorentz transformation (11.95), corresponding 
to a boost along the x, axis with speed cf from the unprimed frame to the primed 
frame, the explicit equations of transformation are 

BoB, B= By 
Es = y(E; ~ BBs) Bi = (B+ BEs) (11.148) 
Ey = y(E; + BB2) By = y(Bs — BE2) 

Here and below, the subscripts 1, 2, 3 indicate ordinary Cartesian spatial com- 
ponents and are not covariant indices. The inverse of (11.148) is found, as usual, 

by interchanging primed and unprimed quantities and putting B > —£. Fora 
general Lorentz transformation from K to a system K' moving with velocity ¥ 
relative to K, the transformation of the fields can be written 

> 
a2 ee er E’ = y(E + B x B) - 7 BiB - B) 

‘ (11.149) 

B’ = >(B - B x E) ~ —— p@- B) 
yt+1 

These are the analogs for the ficids of (11.19) for the coordinates. Transformation 
(11.149) shows that E and B have no independent existence. A purely electric or 

magnetic field in one coordinate system will appear as a mixture of electric and 
magnetic fields in another coordinate frame. Of course certain restrictions apply 
(sec Problem 11.14) so that, for example, a purely electrostatic field in one co- 
ordinate system cannot be transformed into a purely magnetostatic field in an- 
other. But the fields are completely interrelated. and one should properly speak 
of the electromagnetic field F**, rather than E or B separately. 

If no magnetic field exists in a certain frame K', as for example with one or 

more point charges at rest in K', the inverse of (11.149) shows that in the frame 

K the magnetic field B and electric field E are linked by the simple relation 

B=BxE (11.150) 
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Note that E is not the electrostatic field in K’, but that field transformed from 
Kt K, 

As an important and illuminating example of the transformation of fields, 
we consider the fields seen by an observer in the system K when a point charge 
g moves by in a straight-line path with a velocity v. The charge is at rest in the 
system K’, and the transformation of the fields is given by the inverse of (11.148) 
or (11.149). We suppose that the charge moves in the posilive x, direction and 
that its closest distance of approach to the observer is 6. Figure 11.8 shows a 
suitably chosen set of axes. The observer is at the point P. Att = ¢ = 0 the 
origins of the two coordinate systems coincide and the charge q is at ils closest 
distance to the observer. In the frame X’ the observer's point P, where the fields 

are to be evaluated, has coordinates xj = —ut’.x3 = b,x; = 0, and is a distance 

r = Vb? + (ut? away from gy. We will need to express r’ in terms of the co- 
ordinates in K. The only coordinate needing transformation is the time (= 
yt — (vie?)x,} = yt, since x, = 0 for the point P in the frame K. In the rest frame 
K’ of the charge the electric and magnetic fields at the observation point are 

Fee RE, m= 2, E,=0 
id a 

By = 0, B; = 0, BL, =0 

In terms of the coordinates of K the nonvanishing field components are 

gyet qb 
(e+ Ywry n= (B+ pvr? 

Then, using the inverse of (11.148), we find the transformed fields in the sys- 

tem K: 

Els- (11.151) 

J ee 
(b? + youre 

, yab 5, 
E, = yE, = @+ yor (11.152) 

B, = yBE; = BE2 

with the other components vanishing. 

xg 

Figure 11.8 Particle of charge g moving at constant velocity y passes an observation 

point P at impact parameter 6. 
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Fields (11.152) exhibit interesting behavior when the velocity of the charge 
approaches that of light. First of all there is observed a magnetic induction in the 
Xz direction already displayed in (11.150). This magnetic ficld becomes almost 
equal to the transverse electric field E, as 8 > 1. Even at nonrcialivistic velocities 
where y = 1, this magnetic induction is equivalent to 

vxXr p~iy* 
or 

which is just the approximate Ampére—Biot—Savart expression for the magnetic 
field of a moving charge. At high speeds when y >> 1 we see that the peak 
transverse electric ficld FE, (f = 0) becomes equal to y times its nonrelativistic 
value. In the same limit, however, the duration of appreciable ficid strengths at 
the point P is decreased. A measure of the time interval over which the fields 
are appreciable is evidently 

b 
At=— 11.153 77 ( ) 

As y increases, the peak fields increase in proportion, but their duration goes in 
inverse proportion. The time integral of the fields times v is independent of ve- 
locity. Figure 11.9a shows this behavior of the transverse electric and magnetic 
ficids and the longitudinal electric field. For B > | the observer at P sees nearly 
equal transverse and mutually perpendicular electric and magnetic fields. These 
are indistinguishable from the fields of a pulse of plane polarized radiation prop- 
agating in the x, direction. The extra longitudinal electric field varies rapidly from 
positive to negative and has zero time integral. Jf the observer's detecting ap- 
paratus has any significant inertia, it will not respond to this longitudinal field, 
Consequently for practical purposes he will see only the transverse fields. This 
equivalence of the fields of a relativistic charged particle and those of a pulse of 
electromagnetic radiation will be exploited in Chapter 15. In Problem 11.18 the 
fields for 8 = | are given an explicit realization. 

‘The fields (11.152) and the curves of Fig. 11.9¢ emphasize the time depen- 
dence of the fields at a fixed observation point. An alternative description can 
be given in terms of the spatial variation of the fields relative to the instantaneous 
present position of the charge in the laboratory. From (11.152) we see that 
E\/E, = —vt/b. Reference to Fig, 11.8 shows that the electric field is thus directed 
along n, a unit radial vector from the charge’s present position to the observation 
point, just as for a static Coulomb field. By expressing the denominator in 
(11.152) in terms of , the radial distance from the present position to the ob- 
server, and the angle w = cos” '(n- #) shown in Fig. 11.8, we obtain the electric 
field in terms of the charge’s present position: 

= qe 

ry — B? sin2y*? 

The magnetic induction is given by (11.150). The electric field is radial, but the 
lines of force are isotropically distributed only for 8 = 0. Along the direction of 
motion (i = 0, 7}, the ficid strength is down by a factor of y~* relative to isotropy, 
while in the transverse directions (y = 7/2) it is larger by a factor of y. This 
whiskbroom pattern of lines of force, shown in Fig. 11.95, is the spatial “snap- 
shot” equivalent of the temporal behavior sketched in Fig. 11.9¢. The compres- 

E (11.154) 
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! 

(b) 

Figure 11.9 Fields of a uniformly moving charged particle. (a) Fields at the 
observation point P in Fig. 11.8 as a function of time. (6) Lines of electric force for a 
particle at rest and in motion (y = 3). The field lines emanate from the present position 

of the charge. 

sion of the lines of force in the transverse direction can be viewed as a conse- 
quence of the FitzGerald—Lorentz contraction. 

Relativistic Equation of Motion for Spin in Uniform 
or Slowly Varying External Fields 

The effects of a particle’s motion on the precession of its spin have already been 
discussed in Section 11.8 on Thomas precession. Here we exploit the ideas of 
Lorentz covariance to give an alternative. more elegant discussion leading to 
what is known as the BMT equation of motion for the spin.* With the magnetic 

*Named, not after one of the New York City subway lines, but for V. Bargmann, [.. Michel, and 
V. L. Telegdi, Phys. Rev. Lett. 2, 435 (1959). The equation actually has much earlier origins; Thomas 
published an equivalent in 1927 (op. cit.); Frenkel discussed similar equations contemporaneously: 
Kramers considered the g = 2 equation in the 1930s. 
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moment given by (11.100), the rest frame equation of motion for the spin, 
(11.101), is 

We ee XB (11.155) 

where primes denote quantities defined in the rest frame and s is the spin in that 
frame. This equation applies to a particle of mass m, charge e, spin s and a 
magnetic dipole moment with Landé g factor of g. It is a classical equation, but 
is the same as the quantum-mechanical Heisenberg equation of motion for the 
spin operator or, equivalently, the equation of motion for the polarization vector 
of the system. 

A. Covariant Equation of Motion 

To obtain a relativistic generalization of (11.155) it is first necessary to gen- 

eralize the spin s from a 3-vector in the particle’s rest frame. There are two 
avenues open. One is to recall from the end of Section 11.9 that P and —M form 
an antisymmetric second-rank tensor. This suggests that p, hence s, may be gen- 
eralized to a second-rank tensor S“*, A simpler alternative is to define an axial 
4-vector S“ in such a manner that it has only three independent components and 
reduces to the spin s in the particle’s rest frame.* If S° denotes the components 
of the spin 4-vector in the inertial frame K, the time-component in the rest frame 
K’ is, according to (11.22), 

5" = ¥(S° — B+ 8) =—U,S" 

where U* is the particle’s 4-velocity. We see that the vanishing of the time- 
component in the rest frame is imposed by the covariant constraint, 

U.S" =0 (11.156) 
In an inertial frame where the particle’s velocity is cB the time component of 
spin is therefore not independent, but is 

S,= BS (11.157) 
It is useful to display the explicit connection between S* and the rest-frame spin 
s. Use of (11.19) or (11.22) and (11.157) yields 

s=S-—~@-s)p (11.158) y+ 
and the inverse expressions 

2 
S=s+ —_(@p-sp 

ytl (11.159) 
So = yBos 

Specification of the rest-frame 3-vector spin s determines the components of the 
4-vector spin S* in any inertial frame. 

*The spin 4-vector S* is the dual of the tensor S"? in the sense that $* = (1/2c}e"'U,8,,, where U" 
is the particle's 4-velocity. 
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The obvious generalization of the left-hand side of (11.155) is dS"/dr, where 
tis the particle’s proper time. The right-hand side must therefore be expressible 
as a 4-vector. We assume that the equation is linear in the spin S" and the external 
fields F°*. It can also involve U“ and dU/dr, the latter being linear in F? itsclf, 

Higher time derivatives are assumed absent. And of course the equation must 
reduce to (11.155) in the rest frame. With the building blocks 5", F**, U", dU"/dr 

and the requirement of linearity in S* and F“®, we can construct the 4-vectors, 

au® 
F°®S,, (SPU, JUS (s, al u* 

Other possibilities, such as F°°U,(S,U*), (U,P“U,)S", and (S,F“U,) dU%dz, 
cither vanish, are higher order in F**, or reduce to multiples of the three above, 
The equation of motion must therefore be of the form 

dS" A; eT AP Ss + Az (s,pmy,yur + 42 4 (5,4 7 a (11.160) 

where A,, Az, Az are constants. The constraint equation (11.156) must hold at 

all times. This — 

aa 2 w,S") = gy Bs, U, ass 0 dt 

hence 

se due 
{Ay ~ A2)U,FS, + (1 + A3)Sp =0 (11.161) 

If nonelectromagnetic or ficld gradient forces are allowed, at least in principle, 
it is necessary that A, = A, and A, = —1. Reduction to the rest frame and 
comparison with (11.155) gives A, = ge/2mc. Thus (11.160) becomes 

aS" 8 | pute 4 | yorg pam 1 ef 5 dU dn tine [ Se Fa 1 USF U,) Z US, Te (11.162) 

If the electromagnetic fields are uniform in space, or if gradient force terms like 
V(p + B), (5.69), can be neglected, and there are no other appreciable forces on 
the particle, its translational motion is described by (11.144): 

« = = F*U, (11.163) 

‘Then (11.162) becomes the BMT equation: 

dS" © 1B pop, 1 fg oa = £./8 po B23) Viper: pa 
dr me [: Peete (§ U(SFMU,) (11.164) 

B. Connection to the Thomas Precession 

The covariant cquation (11.162), or its special case (11.164), contain the 
Thomas precession of the spin. It occurs in the final term in (11.162), the term 
that was specificd by the requirement (11.156) that the spin 4-vector be orthog- 
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onal to the 4-velocity. To exhibit the Thomas precession explicitly, we consider 
the equation of motion for the rest-frame spin s. Using the result 

dU* dv 
Mer Sere (11.165) 

and (11.158) for s in terms of S, we find that the cquations, 

Bip vo(s-®) 
dt dt 

and 

44, « »(s-48) 
dr ar 

can be combined to give, after some simplification, 

ds 8 ¥ ap 
=F Fy + y+ [: x (6 x all (11.166) dt yt? 

In these equations (F,, F) stand for the time and space components of the terms 
with coefficient (ge/2mc) in (11.162). Since (F), F) form a 4-vector, with Fy = 
B - F, the first two terms in (11.166) can be recognized as the torque F’ evaluated 
in the rest frame. Dividing both sides by y and using the definition (11.119) for 
the Thomas precession frequency, we find that (11.166) becomes 

aye terxs (11.167) 

Since F’ is given by the right-hand side of (11.155), this is just (11.107) of Section 
11.8. 

For motion in electromagnetic fields where (11.163) holds, 

dB oe _ 
We ome [E+ B x B- B(B-E)] (11.168) 

We also have, from the transformation properties (11.149) of B, 

te - £5x[R- te @-Bp Bx E| (11.169) 
Ic y+] 

When these expressions are inserted into (11.167), it becomes 

ds! ox (8-1 41 )y - (8 1) 2 
f= £ax((E 1+ tp (§ \e BB 

[Sra 
(5 y+ i) : F| 

This form of the cquation of motion of the spin vector is Thomas's equation 
(4.124) of 1927 (up. cit.}. 

(11.170) 

C. Rate of Change of Longitudinal Polarization 

As an example of the use of (11.176) we consider the rate of change of the 
component of spin s parallel to the velocity. This is the longitudinal polarization 
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or net helicity of the particle. If B is a unit vector in the direction of B. the 
longitudinal polarization is B -s. It changes in time because s changes and also B 
changes. Explicitly, we have 

G8-9) = B-F + Fis Gob 
Using (11.168) and (11.170), this can be written, after some algebra, as 

F 1 
4 4.5) = oe [(é - ia xB+ (# - +e | (1.171) 

where s, is the component of s perpendicular to the velocity, 
Equation (11.171) demonstrates a remarkable property of a particle with 

g = 2. Ina purely magnetic field, the spin precesses in such a manner that the 
longitudinal polarization remains constant, whatever the motion of the particle. 
If the particle is relativistic (8 — 1), even the presence of an electric field causcs 
the longitudinai polarization to change only very slowly, at a rate proportional 
to y * times the electric ficld component perpendicular to v. 

The electron and the muon have g factors differing from the Dirac valuc of 
2 by radiative corrections of order a/a = 0.00232. Because {g — 2) is so small, 
the longitudinal polarization of a beam of electrons or muons orbiting in a mag- 
netic field changes relatively slowly. This phenomenon permits very precise mca- 
surements of the quantity a = (g — 2)/2, called the anomaly or the anomalous 
magnetic moment. The values of a provide accurate tests of the validity of quan- 
tum electrodynamics. For muons, 100% longitudinally polarized at birth, the 
change in polarization is detected by means of the characteristically asymmetric 
angular distribution of the decay electron from the muon relative to the direction 
of muon polarization. For electrons from beta decay the initial longitudinal po- 
larization is *B. Its change with time is detected by changes in the asymmctry 
of Mott scattering (e~) or the angular distribution of the annihilation photons 
from positronium formed in an intense magnetic field (e'). The precision attain- 
able by these techniques is indicated by the recent data:* 

ale ) = 1 159 652 188.4 (4.3) x 1071? 

a(e') = 1 159 652 187.9 (4.3) x 10°! 

a(u*) = 1 165 924 (9) x 10°? 

These results are in good agreement with the predictions of quantum electro- 
dynamics, as discussed in detail in the review by Kinoshita. 

Further elaboration of spin precession is feft to the problems at the end of 
Chapter 12. 

11.12 Note on Notation and Units in Relativistic Kinematics 

In dealing with Lorentz transformations and relativistic kinematics, it is conve- 
nient to adopt a consistent, simple notation and set of units. We have seen that 

*e”, e*: Van Dyck, Schwinberg, and Dehmelt, Phys. Rev. Lett, 59. 26 (1987): yx": J. Bailey et al, 
Nucl. Phys. B 150.1 (1979). See also the review, T. Kinoshita, ed., Quantum Electrodynamics, World 
Scientific, Singapore (1990) 
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various powers of the velocity of light ¢ appear in the formulas of special relatiy.. 

ity. These tend to make the formulas cumbersome, although their presence fa- 
cilitates extracting nonrelativistic limits (by letting ¢ > ~). In doing relativistic 
kinematics, it is customary to suppress all factors of c by suitable choice of units, 
We adopt the convention that all momenta, energies, and masses are measured 
in energy units, while velocities are measured in units of the velocity of light. In 
particle kinematics the symbols, 

P cP 
E E 
a stand for nie 

v 
¢ 1 

Thus the connection between momentum and total energy is written as E? = 

p? + nv, a particle’s velocity is v = p/E, and so on. As energy units, the electron 
volt (eV), the megaelectron volt (1 MeV = 10° eV), and the gigaelectron volt 
(1 GeV = 10” eV) are convenient. One electron volt is the energy gained by a 
particle with electronic charge when it falls through a potential difference of one 
volt (L eV = 1.602 X 107" erg = 1.602 x 10°’ joule). 

In addition to eliminating powers of c, it is customary to denote scalar prod- 
ucts of 4-vectors by a centered dot between italicized symbols, with scalar prod- 
ucts of 3-vectors denoted by a dot between boldface symbols, as usual. Thus we 
have 

a+b = a,b" = aby ~ arb 

Four-vectors may be written with or without an index. Thus conservation of 
energy and momentum may appear as 

P=p+q 

or 

PY = pt + gq" 
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Two equivalent inertial frames K and K" arc such that K’ moves in the positive x 
direction with speed v as seen from K. The spatial coordinate axes in K’ aro 
parallel to those in K and the two origins are coincident at times ¢ = #' = 0. 

(a) Show that the isotropy and homogencity of space-time and equivalence of 
different inertial frames (first postulate of relativity) require that the most 
general transformation between the space-time coordinates (x, y. 2.) and 
(vy, 21,0) is the linear transformation, 

x! = fw) — vfe’)5 = gle - vh(v?)e: oy’ 

and the inverse, 

w= fox + vfs = Rwy + vh(v*)x'; 

where f, g, and # are functions of v*, the structures of the x" and x equations 
are determined by the definition of the inertial frames in relative motion, 
and the signs in the inverse equation are a reflection of the reversal of roles 
of the two frames. 

(b) Show that consistency of the initial transformation and its inverse require 

f=g and f-vfh=1 

(ec) Ifa physical entity has speed «’ parallel to the x‘ axis in K', show that its 
speed u parallel to the x axis in K is 

wity 

"TF ow (tify 

Using the second postulate 2’ (universal limiting speed C), show that A = 
f/C? is required and that the Lorentz transformation of the coordinates re- 
sults. The universal limiting speed C is to be determined from experiment. 

Consider three inertial frames and coordinates K(x, 1). K'{x', #), and K"(x", ¢’). 
Frame K’ moves in the x direction with speed vu; relative to K; frame K" moves 

with speed v, relative to K’, and speed v; relative to K. By considering the group 
property of the transformations of Problem 11.1 (including the results of parts a 
and b), Q". ”) > GQ’, ") > (x. 8) and (x, °) > (x. 2) directly, show that 
Ja(v’)/f(v?}] is a universal constant with the dimensions of an inverse speed 
squared. 

This approach obtains the Lorentz transformation without reference to elec- 
tromagnetism or the second postulate, but requires experiment to show that 
hif > 0. 
Reference: Y. P. Terletskii, Paradoxes in the Theory of Relativity, Plenum Press, 

New York (1968), pp. 17-25. 

Show explicitly that two successive Lorentz transformations in the same direction 

are equivalent to a single Lorentz transformation with a velocity 

vy tee 
p= 

1+ (vyp2ie) 

This is an alternative way to derive the parallel-velocity addition law. 

A possibie clock is shown in the figure. It consists of a flashtube F and a photocell 

P shieided so that each views only the mirror M. located a distance d away. and 

mounted rigidly with respect to the flashtube-photocell assembly. The electronic 
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innards of the box are such that when the photoceli responds to a light flash from 
the mirror, the flashtube is triggered with a negligible delay and emits a short flash 
toward the mirror. The clock thus “ticks” once every (2d/c) seconds when at rest. 

Problem 11.4 

(a) Suppose that the clock moves with a uniform velocity v, perpendicular to the 
line from PF to M, relative to an observer. Using the second postulate of 
relativity, show by explicit geometrical or algebraic construction that the ob- 
server sees the relativistic time dilatation as the clock moves by. 

(b) Suppose that the clock moves with a velocity v parallel to the line from PF 
to M. Verify that here, too, the clock is observed to tick more slowly, by the 
same time dilatation factor. 

A coordinate system K’ moves with a velocity v relative to another system K. In 
K’ a particle has a velocity u’ and an acceleration a’. Find the Lorentz transfor- 
mation law for accelerations, and show that in the system K the components of 
acceleration parallel and perpendicular to v are 

fe yy” 

2 

v yee) 
Assume that a rocket ship leaves the earth in the year 2100, One of a set of twins 
born in 2080 remains on carth; the other rides in the rocket. The rocket ship is so 

constructed that it has an acceleration g in its own rest frame (this makes the 
occupants feel at home), ft accelerates in a straight-line path for 5 years (by its 
own clocks), decelerates at the same rate for S more years, turns around, accel- 
erates for 5 years. decelerates for 5 years, and lands on earth, The twin in the 
rocket is 40 years old. 

(a) What year is it on earth? 

(b) How far away from the earth did the rocket ship travel? 

In the reference frame K two very evenly matched sprinters are lined up a distance 
d apart on the y axis for a race parallel to the x axis. Two starters, one beside each 



§70 Chapter 11 

U8 

no 

11,10 

IL 

Special Theory of Relativity —G 

man, will fire their starting pistols at slightly different times, giving a handicap to 
the better of the two runners. The time difference in K is T. 

(a) For what range of time differences will there be a reference frame K" in 
which there is no handicap, and for what range of time differences js there 
a frame K’ in which there is a true (not apparent) handicap? 

(b) Determine explicitly the Lorentz transformation to the frame K’ appropriate 
for each of the two possibilities in part a, finding the velocity of K’ relative 
to K and the space-time positions of each sprinter in K‘. 

{a) Use the relativistic velocity addition law and the invariance of phase to dis. 

cuss the Fizeau experiments on the velocity of propagation of light in moving 
liquids. Show that for liquid flow at a speed v paraiiel or antiparallel to the 
path of the light the speed of the light, as observed in the laboratory, is piven 
to first order in v by 

wa cf o(1- 3 ened) 
won do 

where w is the frequency of the light in the laboratory (in the liquid and 
outside it) and n(w) is the index of refraction of the liquid. Because of the 
extinction theorem, it is assumed that the light travels with speed u’ = 
c/n(w’) relative to the moving liquid. 

(b) Consult the paper of W. M. Macek, J. R. Schneider, and R. M. Salamon 
(J. Appl. Phys. 35, 2556 (1964)] and discuss the status of the Fizeau 
experiments. 

An infinitesimal Lorentz transformation and its inverse can be written as 

= ("+ xy 
= (gt + xy, 

where ¢ and e'“# are infinitesimal. 

(a) Show from the definition of the inverse that ¢“” = —e*#. 

(b) Show from the preservation of the norm that e“# = —¢*, 

(c) By writing the transformation in terms of contravariant components on both 
sides of the equation, show that e# is equivalent to the matrix 1 (11.93). 

(a) For the Lorentz boost and rotation matrices K and § show that 

(e-S) = -e-S 
(e'- KY = e'- K 

where € and €’ are any real unit 3-vectors. 

(b) Use the results of part a to show that 

exp(-8 -K) = 1 — B+ K sinhg + (8 - K)"foosh¢ - 1] 
Two Lorentz transformations differ by an infinitesimal amount. In the notation of 
Section 11.7 they are represented by A, = e”, A, = e* **". Without using explicit 
matrix representations show that fe first order in 5]. the Lorentz transformation 
A = A.A; ' can be written as 

1 1 1 Am 1+ OL + 5 (L. 6L) + 5 (UE. BEN) + ay Le EE LL, SES +o 

Hint: The early terms can be found by brute force, but alternatively consider the 
Taylor series expansion in A of the operator A(A) = ee and then put 
A=l 
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Apply the result of Problem 11.11 to a purely algebraic deviation of (11.116) on 
‘Thomas precession. 
(a) With 

B - K(tanh”'g) Lee 
B 

n+ oy = (B+ 88+ SB) K(tanh“18') 
B 

where p’ = V(B + 5B,)? + (6B,)°. show that 

dB, - K(tanh 'p) 

B 

(b) Using the commutation relations for K and S, show that 

vs -1 ? 

= [al] = -(2 A e) (BX 5B.) S 
Cy = [L. Ci] = (tanh 1B) 6h, 

Cy = [L, Ca] = (lan 'B)°C, 
Cy = [h, Ch] = (tanb-'py* 8h, 

where 8/., is the term in 5/. involving 6B,. 

81. = —y' 8B, K - 

(c) Sum the series of terms for Ay = A,A, | to obtain 

¥ 
yt 

A, =1— (fF 6B, + 7 dB.) K — (B x 5B.) +S 

correct (o first order in 8B. [See D. Shelupsky, Am. J. Phys. 35, 650 (1967).] 
An infinitely long straight wire of negligible cross-sectional arca is at rest and has 
a uniform linear charge density qy in the inertial frame K’. The frame K’ (and the 
wire) move with a velocity v parallel to the direction of the wire with respect to 
the laboratory frame K. 

(a) Write down the electric and magnetic fields in cylindrical coordinates in the 
rest frame of the wire. Using the Lorentz transformation properties of 
the fields, find the components of the electric and magnetic fields in the 
laboratory. 

(b) What are the charge and current densities associated with the wire in its rest 

frame? In the laboratory? 
(c) From the laboratory charge and current densities, calculate directly the elec- 

tric and magnetic fields in the laboratory. Compare with the results of part a. 

(a) Express the Lorentz scalars FSF, F"8Fag. and ag in terms of E and 
B, Are there any other invariants quadratic in the ficld strengths E and B? 

(b) fs it possible to have an electromagnetic field that appears as a purely electric 
field in one inertial frame and as a purely magnetic field in some other inertial 
frame? What are the criteria imposed on E and B such that there is an inertial 
frame in which there is no electric field? 

(c) For macroscopic media. E. B form the field tensor F* and D, H the tensor 

G*#, What further invariants can be formed? What are their explicit expres- 
sions in terms of the 3-vector fields? 

In a certain reference frame a static. uniform, electric field Ep is parallel to the x 
axis, and a static, uniform, magnetic induction B, = 2£, lies in the x-y plane, 
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making an angle @ with the axis. Determine the relative velocity of a Teference 
frame in which the ¢lectric and magnetic fields are parallel. What ate the ficlds in 
that frame for @< i and @ = (2/2)? 

In the rest frame of a conducting medium the current density satisties Ohm's law, 
J’ = of’, where a is the conducti and primes denote quantities in the rest 
frame. 

(a) Taking into account the possibility of convection current as well as conduc- 

lion current, show that the covariant generalization of Ohm's law is 

o 1 pe a (upyut = 2 EU, 

where U" is the 4-velocity of the medium. 

(b) Show that if the medium has a velocity ¥ = cf with respect to some inertia] 
frame that the 3-vector current in that frame is 

J = ylE + B x B- B(B-+E)} + py 

where p is the charge density observed in that frame. 

(c) If the medium is uncharged in its rest frame {p' = 0), what is the charge 
density and the expression for J in the frame of part b? This is the relativistic 
generalization of the equation J = of(E + v X B (see p. 320). 

The electric and magnetic ficlds (11.152) of a charge in uniform motion can be 

obtained from Coulomb's law in the charge’s rest frame and the fact that the field 
strength # js an antisymmetric tensor of rank 2 without considering explicitly the 
Lorentz transformation. The idea is the following. For a charge in uniform motion 
the only relevant variables are the charge's 4-velocity U* and the relative coordi- 
nate X* = x5 — xf, where x; and x7 are the 4-vector coordinates of the observation 
point and the charge, respectively. The only antisymmetric tensor that can be 
formed is (X“U® — X®U"). Thus the electromagnetic field #* must be this tensor 
multiplied by some scalar function of the possible scalar products, XX". X,U", 
UU 
(a) For the geometry of Fig. 11.8 the coordinates of P and g at a common time 

in K can be written a ct, b), xf = (ct, vo), wilh b- y = 0. By considering 

the general form of in the rest frame of the charge, show that 

@__(xtut — xu") 
efi — 
[Swrr - x3] 

Verify that this yields the expressions (11.152) in the inertial frame K. 
(b) Repeat the calculation, using as the starting point the common-time coor- 

dinates in the rest frame, x" = (ct’,b — ve’) and x3" = (et', 0). Show that 

g (U8 ~ Yeu) 
aa A 

where Y'* = x/° — xj". Verify that the fields are the same as in part a. Note 
that to obtain the results of (11.152) it is necessary to use the time ¢ of the 

observation point P in K as the time parameter. 

(c) Finally, consider the coordinate x; = (ct, b) and the “retarded-time™ coor- 

dinate xj = [cr — X, B(ct — R)] where & is the distance between P and q at 
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the retarded time. Define the difference as Z* = [R, b — B(ct — R)]. Show 

that in terms of Z* and U* the field is 

q (Z"U# - ZU) 
7 

(! uz) 
c 

The electric and magnetic fields of a particle of charge q moving in a straight line 
with speed v = Bc, given by (11.152), become more and more concentrated as 
B= |, as is indicated in Fig. 11.9, Choose axes so that the charge moves along the 

z axis in the positive direction, passing the origin at ¢ = 0. Let the spatial coordi- 
nates of the observation point be (x, y. z) and define the transverse vector r,, with 
components x and y. Consider the fields and the source in the limit of B = 

Fea 

(a) Show that the fields can be written as. 

B= 24 5 ater - 2); 

where # is a unit vector in the direction of the particle's velocity. 
(b) Show by substitution into the Maxwell equations that these fields are consis- 

tent with a 4-vector source density, 

= gcev"6(r_)6(ct ~ 2) 

where the 4-vector v" = (1, #). 

(c) Show that the fields of part a are derivable from either of the following 

4-vector potentials, 

A® = A? = —2g(et — 2) In(ar,); AL=0 

or 

Ao = A, = —2qg@(ct — z) ¥_ In{ar,) 

where A is an irrelevant parameter setting the scale of the logarithm. 
Show that the two potentials differ by a gauge transformation and find 

the gauge function, y. 

Reference: R. Jackiw, D. Kabat. and M. Ortiz, Phys. Let, B 277,148 (1992). 

A particle of mass M and 4-momentum P decays into two particles of masses #1, 
and niz. 

(a) Use the conservation of energy and momentum in the form, p2 = P — pi. 
and the invariance of scalar products of 4-vectors to show that the total en- 
ergy of the first particle in the rest frame of the decaying particle is 

M? + my — nb 
2M 

and that £ is obtained by interchanging mm, and my. 

(b) Show that the kietic energy T; of the ith particle in the same frame is 

where AM = M — m, — my is the mass excess or Q value of the process. 
{c) The charged pi-meson (M = 139.6 MeV) decays into a mu-meson (17, = 

105.7 MeV) and a neutrino (sn, = 0). Calculate the kinetic energies of the 
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mu-meson and the neutrino in the pi-meson’s rest frame. The unique kinetic 
energy of the muon is the signature of a two-body decay. It entered impor. 
tantly in the discovery of the pi-meson in photographic emulsions by Pow$i 
and coworkers in 1947. 

The lambda particle (A) is a neutral baryon of mass M = 1115 MeV that decays 
with a lifetime of .9 X 107" into a nucleon of mass mm, = 939 MeV and 4 
pi-meson of mass ny = 140 MeV. It was first observed in flight by its charged 
decay mode A— p + 7 in cloud chambers. The charged tracks originate from a 

single point and have the appearance of an inverted vee or lambda. The particles" 
identities and momenta can be inferred from their ranges and curvature in the 
magnetic ficld of the chamber. 

(a) Using conservation of momentum and energy and the invariance of scalar 
products of 4-vectors show that, if the opening angle @ between the two tracks 
is measured, the mass of the decaying particle can be found from the formula 

M? = ni + ob + 2E > — 2p\p: cos 6 

where here p, and p> are the magnitudes of the 3-momenta. 

(b) A lambda particle is created with a total energy of 10 GeV in a collision in 
the top plate of a cloud chamber. How far on the average will it travel in the 
chamber before decaying? What range of opening angles will occur for a 
10 GeV lambda if the decay is more or less isotropic in the lambda's rest 
frame? 

If a system of mass M decays or transforms at rest into a number of particles, the 
sum of whose masses is less than M by an amount AM, 

(a) show that the maximum Kinetic energy of the ith particle (mass 1,) is 

ae m AM 
(DP mnax = ami MO oH) 

(b) determine the maximum kinetic energies in MeV and also the ratios to AM 
for each of the particles in the following decays or transformations of particles 
at rest: 

poeteto 

Ki>mtat@m 

K*>e + at+y 

Kis ytta ty 

pt pod +20 + a” 

p+p—oK'+K +32" 

The presence in the universe of an apparently uniform “sea” of blackbody radi- 
ation at a temperature of roughly 3K gives one mechanism for an upper limit on 
the energies of photons that have traveled an appreciable distance since their 
creation. Photon-photon collisions can resuit in the creation of a charged particle 
and its antiparticle (“pair creation”) if there is sufficient energy in the center of 
“mass” of the two photons. The lowest threshold and also the largest cross section 
occurs for an electron-positron pair. 

(a) Taking the energy of a typical 3K photon to be * eV, calculate 
the energy for an incident photon such that there is ci ufficient to 

make an electron-positron pair. For photons with energies larger than this 
threshold value, the cross section increases to a maximum of the order of 
(ime)? and then decreases slowly at higher energies. This interaction is one 
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mechanism for the disappearance of such photons as they travel cosmological 

distances. 

(b) There is some evidence for a diffuse x-ray background with photons having 
energies of several hundred electron volts or more. Beyond | keV the spec- 
trum falls as E " with n = 1.5. Repeat the calculation of the threshold inci- 

dent energy, assuming that the cnergy of the photon in the “sea” is 500 eV. 

In a collision process a particle of mass #72. at rest in the laboratory, is struck by 
a particle of mass #7, momentum p;_ay and total energy F) ay. In the collision the 

two initial particles are transformed into two others of mass m, and si,. The con- 
figurations of the momentum vectors in the center of momentum (cm) frame (tra- 
ditionally called the center-of-mass frame) and the laboratory frame arc shown in 
the figure. 

Laboratory frame cm frame 

Problem 11.23 

(a) Use invariant scalar products to show that the total energy Win the cm frame 

has its square given by 

W? = mi? + w2 + 2mmFan 

and that the cms 3-momentum p’ is 

TRPLAB 

a 
(b) Show that the Lorentz transformation parameters Boy, and Yom describing the 

velocity of the cm frame in the laboratory are 

Prax _ iit 
Bem = m+ Fant Ww 

(c) Show that the results of parts a and b reduce in the nonrelativistic limit to 

the familiar expressions, 

wom m+ (ti) ea 
my + my 

_ fm 
y my + mm, 

The threshold kinetic energy 7,, in the laboratory for a given reaction is the kinetic 

energy of the incident particle on a stationary target just sufficient to make the 
center of mass energy W equal to the sum of the rest energies of the partictes in 
the final state. Calculate the threshold kinetic energies for the following processes. 
Express your answers in MeV or GeV and also in units of the rest energy of the 
incident purticle (unless it is a massless particle). 

Pian 
m, + my Ben = 

(a) Pi-meson photoproduction. yp > 7p 

(m, = 938.5 Mev, mgs = 135.0 MeV) 
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(b) Nucleon-antinucleon pair production in nucleon-nucleon collisions, for ex. 
ample, pp — pppp. 

(©) Nuclcon-antinucleon pair production in electron-electron collisions, ¢” e-_, 
e°e pp and e'e” > pp (m, = 0511 MeV). 

In colliding beam machines such as the Tevatron at Fermilab or the numerous 

ee storage rings, counterrotating relativistic beams of particles are stored and 
made to collide more or less head-o1 one or more interaction regions. Let the 
particles in the two beams have masses #1, and #z and momenta p, and py, re~ 
spectively, and let them intersect with an angle @ between the two beams. 

(a) Show that, to order (s#/p)’ inclusive, the square of the total energy in the em 
frame is 

P= 4 cor 2 + | + (at, 28 'PP2 COS > Pit Po, Pr p> 

(b) Show that the cm inertial frame has a velocity in the laboratory given by 

a (py + ps) sin 2 

om (E, + Fp) sine 

where 

The angle a is defined in the figure. 

(ce) Check that the results of part b agree with those of Problem 11.23b, 

(d) If the crossing angle is @ = 20° and the colliding protons have p,; = pz = 100 

GeV/c, is the laboratory frame a reasonable approximation to the cm frame? 
Consider, for example, a proton-proton inelastic collision involving pion pro- 
duction and examine the collinearity of two pions produced with equal and 
opposite momenta of 10 GeV/c in the cm frame. 

Bem 

of2 of2 

Problem 11.25 

In an elastic scattering process the incident particle imparts energy to the station- 
ary target. The energy AF lost by the incident particle appears as recoil kinetic 
energy of the target. In the notation of Problem 11.23, m, = m1, and mig = Nh, 
while AF = T, = Fy — my. 

(a) Show that AF can be expressed in the following different ways, 

m 
AE = 35 Pian(] ~ cos @) 

2mepian COs, 

W? + pian sind, 

g 
on 
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11.28 
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where Q? = —{p, — ps¥ = (pi — ps)” — (E, — Fa)’ is the Lorentz invariant 

momentum transfer (squared). 

(b) Show that for charged particles other than electrons incident on stationary 
electrons (#2, >> #1;) the maximum energy loss is approximately 

ME nae = 2° 682m, 

where y and 8 are characteristic of the incident particle and y << (s2\/m,). 
Give this result a simple interpretation by considering the relevant collision 

in the rest frame of the incident particle and then transforming back to the 

laboratory. 

(0) For clectron-electron collisions, show that the maximum energy transfer is 

AEQ. = (y— 1)m, 

(a) A charge density p’ of zero total charge, but with a dipole moment p, exists 
in reference frame K’. There is no current density in K'. The frame K' moves 

with a velocity v = Bc in the frame K. Find the charge and current densities 
p and J in the frame K and show that there is a magnetic dipole moment, 
m = (p X B)/2, correct to first order in 8. What is the clectric dipole moment 
in K to the same order in 8? 

(b) Instead of the charge density, but no current density, in K', consider no 
charge density, but a current density J’ that has a magnetic dipole moment 
m. Find the charge and current densities in K and show that to first order in 
B there is an electric dipole moment p = B X m in addition to the magnetic 
dipole moment. 

Revisit Problems 6.21 and 6.22 from the viewpoint of Lorentz transformations. An 
electric dipole instantaneously at rest at the origin in the frame K’ has potentials, 
®' = per'/r’’, and A’ = 0 (and thus only an electric field). The frame K’ moves 
with uniform velocity v = Be in the frame K. 

(a) Show that in frame K to first order in B the potentials are 

a= ph 
where R = x — xo{t), with v = dxo/dz at time 1. 

(b) Show explicitly that the potentials in K satisfy the Lorentz condition. 

({c) Show that to first order in 8 the clectric field E in K is just the electric dipote 

field (centered at xq), or a dipole ficld plus time-dependent higher multipoles. 
if viewed from a fixed origin, and the magnetic field is B = B x E. Where is 
the effective magnetic dipole moment of Problem 6.21 or 11.27a? 

Instcad of the electric dipole potential of Problem 11.28, consider a point magnetic 

moment m in the moving frame K’, with its potentials, @’ = 0, A’ = m x rir? 
{and so only a magnetic field). 

(a) Show that to first order in 8 the potentials in K are 

_Bxm-R  ._ (mek) ® = R R 

Note that the scalar potential is the same as the static potential of the clectric 
dipole moment of Problem 11.27b. [But this gives only the irrotational part 
of the electric ficld.] 
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(by Calculate the clectric and magnetic fields in K from the potentials and show 
that the electric field can be expressed alternatively as 

ba = 6) 
E = Buipstc(Pea = B ¥ m) — m 

B= Baga = Bem) + Sn EOD Be 
E=Bxp 

where B is the magnetic dipole field. fn light of Problem 6.22, comment on 
the interpretation of the different forms. 

11.30 An isotropic linear material medium, characterized by the constitutive relations 

(in its rest frame K'), D’ = €E’ and pH’ = B’, is in uniform translation with 
velocity v in the inertial frame K. By exploiting the fact that F,, = (E, B) and 

G,.. = (D, H) transform as second rank 4-tensors under Lorentz transformations, 
show that the macroscopic fields D and H are given in terms of E and B by 

p= a+ y(e-1)pr, +p xB} 

H B+ v(« 7 eee, +B XE] 

where E, and B, are components perpendicular to v. 

11,31 Consider a hollow right-circular cylinder of magnetic insulator (relative perme- 
abilities € and « and inner and outer radii @ and 4) set in rotation about its axis 
at angular speed w in a uniform axial magnetic field By. In 1913 the Wilsons mea- 
sured the voltage difference between its inner and outer surfaces caused by a radial 
internal electric field. Assuming that locally the relations of Problem 11.30 hold, 
that the velocity v = wpd, and that there are only the ficld components E, 
and B., which are independent of z and ¢, solve the cquations V+ D = 0 and 
¥ x H = 0 within the cylinder and show that the internal fields are 

opBy 1 Lo ot pepe 
By > ee (ach 2B] oe cl = ele) pe = op hk? 

and that for nonrelativistic motion (wb/c << 1) the voltage difference is 

This experiment was an early validation of special relativity and Minkowski's elec- 
trodynamics of material media in motion. Ef you are curious about how the Wilsons 

made a magnetic insulator, look up the paper. 

Reference: M. Wilson and H. A. Wilson. Proc. Roy. Soc. London A89, 99-106 

(1913). 



CHAPTER 12 

Dynamics of Relativistic Particles 
and Electromagnetic Fields 

The kinematics of the special theory of relativity was developed in Chapter 11. 
We now turn to the question of dynamics. In the first part of the chapter we 
discuss the dynamics of charged particle motion in external electromagnetic 
fields. The Lagrangian approach to the cquations of motion is presented mainly 
to introduce the concept of a Lorentz invariant action from which covariant dy- 
namical equations can be derived. The transition to a Hamiltonian, with the 

definition of the canonical momentum, is then discussed. Several sections are 

devoted to the motion of a charged particle in clectric and magnetic fields. Our 
treatment of motion in a uniform static magnetic field is followed by considera- 
tion of motion in a combination of clectric and magnetic fields. Then the secular 
changes (drifts) of a particle’s orbit caused by nonuniform magnetic fields and 
the adiabatic invariance of the linked flux are discussed. The problem of a rela- 
tivistic Lagrangian for a system of interacting charged particles is addressed, and 
it is shown that to order u/c? it is possible to climinate retardation effects and 
write a Lagrangian (the Darwin Lagrangian) in terms of the instantaneous po- 
sitions and velocitics of the particles. 

In the last five sections of the chapter the emphasis is on fields. First, the 
Maxwell equations are derived from a suitable Lagrangian. Then, a modified 
Lagrangian describing a “photon” with mass is presented and its consequences 
in resonant circuits, transmission lines, and cavi described, as well as its man- 

ifestation in superconductors. A covariant generalization of the Hamiltonian for 
fields is next discussed, along with the conservation laws of energy, momentum, 
and angular momentum for fields, both source free and in interaction with 
charged particles. The chapter ends with a derivation of the invariant Green 

functions that form the basis of the solution of the wave equation with a given 
4-vector current density as source. 

12.1 Lagrangian and Hamiltonian for a Relativistic Charged 
Particle in External Electromagnetic Fields 

The equations of motion 

dp _ u 
“pee de + a 3| (12.1) 

“ =eu-E (12.2) 

579 
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for a particle of charge e in external fields E and B can be written in the covariant 

form (11.144): 

dU" ie 
— =— F*U, Pha ‘a (12.3) 

where m is the mass, 7 is the proper time, and U* = (yc, yu) = p*/m is the 

4-velocity of the particle. 
Although the equations of motion (12.1) and (12.2) are sufficient to describe 

the gencral motion of a charged particle in external electromagnetic fields 
(neglecting the emission of radiation), it is useful to consider the formulation of 
the dynamics from the viewpoint of Lagrangian and Hamiltonian mechanics, The 
Lagrangian treatment of mechanics is based on the principle at least action o¢ 
Hamilton’s principle. In nonrelativistic mechanics the system is described by gen- 

eralized coordinates g;(¢) and veloci q(t). The Lagrangian L is a functional 

of gq; and g; and perhaps the time explicitly and the action A is defined as the 
time integral of L along a possible path of the system. The principle of least action 
states that the motion of a mechanical system is such that in going from a con. 
figuration a at time ¢, to a configuration 6 at time &, the action 

A -{ Liq), 4i(0), e} dt {12,4) 

is an extremum. By considering small variations of the coordinates and velocities 
away from the actual path and requiring 6A = 0, one obtains (see Goldstein, 
Chapter 2) the Euler-Lagrange equations of motion, 

= (2) - 9 (125) 
dt \ ag; 4q; 

We wish to extend the formalism to relativistic particle motion in a manner 
consistent with the special thcory of relativity and leading for charged particles 
in external fields to (12.1) and (12.2) or (12.3). There are several levels of so- 
phistication possible. The least sophisticated and most familiar treatment contin- 
ues with ordinary coordinates, velocities, and time and generalizes from the non- 
relativistic domain in a straightforward way. More sophisticated is a manifestly 
covariant discussion. We first present the elementary approach and then indicate 

the manifestly covariant treatment. 

A. Elementary Approach to a Relativistic Lagrangian 

To obtain a relativistic Lagrangian for a particle in external ficlds we first 
consider the question of the Lorentz transformation properties of the Lagrangian. 

From the first postulate of special relativity the action integra! must be a Lorentz 
scalar because the equations of motion are determined by the extremum condi- 
tion, 5A = 0. If we introduce the particle’s proper time 7 into (12.4) through 
dt = y dz, the action integral becomes 

A= [ yL dt (12.6) 

Since proper time is invariant the condition that A also be invariant requires that 

yL be Loreniz invariant. 
The Lagrangian for a free particle can be a function of the velocity of the 

particic and its mass, but cannot depend on its position. The only Lorentz invar- 
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iant function of the velocity availabie is U,U* = c?. Thus we conclude that the 

Lagrangian for a free particle is proportional to y7! = V1 — 87. It is easily seen 

that 

(12.7) Lien = ae 

js the proper multiple of y~’ to yield, through (12.5), the free-particle equation 
of motion, 

4 (ymp) = 0 (12.8) 

‘The action (12.6) is proportional to the integral of the proper time over the 
path from the initial proper time 7, to the final proper time 7. ‘This integral is 
Lorentz invariant, but it depends on the path taken. For purposes of calculation, 
consider a reference frame in which the particle is initially at rest. From definition 
(11.26) of proper time it is clear that, if the particle stays at rest in that frame, the 

integral over proper time will be larger than if it moves with a nonzero velocity 
along its path. Conscquently we see that a straight world line joining the initial 
and final points of the path gives the maximum integral over proper time or, with 
the negative sign in (12.7), a minimum for the action integral. This motion at 
constant velocity is, of course, the solution of the free-particle equation of motion. 

The general requirement that yL be Lorentz invariant allows us to determine 
the Lagrangian for a relativistic charged particle in external electromagnetic 
fields, provided we know something about the Lagrangian (or equations of mo- 
tion) for nonrelativistic motion in static fields. A slowly moving charged particle 
is influenced predominantly by the electric ficld that is derivable from the scalar 
potential ®. The potential energy of interaction is V = e@. Since the nonrelativ- 
istic Lagrangian is (7 — V), the interaction part Lj, of the relativistic Lagrangian 
must reduce in the nonrelativistic limit to 

Lin > Line = —e® (12.9) 

Our problem thus becomes that of finding a Lorentz invariant expression for yLin, 

that reduces to (12.9) for nonrelativistic velocities. Since @ is the time component 
of the 4-vector potential A%, we anticipate that yLj,, Will involve the scalar prod- 

uct of A* with some 4-vector. The only other 4-vectors available are the momen- 
tum and position vectors of the particle. Since gamma times the Lagrangian must 
be translationaily invariant as well as Lorentz invariant, it cannot involve the co- 

ordinates explicitly. Hence the interaction Lagrangian must be* 

Lig = -< U,A* (12.10) 
ye 

or 

= net oueA (12.11) 

*Without appealing to the nonrelativistic limit, this form of /.,..can be written down by demanding 
that yf be a Lorentz invariant that is (1) lincar in the charge of the particle, (2) linear in 
the electromagnetic potentials, (3) translationallly invariant, and (4) a function of no higher than the 
first time derivative of the particle coordinates. The reader may consider the possibility of an inter- 
action Lagrangian satistying these conditions, but linear in the field strengths £"®, rather than the 
potentials A*. 
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he combination of (12.7) and (12.11) yields the complete relativistic Lagrangian 
for a charged particle: 

[owe ; 
L= ame. 

e +5u-A-e@ a e (12.12) ce 

Verification that (12.12) does indeed lead to the Lorentz force equation wil! be 
left as an exercise for the reader. Use must be made of the convective derivative 

[d/dt = (a/at) + u- ¥] and the standard definitions of the fields in terms of the 
potentials. 

‘Lhe canonical momentum P conjugate to the position coordinate x is ob. 
tained by the definition, 

an. i e P= +54 a yeu; + 7 Ai (12.13) 

Thus the conjugate momentum is 

e 
P=pt+c7A (12.14) 

where p = yn is the ordinary kinetic momentum. The Hamiltonian H is a 
function of the coordinate x and its conjugate momentum P and is a constant of 
the motion if the Lagrangian is not an explicit function of time. The Hamiltonian 
is defined in terms of the Lagrangian as 

H=Peu-L (12.15) 

The velocity u must be eliminated from (12.15) in favor of P and x. From (12.13) 

or (12.14) we find that 

cP — eA (12.16) 

When this is substituted into (12.15) and into L (12.12), the Hamiltonian takes 
on the form: 

H = V(cP - eA)? + + eh (12.17) 

Again the reader may verify that Hamilton’s equations of motion can be com- 

bined to yield the Lorentz force equation. Equation (12.17) is an expression for 

the total energy W of the particle. It differs from the free-particle energy by the 

addition of the potential energy e® and by the replacement p — [P — (e/c)A]. 

These two modifications are actually only one 4-vector change. This can be scen 

by transposing e® in (12.17) and squaring both sides. Then 

(W — eb) — (cP - eAy? = (mc (12.18) 

This is just the 4-vector scalar product, 

Pap = (mc) (12.19) 

where 

pee (. r) = ( (W — e®), P- ea) (12.20) 
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We see that the total energy W/c acts as the time component of a canonically 
conjugate 4-momentum P* of which P given by (12.14) is the space part. A man- 

ifestly covariant approach, discussed in the following paragraphs and also in 
Problem 12.1 leads naturally to this 4-momentum. 

In passing we remark on the question of gauge transformations. Obviously 
the equations of motion (12.1) and (12.2) are invariant under a gauge transfor- 

mation of the potentials. Since the Lagrangian (12.10) involves the potentials 
explicitly, it is not invariant. In spite of this lack of invariance of 1 under gauge 
transformations it can be shown (Problem 12.2) that the change in the Lagrangian 
is of such a form {a total time derivative) that it does not alter the action integral 

or the equations of motion. 

B. Manifestly Covariant Treatment of the Relativistic Lagrangian 

To make a manifestly covariant description, the customary variables x and 
uare replaced by the 4-vectors x” and U%. The free-particle Lagrangian (12.7) 

can be written in terms of U* as 

Lice =~ VU,0* (12.21) 
Y 

Then the action integral (12.6) would be 

72 
A= -ne | VU,US dt (12.22) 

% 

This manifestly invariant form might be thought to provide the starting point for 
a variational calculation leading to the equation of motion, dU/dr = 0. There 
is, however, the equation of constraint, 

U,U® = (12.23) 

or the equivalent constraint, 

dU* 
pt 2% (12.24) 

dt 

on the equations of motion. This can be incorporated by the Lagrange multiplier 
technique, but we pursue a different, equivalent procedure. The integrand in 

(12.22) is 

dx, ax RE 
VU,U" dr = 1 dr = Vg"" dx, dxp 

It dt 

that is, the infinitesimal length element in 4-space. This suggests that the action 

integral (12.22) be replaced by 

a dx, dx, 
A=- [gr <2 <8 as 12.25 me F oF as ds ( ) 

where the 4-vector coordinate of the particle is x“(s), with s a parameter that is 

a monotonically increasing function of 7, but otherwise arbitrary. The action 
integral is an integral along the world line of the particle, and the principle of 

least action is the statement that the actual path is the longest path, namely the 
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goedesic.* The Lagrangian variables are now x“ and “the velocity” dx*/ds, but s 

js considered as arbitrary. Only after the calculus of variations has been com. 

pleted do we identify 

9 Ca BB as dy yo ws as 
and so impose the constraint (12.23). A straightforward variational calculation 
with (12.25) yields the Euler-Lagrange equations, 

(12.26) 

ac 4 [__a¥lds_] _g Sass 
ds) (ary dx® ie a) 

ds ds 

or 
axt 

moe =0 (12.28) 

as expected for free-particle motion. 
For a charged particle in an external field the form of the Lagrangian (12.11) 

suggests that the manifestly covariant form of the action integral is 

- lg dt, dry ede a » [gt@ a SB 4 Sa ga A [ [me ae as + a ae A%(x) | ds (12.29) 

Hamilton’s principle yields the Euler-Lagrange equations, 

d{_ ab 

ds 

f= ne [pur Ge die, ¢ ba 
° ye ds ds ¢ ds 

-#£=0 (12.30) 

where the Lagrangian is 

are] (12.31) 

Explicitly, (12.30), upon division by the square root and use of (12.26), becomes 

dx* ee dA%(x)  e dx, CE SON Ee ye a(x) = 
"Pe at ec dt fae) 0 

Since dA“/d7 = (dxgid7) a#A®, this equation can be written as 

@x* _e dx, <== (@A® — Ar) 2 12,32 
"GP Ga AY dr ( ! 

which is the covariant equation of motion (12.3) in different notation. 

The transition to the conjugate momenta and a Hamiltonian is simple 

enough, but has problems of interpretation. The conjugate momentum 4-vector 

is detined by 

ak Pos = mut+£ ae (12.33) 
¢ 

(i) 
+The geodesic is the longest path or longest proper time for timelike separation of events. See 
Rohrlick, pp. 277-278. 
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The minus sign is introduced so that (12.33) conforms with (12.14): its origin can 

be traced to the properties of the Lorentz space-time. A Hamiltonian can be 
defined by 

A=P,U"+l (12.34) 

Elimination of U* by means of (12.33) leads to the expression, 

a-t (. - As) (m ~ “") -c [(-. 25 A.)(e" 7 £ 1°) (12.35) 
m c ic y c ¢ 

Hamilton’s equations are 

dr oP, m c 
and ? (12.36) 

ap ah _ ee (pcs) nae 
at Ox, ome 6 c 

where we have made use of the constraint (. = © 4,)( = ‘ a*) = mc? 

after differentiation. These two equations can be immediately shown to be equiv- 
alent to the Euler-Langrange equation (12.32). 

While the Hamiltonian above is formally satisfactory, it has several problems. 
The first is that it is by definition a Lorentz scalar, not an energylike quantity. 
Second, use of (12.23) and (12.33) shows that H = 0. Clearly, such a Hamiltonian 
formulation differs considerably from the familiar nonrelativistic version. The 
reader can refer to Barut (pp. 68 ff.) for a discussion of this and other alternative 

Hamiltonians. 

12.2. Motion in a Uniform, Static Magnetic Field 

Asa first important example of the dynamics of charged particles in electromag- 
netic ficlds we consider the motion in a uniform, static, magnetic induction B. 
The equations of motion (12.1) and (12.2) are 

dp _e dE 
-v x B = 2.37 

die” dt . (1237) 

where here the particle’s velocity is denoted by y. Since the energy is constant 
in time, the magnitude of the velocity is constant and so is y, Then the first 

equation can be written 

dv 
Prec X Wy (12.38) 

where 

eB ecB =— = 12.3 
ee yme E (12:39) 

is the gyration or precession frequency. The motion described by (12.38) is a 
circular motion perpendicular to B and a uniform translation parallel to B. The 

solution for the velocity is easily shown to be 

v(t) = ves + wgale, — iesde (12.40) 
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where €; is a unit vector parallel to the field. €, and €, are the other orthogonal] 
unit vectors. v; is the velocity component along the field. and a is the g 8yration 
radius. The convention is that the real part of the equation is to be taken. Then 
one can see that (12.40) represents a counterclockwise rotation (for positive 
charge ¢) when viewed in the direction of B. Another integration yiclds the dis. 
placement of the particle. 

x(t) = Xp + v,te, + iale; — tere “rH (12.41) 

The path is a helix of radius a and pitch angle @ = tan’ ’ (v,/wy,a). The magnitude 
of the gyration radius a depends on the magnetic induction B and the transverse 
momentum p, of the particic. From (12.39) and (12.40) it is evident that 

cp, = eBa 

This form is convenient for the determination of particle momenta. The radius 
of curvature of the path of a charged particle in a known B allows the determi- 
nation of its momentum. For particles with charge the same in magnitude as the 
electronic charge, the momentum can be written numerically as 

P,(MeVic) = 3.00 X 10°*Ba (gauss-cm) = 300 Ba (tesla-m) (12.42) 

12.3 Motion in Combined, Uniform, Static Electric 
and Magnetic Fields 

We now consider a charged particle moving in a combination of electric and 
magnetic fields E and B, both uniform and static, but in general not parallel. As 
an important special case, perpendicular fields will be treated first. The energy 
equation (12.2) shows that the particle’s energy is not constant in time. Conse- 
quently we cannot obtain a simple equation for the velocity, as was done for a 
static magnetic ficld. But an appropriate Lorentz transformation simplifies the 
equations of motion. Consider a Lorentz transformation to a coordinate frame 
K’ moving with a velocity u with respect to the original frame. Then the Lorentz 
force equation for the particle in K’ is 

dp’ y x B' = el FE’ + ——— 
a a ¢ ) 

where the primed variables are referred to the system K'. The ficlds E’ and B’ 
are given by relations (11.149) with v replaced by a. Let us first suppose that 
|E| < |B]. If u is now chosen perpendicular to the orthogonal vectors E and B, 

Pec (12.43) 

(12.44) 
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where || and refer to the direction of u. In the frame K’ the only field acting is 
a static magnetic field B’ which points in the same direction as B, but is weaker 
than B by a factor y '. Thus the motion in K’ is the same as that considered in 
Section 12.2, namely a spiraling around the lines of force. As viewed from the 
original coordinate system, this gyration is accompanied by a uniform “drift u 
perpendicular to E and B given by (12.43). This drift is sometimes called the 
EX B drift. The drift can be understood qualitatively by noting that a particle 
that starts gyrating around B is accelerated by the electric field, gains energy, and 
so moves in a path with a larger radius for roughly half of its cycle. On the other 
half, the efectric ficld decelerates it, causing it to lose energy and so move in a 

lighter arc. ‘The combination of arcs produces a translation perpendicular to E 

and B as shown in Fig. 12.1. The direction of drift is independent of the sign of 
the charge of the particle. 

The drift velocity u (12.43) has physical meaning only if it is less than the 
velocity of light, Le., only if |E] < |B]. Jf [E| > |B], the clectric field is so strong, 
that the particle is continually accelerated in the direction of E and its average 
energy continues to increase with time. To see this we consider a Lorentz trans- 

formation from the original frame to a system K” moving with a velocity 

w=c ee (12.45) 

relative to the first. In this frame the electric and magnetic fields are 

E” = 0, 
(12.46) 

BY = 

Thus in the system K" the particle is acted on by a purely electrostatic field which 
causes hyperbolic motion with ever-increasing velocity (see Problem 12.3). 

The fact that a particle can move through crossed E and B ficlds with the 
uniform velocity u = c£/B provides the possibility of selecting charged particles 
according to velocity. If a beam of particles having a spread in velocities is nor- 
mally incident on a region containing uniform crossed electric and magnetic 
fields, only those particles with velocities equal to c£/B will travel without de- 
flection. Suitable entrance and exit slits will then allow only a very narrow band 
of velocities around c£/B to be transmitted, the resolution depending on the 
gcomcetry, the velocities desired, and the ficld strengths. When combined with 
momentum selectors, such as a deficcting magnet. these E x B velocity selectors 

Figure 12.1 E x B drift of charged 

particles in crossed fields. 
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can extract a very pure and monocnergetic beam of particles of a definite mags 

from a mixed beam of particics with different masses and momenta. Large-seale 

devices of this sort are commonly used to provide experimental! beams of particles 

produced in high-energy accclerators. 
if E has a component parallel to B, the behavior of the particle cannot be 

understood in such simple terms as above. The scalar produce E - B is a Lorentz 

invariant quantity (see Problem 11.14), as is (B? — F*). When the ficlds were 
perpendicular (E+ B = 0), it was possible to find a Lorentz frame where E = () 

if |B] > |E|, or B = 0 if JE| > |B]. In those coordinate frames the motion was 

relatively simple. If E-B # 0, electric and magnetic fields will exist simulta- 

neously in all Lorentz frames, the angle between the fields remaining acute or 
obtuse depending on its value in the original coordinate frame. Consequently 

motion in combined ficlds must be considered. When the fields are static and 
uniform, it is a straightforward matter to obtain a solution for the motion in 
Cartesian components. This will be left for Problem 12.6. 

12.4 Particle Drifts in Nonuniform, Static Magnetic Fields 

tn astrophysical and thermonuclear applications it is of considerable interest to 
know how particles behave in magnetic fields that vary in space. Often the vari- 

ations are gentle enough that a perturbation solution to the motion, first given 
by Alfvén, is an adequate approximation. “Gentle enough” generally means that 
the distance over which B changes appreciably in magnitude or direction is large 

compared to the gyration radius a of the particle. Then the lowest order approx- 

imation to the motion is a spiraling around the lines of force at a frequency given 

by the local value of the magnetic induction. In the next approximation, the orbit 

undergoes slow changes that can be described as a drifting of the guiding center. 

The first type of spatial variation of the field to be considcred is a gradient 

perpendicular to the direction of B. Let the gradient at the point of interest be 

in the direction of the unit vector n. with n+ B = 0. Then, to first order, the 

gyration frequency can be written 

1 (aB a,(x) = = B(x) = of te (%)s : x) (12.47) 

In (12.47) € is the coordinate in the direction n, and the expansion is about the 

origin of coordinates where @, = wy. Since the direction of B is unchanged. the 

motion parallel to B remains a uniform translation. Consequently we consider 

only modifications in the transverse motion. Writing v, = Vo + ¥, Where vy is the 

uniform-field transverse velocity and y, is a small correction term, we can sub- 

stitute (12.47) into the force equation 

dy, ET YX a) (12.48) 

and, keeping only first-order terms, obtain the approximate result 

av [« Bae Pay z (2) | X om (12.49) 
is aE), 
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From (12.40) and (12.41) it is easy to see that for a uniform field the trans- 
verse velocity v, and coordinate x, are related by 

Vo = ~@ X (X) — X) 
1 (12.50) 

{%q — X) = —3 (Wo X Yo) 
hy 

where X is the center of gyration of the unperturbed circular motion (X = 
here). If (ex, X ¥o) is eliminated in (12.49) in favor of Xp, we obtain 

a “hs aB 
aH [»-2 - 7 (Z)o x x,(m- | X (12.51) 

This shows that apart from peri terms, v, bas a nonzero average value. 

sW= 5 x (3 on x ((%).( + Xo) (12.52) 

To determine the average value of (x,),(1+ Xp), it is necessary only to observe 

that the rectangular components of (Xo), oscillate sinusoidally with peak ampli- 

tude a and a phase difference of 90°. Hence only the component of (x,), parallel 
to n contributes to the average, and 

((%) (M1 + Xo) = (12.53) 

Thus the gradient drift velocity is given by 

@ 1 (aB “= Tk (2). x n) (12.54) 

An alternative form, independent of coordinates, is 

“e . * (Bx vB 12.55 rar ) 1239) 
From (12.55) it is evident that, if the gradient of the field is such that a |VB/B| 
<< 1, the drift velocity is small compared to the orbital velocity (@,@). The par- 

ticle spirals rapidly while its center of rotation moves slowly perpendicular to 
both B and VB. The sense of the drift for positive particles is given by (12.55). 
For negatively charged particles the sign of the drift velocity is opposite; the sign 
change comes from the definition of w,. The gradient drift can be understood 

qualitatively from consideration of the variation of gyration radius as the particle 
moves in and out of regions of larger than average and smaller than average field 
strength. Figure 12.2 shows this qualitative behavior for both signs of charge. 

Another type of field variation that causes a drifting of the particle’s guiding 
center is curvature of the lines of force. Consider the two-dimensional field shown 
in Fig. 12.3. It is locally independent of z. Figure 12.3@ shows a constant, uniform 
magnetic induction B,, parallel to the x axis. A particle spirals around the field 
lines with a gyration radius a and a velocity @,«, while moving with a uniform 
velocity v, along the lines of force. We wish to treat that motion as a zeroth-order 
approximation to the motion of the particle in the field shown in Fig. 12.3b, where 
the lines of force are curved with a local radius of curvature R that is large 

compared to a. 
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+e -e 

VB 
Figure 12.2 Drift of charged particles 
duc to transverse gradient of magnetic 

field. 

The first-order motion can be understood as follows. The particle tends to 

spiral around a field line, but the ficld line curves off to the side. As far as the 

motion of the guiding center is concerned, this is equivalent to a centrifugal 

acceleration of magnitude uy/R. This acceleration can be viewed as arising from 

an effective clectric field 

Eo = — 3 Ui (12.56) 

in addition to the magnetic induction By. From (12.43) we sce that the combined 

effective electric field and the magnetic induction cause a curvature drift velocity, 

(12.57) 

(12.58) 

The direction of drift is specified by the vector product, in which R is the radius 

vector from the effective center of curvature to the position of the charge, The 

sign in (12.58) is appropriate for positive charges and is independent of the sign 

of vy. For negative particles the opposite sign ariscs from w,. 

A more straightforward, although pedestrian, derivation of (12.58) can be 

given by solving the Lorentz force equation dircctly. If we use cylindrical coor- 

y y 

fa) rc) 
Figure 12.3 (a) Particle moving in helical path along lines of uniform, constant 
magnetic induction. (b} Curvature of lines of magnetic induction will cause drift 
perpendicular to the x-y plane. 
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dinates (p, $, z) appropriate to Fig. 12.36 with origin at the center of curvature, 
the magnetic induction has only a ¢ component, Bz = Bo( R/p). Then the force 

equation can be easily shown to give the three equations: 

, R 
Bp pb? = —w, —z ae 

pe + 2ph = 0 (12.59) 

f= On—p 
p 

The second equation has a first integral, p°é = Rv,,a constant. The third equation 
has a first integral, 2 = w, In(p/R) + vo, Where vy is a constant of integration. 

With the zeroth-order trajectory a helix with radius small compared to R, il is 
natural to write p = R + x and expand (p/R)" and In(p/R) in powers of x/R. Then 

2 @p x + Uo, and the radial equation of motion can be approximated by 

e+ (op 432\e~8— oe wy 252 = if R R V0 

which describes simple harmonic oscillations in x around a displaced equilibrium 

2 
vo 

OR &y 
(x) = 

where we have assumed v, << w,R. The mean value of z is then 

2 

@) = ty + Hla) = (12.60) 

This is just the curvature drift given by (12.58). 
For regions of space in which there are no currents the gradient drift v,; 

(12.55) and the curvature drift ve (12.58) can be combined into one simple form. 
This follows from the fact that for a two-dimensional field such as shown in 
Fig. 12.3b V x B = 0 implies 

vB 
B 

Evidently then, for a two-dimensional field, the sum of y,; and v¢ is a total drift 
velocity, 

1 2>,12{/RXxB 
ip = —s (uy; + VD) = 12.61 ASR (vj, + 2vD\ RB (12.61) 

where v, = ya is the transverse velocity of gyration. For singly charged non- 

relativistic particles in thermal equilibrium, the magnitude of the drift velocity is 

172 T(K) 

R(m) B(gauss) 
(12.62) vptem/s) = 

The particle drifts implied by (12.61) are troublesome in certain types of 
thermonuclear machine designed to contain hot plasma. A possible configuration 
is a toroidal tube with a strong field supplied by solenoidal windings around the 
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torus. With typical parameters of R = 1 meter, B = 10° gauss, particles ina 1 eV 

plasma (J = 10* K) will have drift velocities up ~ 1.8 X 10° env/s. This means 
that they will drift out to the walls in a small fraction of a second. For hotter 

plasmas the drift rale is correspondingly greater. One way to prevent this first- 

order drift in toroidal geometries is to twist the torus into a figure eight. Since 

the particles generally make many circuits around the closed path before drifting 
across the tube, they fecl no net curvature or gradient of the field. Consequently 
they experience no net drift, at least to first order in (/R. This method of elimi- 

nating drifts due to spatial variations of the magnetic field is used in the 
Stellarator type of thermonuclear machine, in which containment is attempted 
with a strong, externally produced, axial magnetic field. 

12.5 Adiabatic Invariance of Flux Through Orbit of Particle 

The various motions discussed in the preceding sections have been perpendicular 
to the lines of magnetic force. These motions, caused by electric fields or by the 

gradient or curvature of the magnetic field. arise because of the peculiatities of 
the magnetic-force term in the Lorentz force equation. To complete our general 
survey of particle motion in magnetic fields, we must consider motion parallel to 
the lines of force. It turns out that for slowly varying fields a powerful tool is the 

concept of adiabatic invariants. In celestial mechanics and in the old quantum 
theory, adiabatic invariants were useful in discussing perturbations on the one 

hand, and in deciding what quantities were to be quantized on the other. Our 

discussion will resemble most closely the celestial-mechanical problem, since we 

are interested in the behavior of a charged particle in slowly varying fields, which 

can be viewed as small departures from the simple, uniform, static field consid- 

ered in Section 12.2, 
The concept of adiabatic invariance is introduced by considering the action 

integrals of a mechanical system. If q, and p; are the generalized canonical co- 

ordinates and momenta, then, for each coordinate which is periodic, the action 

integral J; is defined by 

J,= $p. dq, (12.63) 

The integration is over a complete cycle of the coordinate q). For a given me- 

chanical system with specified initial conditions the action integrals J; are con- 

stants. If now the propertics of the system are changed in some way (c.g.,a change 

in spring constant or mass of some particle), the question arises as to how the 

action integrals change. It can be proved that, if the change in property is slow 

compared to the relevant periods of motion and is not related to the periods 

(such a change is called an adiabatic change), the action integrals are invariant. 

This means that, if we have a certain mechanical system in some state of motion 

and we make an adiabatic change in some property so that after a long time we 

end up with a different mechanical system, the final motion of that different 

system will be such that the action integrals have the same values as in the initial 

"See, for example, M. Born, The Mechanics of the Atom, Bell, London (1927). of 1. Percival and 
D. Richards, Introduction to Dynamics, Cambridge University Press, Cambridge (1982), Section 9-4 
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system. Clearly this provides a powerful tool in examining the effects of slow 
changes in properties. 

For a charged particle in a uniform, static, magnetic induction B, the trans- 
verse motion is periodic. The action integral for this transverse motion is 

y= $ P,- dl (12.64) 

where P, is the transverse component of the canonical momentum (12.14) and 
Vis a directed line element along the circular path of a particle. From (12.14) 
we find that 

1= pom -ats£$ a-at (12.65) 

Since y, is parallel to dl, we find 

J= ¢ ymuernye? db + £¢ A-dt (12.66) 

Applying Stokes’s theorem to the second integral and integrating over @ in the 
first integral, we obtain 

J = 2aymuga? + © i Benda (12.67) 
cds 

Since the line element dl in (12.64) is in a counterclockwise sense relative to B, 
the unit vector n is antiparallel to B. Hence the integral over the circular orbit 
subtracts [rom the first term. This gives 

J = ymogna = < (Bm?) (12.68) 

making use of wy = eB/ymc. The quantity Bza’ is the flux through the particle’s 
orbit. 

If the particle moves through regions where the magnetic ficld strength varies 
slowly in space or time, the adiabatic invariance of J means that the flux linked 
by the particle’s orbit remains constant. If B increases, the radius a will decrease 
so that Baa remains unchanged. This constancy of flux linked can be phrased 
in several ways involving the particle's orbit radius, its transverse momentum, its 
magnetic moment. These different statements take the forms: 

Ba? 

pls are adiabatic invariants (12.69) 

Yi 

where 4 = (ewga*/2c) is the magnetic moment of the current loop of the particle 
in orbit. If there are only static magnetic fields present, the speed of the particle 
is constant and its total energy does not change. Then the magnetic moment 4 
is itself an adiabatic invariant. In time-varying fields or with static electric fields, 

p. is an adiabatic invariant only in the nonrelativistic limit. 
Let us now consider a simple situation in which a static magnetic field B acts 
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Figure 12.4 

mainly in the z direction, but has a small positive gradient in that direction. Figure 
12.4 shows the general behavior of the lines of force. In addition to the z com- 

ponent of field there is a small radial component due to the curvature of the lines 

of force. For simplicity we assume cylindrical symmetry. Suppose that a particle 
is spiraling around the z axis in an orbit of small radius with a transverse velocity 
vy and a component of velocity vy) parallel to B at z = 0, where the axial field 

strength is By. The speed of the particle is constant so that any position along the 

Z axis 

ue + ot = 02 (12.70) 

where v} = vio + Ujo is the square of the speed at z = 0. If we assume that the 
flux linked is a constant of motion, then (12.69) allows us to write 

vi _ vin 
B By 

where B is the axial magnetic induction. Then we find the parallel velocity at any 
position along the z axis given by 

(12.71) 

=o} - ofp 2 : (12.72) 

Equation (12.72) for the velocity of the particle in the z direction is equivalent 
to the first integral of Newton’s equation of motion for a particle in a one- 
dimensional potential* 

V(z) = 3m vie B(z) 
Bo 

If B(z) increases enough, eventually the right-hand side of (12.72) will vanish at 
some point z = Zp. This means that the particle spirals in an ever-lighter orbit 
along the lines of force, converting more and more translational energy into 
energy of rotation, until its axial velocity vanishes. Then it turns around, still 
spiraling in the same sense, and moves back in the negative z direction. The 
particle is reflected by the magnetic field, as is shown schematically in Fig. 12.5. 

Equation (12.72) is a consequence of the assumption that p7/B is invariant. 
To show that at least to first order this invariance follows directly from the 
Lorentz force equation, we consider an explicit solution of the equations of mo- 

*Note, however, that our discussion is fully relativistic. The analogy with one-dimensional nonrela- 
tivistic mechanics is only a formal one. 
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Figure 12.5 Reflection of charged 
particle out of region of high field 
strength. 

tion. If the magnetic induction along the axis is B(z), there will be a radial com- 
ponent of the field near the axis given by the divergence equation as 

AB(z) 

az 
B,fp, 2) = -3 (12.73) 

where p is the radius out {rom the axis. The z component of the force equation 
is 

a z= (-pds,) = —— 4 BO) 
yme 2yme az (12.74) 

where ¢ is the angular velocity around the z axis. This can be written, correct to 

first order in the small variation of B(z), as 

2 viv AB(z) fae 75 
2By az (12.75) 

where we have used p°6 = —(«w,)y = —(07o/wgy). Equation (12.75) has as its 
first integral (12.72), showing that to first order in small quantities the constancy 
of flux linking the orbit follows directly from the equations of motion. 

The adiabatic invariance of the flux linking an orbit is useful in discussing 
particle motions in all types of spatially varying magnetic fields. The simple ex- 
ample described above illustrates the principle of the “magnetic misror”: 
Charged particles are reflected by regions of strong magnetic field. This mirror 
property formed the basis of a theory of Fermi for the acceleration of cosmic- 
ray particles to very high energies in interstellar space by collisions with moving 
magnctic clouds. The mirror principle can be applied to the containment of a hot 
plasma for thermonuclear energy production. A magnetic bottle can be con- 
structed with an axial field produced by solenoidal windings over some region of 
spacc, and additional coils at cach end to provide a much higher field toward the 
ends. The lines of force might appear as shown in Fig. 12.6. Particles created or 
injected into the field in the central region will spiral along the axis, but will be 
reflected by the magnetic mirrors at each end. If the ratio of maximum field B,,, 

in the mirror to the field B in the central region is very large, only particles with 
a very large component of velocity parailei to the axis can penetrate through the 
ends. From (12.72) it is evident that the criterion for trapping is 

ve 
< (® - :) (12.76) 
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Figure 12.6 Schematic diagram of 
“mirror” machine for the 

containment of a hot plasma, b = te Ey 2 

If the particles arc injected into the apparatus, it is easy to satisfy requirement 
(12.76). Then the escape of particles is governed by the rate at which they are 

scattered by residual gas atoms, etc., in such a way that their velocity components 
violate (12.76). 

Another area of application of these principles is to terrestrial and stellar 
magnetic fields. The motion of charged particles in the magnetic dipole fields of 

the sun or earth can be understood in terms of the adiabatic invariant discussed 
here and the drift velocities of Section 12.4. Some aspects of this topic are left to 
Problems 12.9 and 12.10 on the trapped particles around the earth (the Van Aflen 
belts). 

12.6 Lowest Order Relativistic Corrections to the Lagrangian 
for Interacting Charge Particles: The Darwin Lagrangian 

In Section 12.1 we discussed the general Lagrangian formalism for a relativistic 

particle in external clectromagnetic fields described by the vector and scalar po- 

tentials, A and ®. The appropriate interaction Lagrangian was given by (12.11). 

If we now consider the problem of a conventional Lagrangian description of the 

interaction of two or more charged particles with each other, we see that it is 

possible only at nonrelativistic velocities. The Lagrangian is supposed to be a 

function of the instantaneous velocities and coordinates of all the particles. When 

the finite velocity of propagation of electromagnetic fields is taken into account, 

this is no longer possible, since the values of the potentials at one particle due to 

the other particles depend on their state of motion at “retarded” times, Only 

when the retardation effects can be neglected is a Lagrangian description in terms 

of instantaneous positions and velocities possible. In view of this one might think 

that a Lagrangian could be formulated only in the static limit, ie., to zeroth order 

in (u/c). We will now show, however, that lowest order relativistic corrections can 

be included, giving an approximate Lagrangian for interacting particles, correct 

to the order of (w/c)? inclusive. 
it is sufficient to consider two interacting particles with charges q; and 42, 

masses m, and m, and coordinates x, and x). The relative separation is r = x, ~ X2- 

The interaction Lagrangian in the static limit is just the negative of the elcctro- 

static potential energy, 

ie = -L2 (12.77) 
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If attention is directed to the first particle, this can be viewed as the negative of 
the product of g, and the scalar potential @,, due to the second particle ai the 

position of the first. This is of the same form as (12.9). If we wish to generalize 
beyond the static limit, we must, according to (12.11), determine both ®,, and 

Ajo, at least to some degree of approximation. In general there will be relativistic 

corrections to both ®,, and A,2. But in the Coufomb gauge, the scalar potential 

is given correctly to all orders in u/c by the instantaneous Coulomb potential. 
Thus, if we caiculate in that gauge. the scalar-potential contribution ®,, is already 
known. All that needs to be considered is the vector potential Aj>. 

If only the lowest order relativistic corrections are desired, retardation effects 

can be neglected in computing Aj2. The reason is that the vector potential enters 
the Lagrangian (12.11) in the combination ¢,(v,/c) + Aj)2. Since Aj, itsell is of the 

order of v./c, greater accuracy in calculating Az is unnecessary. Conscquently, 

we have the magnetostatic expression 

) By? ‘Aa Ue!) dx 

Ix — x'] 
where J, is the transverse part of the current due to the second particle, as dis- 

cussed in Section 6.3. From equations (6.24)-(6.28) it can be shown that the 

transverse current is 

(12.78) 

I(x") = gay 8(x' — x2) ~ 2 v [sean (12.79) 

When this is inserted in (12.78), the first term can be integrated immediately. 

Thus 

qeN2 # {1 Yo+ (8! = ™)] oy, 
= d 

Au™ er 4ne/ |x’ — x,| | |x’ -— x) # 

x’ — x, and integrating by parts, the integral can By changing variables to y 
be put in the form, 

~m_ dy [ay 1 d’y 
vy ly-el 

The integral can now be done in a straightforward manner to yield 

Vv; 223k mote nC) 
The differentiation of the second term leads to the final result 

An =e [» + Haro 2] (12.80) Pr 

With expression (12.80) for the vector potential due to the second particle 
at the position of the first, the interaction Lagrangian for two charged particles, 

including lowest order relativistic effects, is 

4. 1 1 2 + 8) Lie a {- ioe [» oy, +24 2 = (12.81) 

This interaction form was first obtained by Darwin in 1920. It is of importance 
in a quantum-mechanical discussion of relativistic corrections in two-electron 
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atoms. In the quantum-mechanical problem the velocity vectors are replaced by 
their corresponding quantum-mechanical operators (Dirac a’s). Then the inte, 
action is known as the Breit interaction (1930).* 

For a system of interacting charged particles the complete Darwin 
Lagrangian, correct to order I/c? inclusive, can be written down by expanding 

the [ree-particle Lagrangian (12.7) for each particle and summing up all the in- 
teraction terms of the form (12.81). The result is 

1 Gi 
Loarwin = 5 3D met + os BE mo! = ie 

oy ry (12.82) 

+ gE tse + Oo fitey fi 
where r= |x, — x,|, f, is a unit vector in the direction x, — x,, and the prime on 
the double summation indicates the omission of the (self-energy) terms, i = je 
Although the Darwin Lagrangian has had its most celebrated application in the 
quantum-mechanical context of the Breit interaction, it has uses in the purely 
classical domain. Two examples are cited in the suggested reading at the end of 
the chapter. Sce also the problems. 

12.7 Lagrangian for the Electromagnetic Field 

In Section 12.1 we considered the Lagrangian formulation of the equations of 
motion of a charged particle in an external electromagnetic field. We now ex- 
amine a Lagrangian description of the clectromagnetic field in interaction with 
specified external sources of charge and current. The Lagrangian approach to 
continuous fields closely parallels the techniques used for discrete point particles. 
The finite number of coordinates q;(1) and g)(), i = 1,2,...,n. are replaced by 
an infinite number of degrees of frecdom. Each point in space-time x* corre- 
sponds to a finite number of values of the discrete index i. The generalized co- 
ordinate q; is replaced by a continuous field ¢, (x), with a discrete index (k = 
2,....m) and a continuous index (x°). The generalized velocity 4; is replaced by 
the 4-vector gradient, 4°¢,. The Euler-Lagrange equations follow {rom the sta- 

tionary property of the action integral with respect to variations d¢, and 6(4%,) 

around the physical values, We thus have the following correspondences: 

ix k 

qi > (2) 

4 > PO (2) (12.83) 

L=¥ biand) > | br. 9°6,) ae 
a (al) aby ak _ att 
dt \ aq; aq; HM) — ade 

*Scc EI. A. Bethe and F. E. Salpeter, Quantum Mechanics of One- and Two-Electron Atoms, Springer- 
Verlag, Berlin; Academic Press, New York (1957). pp. 170 ff. 
*For more detail and oF background than given in our abbreviated account, see Goldstein (Chapter 
12) or other references cited at the end of the chapter. 
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where ¥ is a Lagrangian density. corresponding to a definite point in space-time 
and equivalent to the individual terms in a discrete particle Lagrangian like 
(12.82), For the electromagnetic field the “coordinates” and “velocities” are A“ 

and a®A®, 
The action integral takes the form. 

A= I! LOcd= [yz dx {12.84) 

The Lorentz-invariant nature of the action is preserved provided the Lagrangian 

density & is a Lorentz scalar (because the four-dimensional volume element is 
invariant). In analogy with the situation with discrete particles, we expect the 
free-field Lagrangian at least to be quadratic in the velocities, that is, d°A" or 
F*®, The only Lorentz-invariant quadratic forms are F,,F"* and F,g¥** (see 
Problem 11.14). The latter is a scalar under proper Lorentz transformations, but 

a pseudoscalar under inversion. If we demand a scalar £ under inversions as well 
as proper Lorentz transformations, we must have Yj... as some multiple of 

Fig? The interaction term in & involves the source densities. These are de- 

scribed by the current density 4-vector, /*(x). From the form of the electrostatic 

and magnetostatic energies, or from the charged-particle interaction Lagrangian 
(12.10), we anticipate that ¥,,, is a multiple of J,A*. With this motivation we 

postulate the electromagnetic a oe density: 

£= “2. FigF°® — 14, a" (12.85) 

The coefficient and sign of the interaction terms is chosen to agree with (12.10); 
the sign and scale of the free Lagrangian is set by the definitions of the field 
strengths and the Maxwell equations. 

In order to use the Euler-Lagrange equation in the form given in (12.83), 
we substitute the definition of the fields and write 

1 1 ep an WA" — ATA" AA” — aPAX) — = o i SF = Te Bane MA — AAN(PAY — A) — 7 Jy" (12.86) 

In calculating af/a(08A*) care must be taken to pick up all the terms. There are 
four different terms, as can be seen from the following explicit calculation: 

af 1 { By BP — BF 8, ea 
a(aPA) ia 6m Taq onbur) 5,* 8,°F#" — 3," ey ance 

Because of the symmetry of g,g and the antisymmetry of F°*, all four terms are 

equal and the derivative becomes 

ak 1 i 
= -— Fa, =F, 12.87 

agra’) 4a a ( ) 

The other part of the Euler-Lagrange equation is 

1 
ares 12.88 ee (12.88) 

Thus the equations of motion of the electromagnetic field are 

(12.89) 
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These are recognized as a covariant form of the inhomogeneous Maxwell equa- 
tions (11.141). 

The Lagrangian (12.85) yields the inhomogeneous Maxwell equations, but 
not the homogeneous ones. This is because the definition of the field strength 

tensor F** in terms of the 4-vector potential A* was chosen so that the homo- 

gencous equations were satisfied automatically (see Section 6.2). To see this in 
our present 4-tensor notation, consider the left-hand side of the homogeneous 

equations (11.142): 

AFP = Fi, #F,, 

= 4,67 3,A, 

= 69 Ay 

But the differential operator 4,4, is symmetric in a and A (assuming A, is well 
behaved), while ¢?®“ is antisymmetric in a and A. Thus the contraction on a and 
A vanishes. The homogeneous Maxwell equations are satisfied trivially, 

The conservation of the source current density can be obtained (rom (12.89) 

by taking the 4-divergence of both sides: 

1 1 — a°0F,, = — IJ, 
an 8 OS ; 

The left-hand side has a differential operator that is symmetric in a and £, while 
Fgq is antisymmetric. Again the contraction vanishes and we have 

as, =0 (12.90) 

12.8 Proca Lagrangian; Photon Mass Effects 

The conventional Maxwell equations and the Lagrangian (12.85) are based on 
the hypothesis that the photon has zero mass. As discussed in the Introduction, 
it can always be asked what evidence there is for the masslessness of the photon 
or equivalently for the inverse square law of the Coulomb force and what con- 

sequences would result from a nonvanishing mass. A systematic technique for 
such considerations is the Lagrangian formulation. We modify the Lagrangian 
density (12.85) by adding a “mass” term. The resulting Lagrangian is known as 

the Proca Lagrangian, Proca having been the first to consider it (1930, 1936). The 

Proca Lagrangian is 

1 we 1 — FyyF*% + © AAT - = JAS 12. Fos go AaA* — — Jo (12.91) Preece = — 76 

The parameter yz has dimensions of inverse length and is the reciprocal Compton 
wavelength of the photon (yz = ¢,c/fi). Instead of (12.89), the Proca equations 
of motion are 

PFq + A, = i, (12.92) 

with the same homogencous equations, 2, ¥“* = 0, as in the Maxwell theory. We 
observe that in the Proca equations the potentials as well as the ficlds enter. In 
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contrast to the Maxwell equations, the potentials acquire real physical (observ- 
able) significance through the mass term. In the Lorenz gauge, now required by 
current conservation, (12.92) can be written 

4a 
OA, + 2A, = Fe (12.93) 

and in the static limit takes the form 

4 
VAy~ BA, = ——" Jy 

If the source is a point charge q at rest at the origin, only the time component 
» = @ is nonvanishing. It takes the spherically symmetric Yukawa form 

(x) = oo (12.94) 

This shows the characteristic feature of the photon mass. There is an exponential 

falloff of the static potentials and fields, with the Ie distance equal to x ', As 
discussed in the Introduction and also in Problem 12.15, the exponential factor 
alters the character of the earth’s magnetic field sufficiently to permit us to set 
quite stringent limits on the photon mass from geomagnetic data. It was al one 
time suggestcd* that relatively simple laboratory experiments using lumped LC 
circuits could improve on even these limits, but the idea was conceptually flawed. 
There is enough subtlety involved that the subject is worth a brief discussion." 

The starting point of the argument is (12.93) in the absence of sources. If we 
assume harmonic time and space variation, the constraint equation on the fre- 
quency and wave number is 

w? = ck? + pe? (12.95) 

This is the standard expression for the square of the energy (divided by f) for a 
particle of momentum #k and mass jfi/c. Now consider some resonant system 

(cavity or lumped circuit). Suppose that when jz = 0 its resonant frequency is @, 
while for 4 # 0 the resonant frequency is w. From the structure of (12.95) it is 

tempting to write the relation, 

w= w+ we? (12.96) 

Evidently, the smaller the frequency, the larger the fractional difference between 
w and w,» for a given photon mass. This suggests an experiment with lumped LC 
circuits. The scheme would be to measure the resonant frequencies of a sequence 
of circuits whose w) values are in known ratios. If the observed resonant fre- 

quencies arc not in the same proportion, evidence for  # 0 in (12.96) would be 
found, Franken and Ampulski compared two circuits. one with a certain induc- 
tance L and a capacitance C, hence with @) = (LC ~' and another with the same 

inductor, but two capacitances C in parallel. The squares of the observed fre- 

*P. A, Franken and G. W. Ampulski, Phys. Rev. Lett. 26, 115 (1971). 
“Shortly after the idea was proposed, several analyses based on the Proca equations appeared. ome 
of these are A. §. Goldhaber and M. M. Nieto, Phys. Rev. Lett. 26, 1390 (1971): D. Park ani 
Williams, Phys, Rev. Lett. 26, 1393 (1971); N. M. Kroll, Phys. Rev. Fert. 26, 1395 (1971): D. é 
Boulware, Phys. Rev. Let. 27, 35 (1971): N. M. Kroll, Phys. Rev. Lett, 27,340 (1971). 
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quencies, corrected for resistive effects, were in the ratio 2:1 within errors. They 

thus inferred an upper limit on the photon mass. pointing out that in Principle 
improvement of the accuracy by several orders of magnitude was possible if the 
idea was sound. 

What is wrong with the idea? The first observation is that lumped circuits 
are by definition incapable of setting avy limit on the photon mass.* The lumped 
circuit concept of a capacitance is a two-terminal box with the property that the 

current flow / at one terminal and the voltage V between the terminals are related 
by Z = C dV/dt. Similarly a lumped inductance is a two-terminal box with the 

governing equation V = —L di/dt. When two such boxes are connected, the 
currents and voltages are necessarily equal, and the combined system is described 
by the equation, V + LC d?V/dr? = 0. The resonant frequency of a lumped LC 
circuit is wy) = (LC)~", period. 

It is true, of course, that a given set of conducting surfaces or a given coil of 

wire will have different static properties of capacitance or inductance depending 
on whether » = 0. The potentials and fields are all modified by exponential 

factors of the general orm of (12.94), The question then arises as to whether one 

can set a meaningful limit on 4 by means of a “tabletop” experiment, that is, an 
experiment not with lumped-circuit elements but with ones whose sizes are mod- 
est. The reader can verify, for example, that for a solid conducting sphere of 
radius @ at the center of a hollow conducting shell of inner radius b held at zero 
potential, the capitance is increased by an amount j17a°b/3, provided jb << 1. It 
then turns out that instead of the fractional difference, 

dw _ we? ig DR (12.97) 

that follows from (12.96) with w = (LC)~', the actual effect of the finite photon 
mass is 

eo | Oued? ) (12.98) 
on 

where d is a dimension characteristic of the circuit and , is the resonant fre- 

quency for x = 0. This makes a “tabletop” experiment possible in principle, but 

very insensitive in practice to a possible photon mass. 
Although the estimate (12.98) says it all, it is of interest to consider the effect 

of a finite photon mass for transmission lines, waveguides, or resonant cavities. 
For transmission lines, the effect of the photon mass is the same as for static 
lumped-circuit parameters. We recall from Chapter 8 that for « = 0 the TEM 

modes of a transmission line are degenerate modes, with propagation at a phase 
velocity equal to the velocity of light. The situation does not alter if « # 0. The 
only difference is that the transverse behavior of the fields is governed by 
(¥? — y?)y = 0 instead of the Laplace equation. The capacitance and inductance 
per unit length of the transmission line are altered by fractional amounts of order 

ped’, but nothing else. (The result of Problem 5.29 still holds.) 
For TE and TM modes in a waveguide the situation is more complicated. 

*1 am indebted to E. M. Purcell for emphasizing that this is the point almost universally missed or at 
least glossed over in discussions of the Franken-Ampulski proposal. 
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The boundary conditions on fields and potentials must be considered with care. 
Analysis shows (see Kroll, op. cit.) that TM modes have propagation governed 
by the naive equation {12.96}, but that TE modes generally propagate differently. 

In any event, since the cutoff frequency of a guide is determined by its lateral 

dimensions, the generally incorrect cstimate (12.97) becomes the same as the 

proper estimate (12.98). 

For resonant cavities a rigorous solution is complicated, but for small mass 
some simple results emerge. For example, for a rectangular cavity, (12.96) holds 
to a good approximation for modcs with /, m_n all different from zero, but fails 
if any mode number is zcro. This is because the fields behave in the direction 

associated with vanishing /, m, or n as static fields and the arguments already 
made apply. The low-irequency modes (Schumann resonances) of the earth- 
ionosphere cavity, discussed in Section 8.9, are of particular intcrest. These modes 
have a radial electric field and to the zeroth order in h/R, where h is the height 
of the ionosphere and R the radius of the earth, are TEM modes in a parallel 
plate geometry. Thus their propagation, hence resonant frequencies, are unal- 
tered from their yz = 0 values. To first order in A/R there is a mass-dependent 

change in resonant frequency. The result (sce Kroll’s second paper cited above) 
is that (12.97) is modified on its right-hand side by a multiplicative factor g = 

0.44 K/R for the lowest Schumann mode. With k = 70 km, g = 5 x 10 *. This 
means that the resonant frequency of w, ~ 50 s~! is a factor of (1/g)'? = 14 less 
effective in setting a limit on the photon mass than naive considerations imply. 

12.9 Effective “Photon’’ Mass in Superconductivity; 
London Penetration Depth 

A counterpart of Proca electrodynamics is found in the London theory of the 
electromagnetic behavior of superconductors, formulated to explain the Meissner 
effect. The Meissner effect (1933) is the expulsion of a magnetic field from the 
interior of a superconducting material as it makes a transition from the normal 
state (f > T,) to the superconducting state (7 < T,). If the field is applied after 
the material is superconducting, it does not penetrate into the sample, or rather, 
it penetrates a very small distance called the London penetration depth Aj, (typ- 
ically a few tens of nanometers). Rather than being a perfect conductor, a 

superconductor is perfectly diamagnetic. It is this phenomenon. which is a con- 
sequence of an effective “photon” mass for fields within a superconductor, that 
we explore briefly. 

We begin a simple phenomenological discussion by assuming that the current 
flow within a superconductor is caused by the nonrelativistic motion of charge 

carriers of charge Q, effective mass mg, and density ny. If the average local 
velocity of these carriers is y, he current density is 

J = Ongv 

In the presence of electromagnetic fields the current can be expressed in terms 
of the canonical momentum P through (12.14), P = mov + QAle: 

Q gy J = — ngP — —— 1A 
meee mee © 
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The superconducting state is a coherent state of the charge carriers with vanishing 
canonical momentum. (P = 0 was an assumption by the Londons, but now has 
a firm quantum-mechanical foundation—see Kittel, Chapter 12.) The effectiyh 
current density within a superconductor is therefore 

rom 
J=- NgA 12, 

Mgt ‘a (12.99) 

With this current density inserted in the Lorenz-gauge wave equation for A 

((6.16), but in Gaussian units], the wave equation takes the Proca form (12.93), 
but with no source term: 

WA - A - WA =0 

where n° = 47Q?ng/mgc’. It follows from (12.99) that the boundary condition 
on A at an interface between normal and superconducting media across which 
no current is flowing is that the normal component of A vanishes. In the static 
limit and planar geometry, the solution of the London equation akin to (12.94) 
is A « e'"*, showing that the London penetration depth is Ay, = w ': 

2 
fae 
V470’ng 

The effective “photon” mass is (¢,).4¢ = A/Ay ec. Since the charge carriers are 

surely related to electrons in the material, we express the charge Q in units of e, 
the protonic charge, the mass mg in units of m,, the electronic mass, and write 
the density of carriers in units of the inverse Bohr radius cubed. Then the rest 
energy of the “photon” can be written 

A= (12.100) 

ge = Q jAmngas oe 

mor Y mgim. | ag 

The dimensionless quantity in square brackets is presumably of order unity. The 
rest energy of the “photon” is thus of the order of the Rydberg energy, that is, 
a few electron volts. 

Experimentally and theoretically, it is known that the charge carriers in low- 
temperature superconductors are pairs of electrons loosely bound by a second- 
order interaction through lattice phonons. Thus Q = -2e, mg = 2m,, and 

Ng = Ngy/2, where neg is the effective number of electrons participating in the 

current flow. A useful formula is 4? = 87rottg, where ry = 2.818 X 107" m is 
the classical electron radius. With ng = O(10*% cm™*) we find 

Ay = wo! = O(4 X 107% cm) 

The BCS quantum-mechanical theory* shows that at zero temperature, ng = 
Nyy/2 = 2E-N(0)/3, where Ey is the Fermi energy of the valence band and N(O) 
is the density of states (number of states per unit energy of one electronic spin 
state) at the Fermi surface. For a degenerate free Fermi gas, ney is equal to the 

total density of electrons, but in a superconductor the density of states is modified 
by the interactions and resulting energy gap. Using haif the total number of 

‘J. Bardeen, L. N. Cooper, J. 8. Schrieffer, Phys. Rev. 108, 1175 (1957). 
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valence electrons per unit volume for xg in {12.100} yields only order-of- 
magnitude estimates for A,. In passing we note that in high-temperature (cupric 
oxide} superconductors penetration depths are found to be an order of magni- 
tude smailer than in conventional superconductors. 

Measurements of A,. especially its temperature dependence, can be accom- 
plished by incorporating the superconducting specimen into a resonant circuit 
and studying the shift in resonant frequency with change in temperature. In cir- 
cumstances in which A, is small compared to both the wavelength A associated 

with the resonant circuit and the sample size, a simple calculation (Problem 12.20) 
paralleling Section 8.1 leads to a purely reactive surface impedance, 

2 
Z,* -i se 2 (Gaussian units) or = Z, = i Pm Z, (SE units) 

With our convention about time dependence (e “”), the impedance is inductive, 
corresponding to an inductance per unit area, . = oA, (SI units). 

Our sketch of the simple London theory addresses only the Meissner effect, 
and not all of it. The magnetic and thermodynamic propertics of superconduc- 
tors, the physical size of the coherent state (coherence length £), and many other 
features are fully addressed only by the microscopic quantum-mechanical theory. 
The reader wishing to leam more about superconductivity may consult Ashcroft 
and Mermin or Kittel and the numerous references cited there. An alternative, 
perhaps more physical, approach (also by F. London) to the London equations 
is addressed in Problem 12.21. 

Canonical and Symmetric Stress Tensors; 
Conservation Laws 

A. Generalization of the Hamiltonian: Canonical Stress Tensor 

In particle mechanics the transition to the Hamiltonian formulation and con- 
servation of energy is made by first defining the canonical momentum variables 

ab 
Sag, 

and then introducing the Hamiltonian 

H=S pa - Lb (12.101) 

It can then be shown that d/i/dt = 0 provided a//at = 0, For fields we anticipate 
having a Hamiltonian density whose volume integral over three-dimensional 
space is the Hamiltonian. The Lorentz transformation propertics of # can be 
guessed as follows. Since the energy of a particle is the time component of a 
4-vector, the Hamiltonian should transform in the same way. Since H = f 9 dx, 
and the invariant 4-volume element is dtr = d?x dx, it is necessary that the 
Hamiltonian density # transform as the time-time component of a second-rank 
tensor. If the Lagrangian density for some fields is a function of the field variables 
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oy(x), 8b, (x), K = 1, 2,..., 7, the Hamiltonian density is defined in analogy 

with (12.101) as ’ 

Seg (12.102) 

The first factor in the sum is the field momentum canonically conjugate to ¢,(x) 
and d¢,/ét is equivalent to the velocity g;. The inferred Lorentz transformation 

properties of # suggest that the covariant generalization of the Hamiltonian den- 
sity is the canonical stress tensor: 

OB ot 2 — pb FE > Fed) Pd, — gL (12.103) 

For the free electromagnetic field Lagrangian 

Len = = FE 
, loa * 

the canonical stress tensor is 

op — 9Lem Kins Sep 
T ris m 5a,A) ° 4 8 Len 

where a summation over A is implied by the repeated index. With the help of 
(12.87) (but notice the placing of the indices!) we find 

pot = 1 gang ahAs — gL, (12.104) 
dn 

To elucidate the meaning of the tensor we exhibit some components. With 

& = (E? — B’)/8z and (11.138) we find 

wo | ape 24+. T= (E+ BY) + V- (@E) 

a oe B), + EVAR) (12.108) 

Ts ze xB, +>— raw x @B), - = we] 

In writing the second terms here we have made use of the free-field equations 

V+ E =0and V x B - dE/dx, = 0. If we suppose that the fields are localized in 

some finite region of space (and, because of the finite velocity of propagation, 

they always are), the integrals over all 3-space at fixed time in some inertial [frame 

of the components T” and T™ can be interpreted, as in Chapter 6, as the total 

energy and c times the total momentum of the electromagnetic fields in that 

frame: 

i were h [Oe + Byer =F [re ae = Lf e+ BY ae = Fie anes 
| T" @x= z] (E x B); d?x = Pina 
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These are the usual (Gaussian units) expressions for the total energy and mo- 
mentum of the ficlds, discussed in Section 6.7. We note that the components 7” 
and 7” themselves differ from the standard definitions of energy density and 
momentum density by added divergences. Upon integration over all spacc, how- 

ever, the added terms give no contribution, being transformed into surface in- 
tegrals at infinity where all the fields and potentials are identically zero. 

The connection of the time-time and time-space components of T°? with the 
field energy and momentum densities suggests that there is a covariant gencral- 
ization of the differential conservation law (6.108) of Poynting’s theorem. This 

differential conservation statement is 

a,T? = 0 (12.107) 
In proving (12.107) we treat the general situation described by the tensor (12.103) 

and the Euler-Lagrange equations (12.83). Consider 

aT? = Da, ee , 6] = Pe 
& Ht0) 

= es — aPy 

: [sa a0.) * aad ra| sa 
By means of the equations of motion (12.83) the first term can be transformed 
so that 

a5 aud — P£ 
Px 

Since £ = L(¢,, 4%d,). the square bracket, summed, is the expression for an 
implicit differentiation (chain rule). Hence 

Bal! = PL by, G,) — PL =O 

The conservation law or continuity equation (12.107) yields the conservation 
of total energy and momentum upon integration over all of 3-space at fixed time. 
Explicitly, we have 

O= | 8,7 Bx = af T! Bx + | aT® @x 

If the fields are localized the second integral (a divergence) gives no contribution. 

Then with the identifications (12.106) we find 

d d 
a Exew = 0, or Pra = 0 (12.108) 

In this derivation of the conservation of energy (Poynting’s theorem) and 
momentum and in the definitions (12.106) we have not exhibited manifest co- 
variance. The results are valid for an observer at rest in the frame in which the 
ficlds are specified. But the question of transforming from one frame to another 
has not been addressed. With a covariant differential conservation law, 4,77 = 0, 
one expects that a covariant integral statement is also possible. The integrals in 
(12.106) do not appear to have the transformation properties of the components 
of a 4-vector. For source-free fields they do in fact transform properly (sce Prob- 

lem (2.18 and Rohrlich, Appendix A1-5), but in general do not. To avoid having 

electromagnetic energy and momentum defined separately in each inertial frame, 
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without the customary connection between frames, one may construct explicitly 
covariant integral expressions for the electromagnetic energy and momentum, o; 
which the forms (12.106) are special cases, valid in only one reference frame. 
This is discussed further in Chapter 16 in the context of the classical clectromag- 
netic self-energy problem. (See Rohrlich, Section 4-9, for an explicitly covariant 
treatment of the conservation laws in integral form.) 

B. Symmetric Stress Tensor 

The canonical stress tensor 7**, while adequate so far, has a certain number 
of deficiencies. We have already seen that 7 and T° differ from the usual 
expressions for energy and momentum densities. Another drawback is its lack 
of symmetry—see 7 and 7” in (12.105). The question of symmetry arises when 
we consider the angular momentum of the field, 

i 
Lee pe) xx ex Bas 

The angular momentum density has a covariant generalization in terms of the 
third-rank tensor, 

Mey = Ty — Taryh (12.109) 

Then, just as (12.107) implies (12.108), so the vanishing of the 4-divergence 

a,My = 0 (12.110) 

implies conservation of the total angular momentum of the field. Direct caleu- 
lation of (12.110) gives 

O = (8,T)x? + T? — (a,T)x* — TAY 

With (12.107) eliminating the first and third terms, we see that conservation of 

angular momentum requires that T° be symmetric. Two final criticisms of T**, 
(12.104), are that it involves the potentials explicitly, and so is not gauge invariant, 

and thal its trace (7%) is not zero, as required for zero-mass photons. 
There is a general procedure for constructing a symmetric, traceless, 

gauge-invariant stress tensor O° from the canonical stress tensor 7 (see the 
references at the end of the chapter). For the electromagnetic T°? of (12.104) we 
proceed directly. We substitute a°A* = —F* + o*A® and obtain 

I ! ! 
Tria [emer + jeter] aren AP (12.111) 

The first terms in (12.111) are symmetric in @ and @ and gauge invariant. With 

the help of the source-free Maxwell equations, the last term can be written 

i 1 
TH = Gq Ba AP = a F** a,a® 

i 
=a (Fa, A® + A®a, FM) (12.112) 

i = — a(R AP 
4a ac ) 
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The tensor 7% has the following easily verified properties: 

a) aT =0 
(i) TH Bx =0 

Thus the differential conservation law (12.107) will hoid for the difference 
(T°? — TH) if it holds for 7°". Furthermore, the integral relations (12.106) for 
the total energy and momentum of the fields will also be valid in terms of the 
difference tensor. We are therefore free to define the symmetric stress tensor O°": 

O® = Te — Top 

or 

1 ot = (era + t FP) (12.113) 

Explicit calculation gives the following components, 

LAs GQ = — (Ff? + RB? S) ie (E ) 

i 
ON = TE x B), (12.114) 

-1 w= [ee + BB, - ; 8,(E? + »| 

The indices i and j refer to Cartesian components in 3-space. The tensor @"* can 
be written in schematic matrix form as 

(12.115) 

In (12.115) the time-time and time-space components are expressed as the energy 
and momentum densities (6.106) and (6.118), now in Gaussian units, while the 
space-space components (12.114) are seen to be just the negative of the Maxwell 
stress tensor (6.120) in Gaussian units, denoted here by 74” to avoid confusion 
with the canonical tensor 7°*. The various other, covariant and mixed. forms of 

the stress tensor are 

Gap = 

The differential conservation law 

0,0 = 0 (12.116) 
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embodies Poynting’s theorem and conservation of momentum for free fields, For 
example, with 8 = 0 we have 

o-a,or=1(# sys) 
c \at 

where $ = cg is the Poynting vector. This is the source-free form of (6,108), 
Similarly, for B = i, 

a result equivalent to (6.121) in the absence of sources. The conservation of field 
angular momentum, defined through the tensor 

My = Oxy — @r 8 (12.117) 

is assured by (12.116) and the symmetry of ©, as already discussed. There are 
evidently other conserved quantities in addition to energy, momentum, and an- 
gular momentum. The tensor M°°” has three time-space components in addition 
to the space-space components that give the angular momentum density, These 
three components are a necessary adjunct of the covariant generalization of an- 
gular momentum. Their conservation is a statement on the center of mass motion 
{see Problem 12.19). 

C. Conservation Laws for Electromagnetic Fields Interacting 
with Charged Particles 

In the presence of external sources the Lagrangian for the Maxwell equations 
is (12.85). The symmetric stress tensor for the electromagnetic field retains its 
form (12.113), but the coupling to the source current makes its divergence non- 
vanishing. The calculation of the divergence is straightforward: 

aoe = [rar + ie) | 

= ¢ [rr + By OME + + Fa ves] 
7 

The first term can be transformed by means of the inhomogeneous Maxwell 
equations (12.89). Transferring this term to the left-hand side, we have 

i 1 
A,OF + — FRY, = — OMFS + gk#FMB + ahFee os on = ge Fal OP oF ) 

The reason for the peculiar grouping of terms is that the underlined sum can be 
replaced, by virtue of the homogeneous Maxwell equation (d"F’* + a®Fe* + 
are = 0), by —a*F8* = +3‘F*8, Thus we obtain 

i 1 
a,O7F + oh pares F,,(¢F*? + ai FH) 
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But the right-hand side is now the contraction (in « and A) of one symmetric and 
one antisymmetric factor. The result is therefore zero. The divergence of the 
stress tensor is thus 

4,0 = 2 Fey, (12.118) 

The time and space components of this equation are 

1 fou 
-(= -E 12.419 
c ( (125419) 

and 

og, SA an 1 
Sy ro = - +- B 2. 7% 2 ix, TH pE, + (3 x By, (12.120) 

These are just the conservation of energy and momentum equations of Chapter 6 
for electromagnetic fields interacting with sources described by J* = (cp, J). The 
negative of the 4-vector on the right-hand side of (12.118) is called the Lorentz 
force density, 

Ix B) (12.121) pa teny= (4-8 96 + 

If the sources are a number of charged particles, the volume integral of f leads 
through the Lorentz force equation (12.1) to the time rate of change of the sum 
of the energies or the momenta of all particles: 

aps B y3y — & pantictes i fo @x Wi 

With the qualification expressed at the end of Section 12.10.A concerning co- 
variance, the integral over 3-space at fixed time of the left-hand side of (12.118) 
is the time rate of change of the total energy or momentum of the field. We 
therefore have the conservation of 4-momentum for the combined system of 
particles and fields: 

| axt.0" + 9) =F (Pha + Phas) = 0 (12.122) 
The discussion above focused on the electromagnetic field, with charged par- 

ticles only mentioned as the sources of the 4-current density. A more equitable 
treatment of a combined system of particles and fields involves a Lagrangian 
having three terms, a free-field Lagrangian, a free-particle Lagrangian, and an 
interaction Lagrangian that involves both field and particle degrees of freedom. 
Variation of the action integral with respect to the particle coordinates leads to 
the Lorentz force equation, just as in Section 12.1, while variation of the field 
“coordinates” gives the Maxwell equations, as in Section 12.7. However, when 

self-energy and radiation reaction effects are included, the treatment is not quite 
so straightforward. References to these aspects are given at the end of the 
chapter. 

Mention should also be made of the action-at-a-distance approach associated 
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with the names of Schwarzschild, Tetrode, and Fokker. The emphasis is on the 
charged particles and an invariant action principle is postulated with the inter. 

action term involving integrals over the world lines of all the particles. The idea 

of electromagnetic fields and the Maxwell equations is secondary. This approach 
is the basis of the Wheeler-Feynman absorber theory of radiation.* 

12.11 Solution of the Wave Equation in Covariant Form; 

Invariant Green Functions 

The electromagnetic fields F“ arising from an external source J*(x) satisfy the 

inhomogeneous Maxwell equations 

a,F8 = 4a ype a zs 

With the definition of the fields in terms of the potentials this becomes 

4a (AP — 0(3,A%) = 

If the potentials satisfy the Lorenz condition, 4A" = 0, they are then solutions 

of the four-dimensional wave equation, 

4? = * p88) (12.123) 

‘The solution of (12.123) can be accomplished by finding a Green function D(x, x') 

for the equation 

D.D(x. x') = 8% - x’) (12.424) 

where 6)(x — x’) = (xy — x4) 5(x — x’) is a four-dimensional delta function. 

In the absence of boundary surfaces, the Green function can depend only on the 

4-vector difference z” = x* — x’*. Thus D(x, x’) = D(x — x") = D(z) and (12.124) 

becomes 

O,D(z) = 8(z) 

We use Fourier integrals to transform from coordinate to wave number space. 

The Fourier transform /(k) of the Green function is defined by 

1 | = ; 
D(z) = a pies 125: {z) Gn k D(kje (12,125) 

where kz = kyZy — k+z. With the representation of the delta function being 

L 
82) =o | DRESES 12.126 (2) = Gast | ae (12.126) 

one finds that the k-space Green function is 

2 1 
DK) => 12.127 = Ez (12.127) 

+} A. Wheeler and R. P. Feynman, Rev. Mod. Phys. 21, 425 (1949). 



Sect. 12.11 Solution of the Wave Equation in Covariant Form; Invariant Green Functions 613 

The Green function D(z) is therefore 

evikee 
DO) = Ge ed ae CSE (12.128) 

Because the integrand in (12.128) is singular, the expression as it stands is 
ambiguous and is given definite meaning only by the handling of the singularities. 
We proceed by performing the integration over dk, first. Thus 

etKo% 
D(z) = -@ a] ae em ako a3 =a (12.129) 

where we have introduced the notation, « = |k|. The kp integral is given meaning 
by considering k, as a complex variable and treating the integral as a contour 
integral in the ky plane. The integrand has two simple poles, at ky = +« as shown 

in Fig. 12.7. Green functions that differ in their behavior are obtained by choosing 
different contours of integration relative to the poles. Two possible contours are 

labeled r and a in Fig. 12.7. These open contours may be closed at infinity with 
a semicircle in the upper or lower half-plane, depending on the sign of zo in the 
exponential. For z, > 0, the exponential, e~“*», increases without limit in the 
upper half-plane. To use the residue theorem, we must therefore close the con- 
tour in the lower half-plane. The opposite holds for zy < 0. 

Consider now the contour r. For z) < 0, the resulting integra! vanishes be- 
cause the contour is closed in the upper half-plane and encircles no singularities, 
For z > 0), the integral over ko is 

en hat en Kora 
fk = —-27 Res| awd 

27. 
= a sin(«Zo) 

t 

u 

The Green function (12.129) is then 

A(Zo) df dk ets Sim Kz0) 
K D,{z) = Qn 

The integration over the angles of k leads to 

(Zo) 
2 R J 

D,(z) = i dx sin(«R) sin(KZy) (12.130) 

Figure 12.7 
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where R = |z| = |x — x’| is the spatial distance between x“ and x'% Using some 
simple trigonometry and a change of variable, we can write (12.130) as 

Zo) {1 ey" Re — gilzo Rm D,{z) = Pee di [eGo — geo Raq 

The remaining integrals are just Dirac delta functions. Because z, > 0 and R> 0 
the second integral is always zero. The Green function for contour r is therefore 

0 = 9) 50 es — RY (12.131) 

Here we have reintroduced the original variables x and x’. This Green function 
is called the retarded or causal Green function because the source-point time xe 
is always earlier than the observation-point time x). Equation (12.131), or its 
Fourier transform with respect to xo, (47R)' e'***, is the familiar Green function 
of outgoing waves of Chapter 6. 

With the choice of the contour a in Fig. 12.7, an exactly parallel calculation 
yields the advanced Green function, 

[= — xi] 
4nR 

Dx — x') = 5(xy — x) + R) (12.132) 

These Green functions can be put in covariant form by use of the following 
identity: 

Ale = x") = [Ou — x47 — |x - x’) 
8[Q% — x46 — RY — x4 + R)) 
1 
ZR (8% — xi — R) + 5lKo — x5 + RY 

Then, since the theta functions select one or the other of the two terms, we have 

Dale = x1) = Oley — x4) aloe = x nes 

Dye ~ 2°) = 5 OGx5 = 2) Ale = 27) 
The theta functions, apparently noninvariant, are actually invariant under proper 
Lorentz transformations when constrained by the delta functions. Thus (12.133) 
gives the Green functions an explicitly invariant expression. The theta and delta 
functions in (12.133) show that the retarded (advanced) Green function is dif- 
ferent from zero only on the forward (backward) light cone of the source point. 

The solution of the wave equation (12.123) can now be written down in terms 
of the Green functions: 

A%x) = ARG) + al dx’ Dx = x) IX’) (12.134) 

or 

A%x) = Abalx) + al dix’ Dx — x Ie’) (12.135) 
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where A&, and AZ, are solutions of the homogencous wave equation. In (12.134) 
the retarded Green function is used. In the limit x5 ~ —», the integral over the 

sources vanishes, assuming the sources are localized in space and time, because 
of the retarded nature of the Green function. We sce that the free-field potential 

A(x) has the interpretation of the “incident” or “incoming” potential. specified 
at x, > —®%, Similarly, in (12.135) with the advanced Green function, the ho- 

mogeneous solution A%,(x) is the asymptotic “outgoing” potential. specificd at 
Xy > +%, The radiation fields are defined as the difference between the “out- 

going” and the “incoming” fields. Their 4-vector potential is 

Afia(x) = Adu — A fax D(x — x')I{x') (12.136) 

where 

D(z) = DAz) - Dalz) (12.137) 

is the difference between the retarded and advanced Green functions. 
The fields of a charged particle moving in a prescribed path will be of interest 

in Chapter 14. If the particle is a point charge e whose position in the inertial 
frame K is r(¢), its charge density and current density in that frame are 

p(x, t) = e dx — r(t}] 

I(x, 1) = e v{2) S[x — r(2)] 

where v(t) = dr(t)/dt is the charge’s velocity in K. The charge and current den- 
sities can be written as a 4-vector current in manifestly covariant form by intro- 
ducing the charge's 4-vector coordinate r*(z) as a function of the charge's proper 
time 7 and integrating over the proper time with an appropriate additional delta 
function. Thus 

(12.138) 

I(x) = ec i dz U%(2) 8x = r(7)] (12.139) 

where U® is the charge’s 4-velocity. In the inertial frame K, r* = |ct, r(t)| and 
U* = (yc, yv). The use of (12.139) in (12.134) to yield the potentials and ficlds 

of a moving charge is presented in Section 14.1. 
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The invariant Green functions for the wave equation are derived in almost any book 
‘on quantum field theory. One such book, with a concise covariant treatment of classical 
electrodynamics at its beginning, is 

Problems 

12.1 

12.2 

12.3 

12.4 

12.5 

Thirring, Section 1.2 and Appendix IE 

two reviews on the subject of the photon mass, already cited in the Introduction, are 
A. S. Goldhaber and M. M. Nieto, Rev. Mod. Phys. 43,277 (1971). 

I. Yu. Kobzarey and L. B. Okun’, Uspek. Fiz. Nauk. 95, 131 (1968) [English 

transl., Sev. Phys. Uspek. 14, 338 (1968)]. 

{a) Show that the Lorentz invariant Lagrangian (in the sense of Section 12.1B) 

UU" p= —-M fue 
2 ic 

gives the correct relativistic equations of motion for a particle of mass m and 
charge q interacting with an external field described by the 4-vector potential 
A°(x). 

(b) Define the canonical momenta and write out the effective Hamiltonian in 
both covariant and space-time form, The effective Hamiltonian is a Lorentz 
invariant. What is its value? 

{a) Show from Hamilton’s principle that Lagrangians that differ only by a total 
time derivative of some function of the coordinates and time are equivalent 
in the sense that they yield the same Euler-Lagrange equations of motion. 

(b) Show explicitly that the gauge transformation A“ — A“ + 6°A of the poten- 
tials in the charged-particle Lagrangian (12.12) merely generates another 
equivalent Lagrangian. 

A particle with mass m and charge e moves in a uniform, static, electric ficld Ey. 

{a) Solve for the velocity and position of the particle as explicit functions of time, 
assuming that the initial velocity vy was perpendicular to the electric field. 

(b) Eliminate the time to obtain the trajectory of the particle in space. Discuss 
the shape of the path for short and long times (define “short” and “long” 

times). 

lt is desired to make an E X B velocity selector with uniform, static. crossed, 
electric and magnetic fields over a length /.. If the entrance and exit slit widths are 
Ax, discuss the interval Au of velocities, around the mean value u = cE/B, that is 

transmitted by the device as a function of the mass, the momentum or energy of 
the incident particles, the field strengths, the length of the selector, and any other 
relevant variables. Neglect fringing effects at the ends. Base your discussion on 
the practical facts that L ~ few meters, Bye ~ 3 X 10° Vim, Ax ~ 10 7-107" m, 
u ~ 0.5-0.995c. (It is instructive to consider the equation of motion in a frame 
moving at the mean speed uw along the beam direction, as well as in the laboratory.) 

References: C. A. Coombes et al., Phys. Rev. 112, 1303 (1958): P. Eberhard, M. L. 

Good, and H. K. Ticho, Rev. Sci. Instrum. 31, 1054 (1960). 

A particle of mass m and charge ¢ moves in the laboratory in crossed, static, 

uniform, electric and magnetic fields. E is parallel to the x axis; B is parallel to the 

y axis. 
(a) For |E| < |B| make the necessary Lorentz transformation described in Sec- 

tion 12.3 to obtain explicitly parametric equations for the particle's trajectory. 

(b) Repeat the calculation of part a for |E| > |BI. 
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12.6 

BS 

Static, uniform electric and magnetic fields. E and B, make an angle of 6 with 
respect to each other. 

(@) By a suitable choice of axcs, solve the force equation for the motion of g 
particle of charge e and mass m in rectangular coordinates. 

{b) For E and B parallel, show that with appropriale constants of integration 
ete., the parametric solution can be written 

¢ Rk. -—, 
x=ARsing, y=ARcosd, 2 =— V1 + A’ cosh(pd) 

p 

= 8 VIFF sinn(po) 
p 

where R = (mc/eB), p = (EJB). A is an arbitrary constant, and ¢ is the 
parameter factually c/R times the proper time]. 

A constant uniform magnetic induction B in the negative z direction exists in a 
region limited by the planes x = 0 and x = a. For x <0 and x > a, there iy no 
magnetic induction. 

{a) Determine the total electromagnetic momentum G in magnitude and direc- 
tion of the combination of a particle with point charge g at (Xo, Yo, Zu) in the 
presence of this magnetic induction. Find G for the charge located on cither 
side of and within the region occupied by the magnetic field. Assume the 
particle is at rest or in nonrelativistic motion 

(b) The particle is normally incident on the field region from x < 0 with nonre- 
lativistic momentum p. Assuming that p > gBa/c, determine the components 
of momentum after the particle has emerged into the field-free region, x > a. 
Compare the components of the sum of mechanical (particle) and electro- 
magnetic momenta initially and finally. Why are some components of the 
sum conserved and some not? 

(ce) Assume that p < qBa/2c and that the initial conditions are such that the 
particle's motion is confined within the region of the magnetic induction at 
fixed z. Discuss the conservation, or lack of it, of the components of the sum 
of mechanical and electromagnetic momentum as the particle moves in its 
path. Comment. 

In Problems 6.5 and 6.6 a nonvanishing momentum of the electromagnetic fields 
was found for a charge and a current-carrying toroid at rest. This paradox is among 
situations involving “hidden momentum.” Since the field momentum is propor- 

tional to 1/c?, you may infer that relativistic effects may enter the considerations. 

(a) Consider the charge carriers in the toroid (or other current-carrying systems) 
of mass m, charge e, and individual mechanical momentum p = ymy, and 
the current density J = env, where n is the number density of carriers and y 
is the relativistic Lorentz factor. Use conservation of energy for cach charge 
carrier to show that, for the “static” field situation of Problem 6.5, the total 
mechanical momentum of the charge carriers, 

i Pinas= if x ynmy = -= { Px &I 
¢ 

just opposite to the field momentum of Problem 6.5a. 

(b} Consider the toroid of Problem 6.6 to be of rectangular cross section, with 
width w and height 4 both small compared to a, and hollow tubes of uniform 

cross section A,,. Show that the electrostatic potential energy difference be- 
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12.10 

12.11 
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tween the inner and outer vertical segments of each tube yields the change 
in yme? necessary lo generate a net vertical mechanical momentum equal 
and opposite to the result of Problem 6.6a, with due regard to differences in 

units. 

Reference: Vaidman, op. cit. 

The magnetic field of the earth can be represented approximately by a magnetic 
dipole of magnetic moment M = 8.1 x 105 gauss-cm*. Consider the motion of 
energetic electrons in the neighborhood of the earth under the action of this dipole 

field (Van Allen electron belts). [Note that M points south.] 

{a) Show that the equation for a line of magnetic force is r = ry sin’@, where 6 
is the usual polar angle (colatitude) measured from the axis of the dipole, 
and find an expression for the magnitude of B along any line of force as a 
function of 6. 

(b) A positively charged particle circles around a line of force in the equatorial 
plane with a gyration radius a and a mean radius R {a < R). Show that the 
particle's azimuthal position (cast longitude) changes approximately linearly 
in time according to 

3fa\ 
(0) = b0-3 (2) p(t — fo) 

where wa is the frequency of gyration at radius R. 

(c) If, in addition to its circular motion of part b, the particle has a small com- 
ponent of velocity parallel to the lines of force, show that it undergoes small 
oscillations in @ around @ = 7/2 with a frequency Q = (3/V2)(a/R)wy, Find 
the change in longitude per cycle of oscillation in latitude. 

(d) For an electron of 10 MeV kinetic energy at a mean radius R = 3 x 10’ m, 
find wy and a, and so determine how long it lakes (o drift once around the 
earth and how long it takes to execute one cycle of oscillation in latitude. 
Calculate the same quantities for an clectron of 10 keV at the same radius. 

A charged particle finds itself instantaneously in the equatorial plane of the earth’s 
magnetic field (assumed to be a dipole ficld) at a distance R from the center of 
the earth. Its velocity vector at that instant makes an angle @ with the equatorial 
plane (vj/v, = tan a). Assuming that the particle spirals along the lines of force 
with a gyration radius @ << R. and that the flux linked by the orbit is a constant 
of the motion, find an equation for the maximum magnetic latitude A reached by 
the particle as a function of the angle a. Plot a graph (nof a sketch) of A versus a. 

Mark parametrically along the curve the values of @ for which a particle at radius 
in the equatorial plane will hit the earth (radius Ro} for R/Rp = 1.2, 1.5, 2.0, 2.5, 

3.4, 5. 

Consider the precession of the spin of a muon, initially longitudinally polarized, 
as the muon moves in a circular orbit in a plane perpendicular to a uniform mag- 
netic field B. 

{a) Show that the difference © of the spin precession frequency and the orbital 
gyration frequency is 

me 

independent of the muon’s energy, where a = (g — 2)/2 is the magnetic 
moment anomaly. (Find equations of motion for the components of spin 
along the mutually perpendicular directions defined by the particle’s velocity, 
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12.12 

12.13 

12.14 

(b) 

{ec} 

the radius vector from the center of the circle to the particle, and the magnetic 
field.) 

For the CERN Muon Storage Ring. the orbit radius is R = 2.5 meters ang 
B= 17 X 10° gauss. What is the momentum of the muon? What is the time 
dilatation factor y? How many periods of precession 7 = 2/0 occur per 
observed laboratory mean lifetime of the muons? [7, = 105.66 MeV, 

2.2.x 10°%s, a = alla]. 

Express the difference frequency © in units of the orbital rotation frequency 

and compute how many precessional periods (at the difference frequency) 
occur per rotation for a 300 MeV muon, a 300 MeV electron, a 5 GeV clec- 

tron (this last typical of the e‘e” storage ring at Cornell). 

To 

In Section 11.11 the BMT equation of motion for the spin of a particle of charge 
e and a magnetic moment with an arbitrary g factor was obtained. 

(a) 

(b) 

© 

(ad) 

(a) 

(b) 

Verify that (11.171) is the correct equation for the time derivative of the 
longitudinal component of the rest-frame spin vector $. 

Let be a unit 3-vector perpendicular to 6 and coplanar with 6 and s (fix 
generally time dependent). Let @ be the angle between B and s. Show that 
the time rate of change of # can be written as 

dd oe g a raf sp a —=—](2-1Ja-@x B)+{2--]a-E 
di me ( ja (B xB) (e ,)" 

where E and B are the fields in the laboratory and cB = Bb is the particle's 
instantaneous velocity in the laboratory. 

For a particle moving undeficcted through an E x B velocity selector and 
with (f x B)-B = B, find dé/ds in terms of the gyration frequency eB/ymc. 

By defining the two 4-vectors, L* = (78. yb) and N“* = (0, fi), show that de 

dzcan be written in the quasi-covariant form 

dele jg, 1 pots 
dr me [2-"~ v v, |p No 

where U” is the particle’s 4-velocity. 

Specalize the Darwin Lagrangian (12.82) to the interaction of two charged 
particles (;, q;) and (22, q»). Introduce reduced particle coordinates, r = 
X; — X%, ¥ = ¥ — ¥2 and also center of mass coordinates, Write oul the 

Lagrangian in the reference frame in which the velocity of the center of mass 
vanishes and evaluate the canonical momentum components, p, = dL/av,, 
ote. 

Calculate the Hamiltonian to first order in I/c? and show that it is 

2 “ Saegone 7 e(Lst)+ue-2 (5+3)- 42 ( +@ 2) 
2 Xm, mz r 8 \m} m3} myc? r 

Compare with the various terms in (42.1) of Bethe and Salpeter [op. cit. 
{Section 12.6), p. 193]. Discuss the agreements and disagreements. 

An alternative Lagrangian density for the clectromagnetic field is 

(a) 

1 1 = a aeat — loan $= 7 a, AgPAY 7 Jo 

Derive the Euler-Lagrange equations of motion. Are they the Maxwell equa- 
tions? Under what assumptions? 
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(b) Show explicitly, and with what assumptions, that this Lagrangian density 
differs from (12.85) by a 4-divergence. Does this added 4-divergence affect 
the action or the equations of motion? 

Consider the Proca equations for a localized steady-state distribution of current 
that has only a static magnetic moment. This model can be used to study the 
observable effects of a finite photon mass on the earth's magnetic field. Note that 
if the magnetization is A(x) the current densily can be written as J (¥ xAt). 

{a) Show that if A = mf(x), where m is a fixed vector and f(x) is a localized 
scalar function, the vector potential is 

eux . owe fie ; A(x) = —m x {@') Real x 

(b) If the magnetic dipole is a point dipole at the origin [f(x) = 6(x)], show that 

the magnetic ficld away from the origin is 
ir) pt lo ee 
7 5 B(x) = [377 m) - mi(1 +r BE 

(c) The result of part b shows that at fixed r — R (on the surface of the earth). 
the earth’s magnetic field will appear as a dipole angular distribution, plus 
an added constant magnetic field (an apparently external field) antiparallel 
to m. Satellite and surface observations lead to the conclusion that this *ex- 
ternal” field is less than 4 X 10° times the dipole field at the magnetic 
equator. Estimate a lower limit on j ' in earth radii and an upper limit on 
the photon mass in grams from this datum. 

This method of estimating w is due to E. Schrédinger, Proc, R. Irish 
Acad. A49, 135 (1943). See A. S. Goldhaber and M. M. Nieto, Phys. Rev. 

Lett. 21, 567 (1968). 

(a) Starting with the Proca Lagrangian density (12.91) and following the same 
procedure as for the electromagnetic fields, show that the symmetric stress- 
energy-momentum tensor for the Proca fields is 

ovat RUF APS + I AR EM + ol AtAB — . gHA,AS in 4° “ 58 

(b) For these fields in interaction with the external source J”, as in (12.91), show 
that the differential conservation laws take the same form as lor the clectro- 
magnetic fields, namely. 

ane = BE 
G 

{c) Show explicitly that the time-time and space-time components of @"# are 

ov = z [F2 + BP + w(A°A? + A Ad] 

1 
0° = TIE * By + e4'A)] 

7 

Consider the “Thomson” scattering of Proca waves (photons with mass) by a free 
electron. 

(a) As a preliminary. show that for an incident plane wave of unit amplitude, 
A = € cos(kz — wf), where €, is a polarization vector of unit magnitude 
describing cither longitudinal {/) or transverse (4) fields, the lime-averaged 
energy fluxes (measured by ©”) are F, = wki8a and Ff, = (wie)*F. Show 
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(b) 

(3) 

{d) 

also for arbitrary polarization that the ratio of time-averaged energy ux 
to energy density is 

(o*) 
o) 

as expected for particles of mass yz. 

For polarization €, initially and polarization € finally, show that the “Thom. 

son” cross section for scattering is 

da 
dQ (6, &) = Ko |e* + €o| 

where ro is the classical electron radius, Fy is a factor for the efficiency of the 

incident Proca field in exciting the electron, and the final factor is a ratio of 
the outgoing to incident fluxes. What is the value of Ey)? 

For an unpolarized transverse wave incident, show that the scattering crosy 
section is 

» 
do\ _ 1m 2 #) a #\ 0 costa + (#) sin’ (2) 2 [! + cos’8 G sin’@ 

where the first term is the familiar transverse to transverse scattering and the 
second is transverse to longitudinal 

For a fongitudinally polarized wave incident, show that the cross section, 
summed over outgoing polarizations, is 

Ss 
2 

(2) = (2) nf sa + (2) cov] 

where the first term is the longitudinal to (ransverse scattering and the second 
is longitudinal to longitudinal. 

Note that in the limit 4/@ — 0, the longitudinal fields decouple and we 
recover the standard Thomson cross section. 

12.18 Prove, by means of the divergence theorem in four dimensions or otherwise, that 
for source-free electromagnetic fields confined to a finite region of space, the 3- 
space integrals of 0" and ©” transform as the components of a constant 4-vector, 
as implied by (12.106). 

Source-free electromagnetic fields exist in a localized region of space. Consider 
the various conservation laws that are contained in the integral of 4M" = 0 over 
all space, where M°*Y is defined by (12.117). 

12.19 

@ 

{b) 

Show that when 8 and y are both space indices conservation of the total field 

angular momentum follows. 

Show that when £ = 0 the conservation law is 

aX _ Pan 
ae oe 

where X is the coordinate of the center of mass of the electromagnetic fields, 
defined by 

xfuw = fxs 

where u is the electromagnetic energy density and F,,,, and P,,,, are the total 

energy and momentum of the fields. 
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12.20 A uniform superconductor with London penetration depth A, fills the half-space 

12,21 

is tangential and for x < O is given by 

Ay = (ae + beri eet 
x > 0. The vector potenti: 

Find the vector potential inside the superconductor. Determine expressions for 
the electric and magnetic fields at the surface. Evaluate the surface impedance Z, 

{in Gaussian units, 4z/c times the ratio of tangential electric field to tangentiai 
magnetic field). Show that in the appropriate limit your result for Z, reduces to 

that given in Section 12.9. 

‘A two-fiuid model for the electrodynamics of superconductors posits two types of 
electron, normal and superconducting, with number densities, charges, masses, and 
collisional damping constants, 7). ¢,, m. and y,, respectively (j = N. S). The elec- 
trical conductivity consists of the sum of two terms of the Drude form (7.58) with 
foN > nj. € > &, mM > my Yo > ¥y- The normal (superconducting) electrons are 
distinguished by yx # 0 (45 = 0). 
(a) Show that the conductivity of the superconductor at very low frequencies is 

largely imaginary (inductive) with a small resistive component from the nor- 

mal electrons. 

(b) Show that use of Ohm's law with the conductivity of part a in the Maxwell 
equations results in the static London equation for the electric field in the 
limit » — 0, with the penetration depth (12.100), provided the carriers are 
identified with the superconducting component of the electric fluid. 
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Collisions, Energy Loss, and 
Scattering of Charged Particles; 
Cherenkov and Transition Radiation 

624 

In this chapter we consider collisions between swiftly moving, charged particles, 
with special emphasis on the exchange of energy between collision partners 
and on the accompanying deflections from the incident direction. We also 
treat Cherenkov radiation and transition radiation, phenomena associated with 
charged particles in uniform motion through material media. 

A fast charged particle incident on matter makes collisions with the atomic 
electrons and nuclei. If the particle is heavier than an electron (mu or pi meson, 
K meson, proton, etc.), the collisions with electrons and with nuclei have different 
consequences. The light electrons can take up appreciable amounts of energy 
from the incident particle without causing significant deffections, whereas the 
massive nuclei absorb very little cnergy but because of their greater charge cause 
scattering of the incident particle. Thus loss of energy by the incident particle 
occurs almost entirely in collisions with electrons. The deflection of the particle 
from its incident direction results, on the other hand, from essentially elastic 
collisions with the atomic nuclei. The scattering is confined to rather small angles, 
so that a heavy particle keeps a morc or less straight-line path while losing energy 
until it nears the end of its range. For incident electrons both energy loss and 

scattering occur in collisions with the atomic electrons. Consequently the path is 
much less straight. After a short distance, electrons tend to diffuse into the ma- 
terial, rather than go in a rectilinear path. 

The subject of energy loss and scattering is an important one and is discussed 
in several books (see references at the end of the chapter) where numerical tables 
and graphs are presented. Consequently our discussion emphasizes the physical 
ideas involved, rather than the exact numerical formulas. Indeed, a full quantum- 

mechanical treatment is needed to obtain exact results, even though ail the es- 
sential features are classical or semiclassical in origin. All the orders of magnitude 
of the quantum effects are easily derivable from the uncertainty principle, as will 
be seen. 

We begin by considering the simple problem of energy transfer to a free 

electron by a fast heavy particle. Then the effects of a binding force on the 
electron are explored, and the classical Bohr formula for energy loss is obtained. 
A description of quantum modifications and the effect of the polarization of the 

medium is followed by a discussion of the closely related phenomenon of 
Cherenkov radiation in transparent materials. Then the elastic scattering of in- 
cident particles by nuclei and multiple scattering are presented. Finally, we treat 
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transition radiation by a particle passing from one medium to another of different 
optical properties. 

13.1 Energy Transfer in a Coulomb Collision Between Heavy 
Incident Particle and Stationary Free Electron; 
Energy Loss in Hard Collisions 

A swift particle of charge ze and mass M (cnergy EF = yMc?, momentum P = 
yBMc) collides with an atomic electron of charge —e and mass m. For energetic 

collisions the binding of the electron in the atom can be neglected; the electron 
can be considered free and initially at rest in the laboratory. For all incident 
particles except electrons and positrons, M >> m. Then the collision is best 
viewed as elastic Coulomb scattering in the rest frame of the incident particle. 
The well-known Rutherford scattering formula is 

do ze?\? 10 
—~ = {—— = 13, a0 e cosec’ 3 (3.1) 

where p = yBmec and v = Bc are the momentum and speed of the electron in 
the rest frame of the heavy particle (exact in the limit M/m — ). The cross 
section can be given a Lorentz-invariant form by relating the scattering angle to 
the 4-momentum transfer squared, QO? = —({p — p')’. For elastic scattering, 
Q? = 4p’ sin?(/2). The resuit is 

do ze? > — = 4n| — 3. ae “(aep) a 
where fc, the relative speed in each particle’s rest frame, is found from ? = 
1 = (Mmc7/P- py. 

The cross section for a given energy loss T by the incident particle, that is. 
the kinetic energy imparted to the initially stationary electron, is proportional to 
(13.2). If we evaluate the invariant Q? in the electron’s rest frame, we find Q? = 
2mT. With Q? replaced by 2mT, (13.2) becomes 

do _ _2mze* 
dT me*p?T* 

Equation (13.3) is the cross section per unit energy interval for energy loss T by 
the massive incident particle in a Coulomb collision with a free stationary elec- 
tron. Its range of validity for actual collisions in matter is 

Fain ST pak 

(13.3) 

with Tyrin Set by our neglect of binding (Tynin = Hi{w) where f(w) is an estimate 

of the mean effective atomic binding energy) and T,,,, governed by kinematics. 
We can find Tina, by recognizing that the most energetic collision in the rest frame 
of the incident particle occurs when the electron reverses its direction. After such 
a collision, the electron has energy E’ = ymc? and momentum p’ = y$mc in the 

direction of the incident particle’s velocity in the laboratory. The boost to the 
laboratory gives 

Tmax = E — me? = y(E' + Bep") — me? = 2y*B?me? (13.4) 
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We note in passing that (13.4) is not correct if the incident particle has too high 
an energy. The exact answer for 7,,,, has a factor in the denominator, D = 
1 + 2mE/M?c? + m?/M?. For muons (M/m ~ 207), the denominator must be 
taken into account if the energy is comparabie to 44 GeV or greater. For pro- 
ine that energy is roughly 340 GeV. For equal masses, it is easy to sec that 

imax = Cy ~ Tme?, 
"When the spin of the electron is taken into account, there is a quantum. 

mechanical correction to the energy loss cross section, namely, a factor of 

1 — B? sin’(6/2) = (1 — B® T/ Taran): 

do\ _ 2mvet ( T 
(#) - 2s ( B 7) (135) 

The energy loss per unit distance in collisions with energy transfer greater 
than e for a heavy particle passing through matter with N atoms per unit volume, 
each with Z electrons, is given by the integral, 

W nz" rar 

‘ef dfs) - ‘| 
ie f(oveim B 

In the result (13.6) we assumed ¢ << T,,,, and used (13.5) for the energy-transfer 
cross section. The small term, — 8”, in the square brackets is the relativistic spin 
contribution. Equation (13.6) represents the energy loss in close collisions. It is 
only valid provided >> h(w) because binding has been ignored. 

dE 
—(T> 
oT?) (13.6) 

2aNZ. 

An alternative, classical or semiclassical approach throws a different light on the 
physics of energy loss. In the rest frame of the heavy particle the incident clectron ap- 
proaches at impact parameter 5. There is a one-to-one correspondence between 6 and 
the scattering angle @ (see Problem 13.1). The energy transfer 7 can be written as 

2z7e" 1 

10) = Tt Be OE 
with b&, = ze*/pv. For b >> b%), the energy transfer varies as b~?, implying that, if the 
energy transfer is greater than ©, the impact parameter must be less than the maximum, 

Hhgale) ~ (=e ) 
me 

When the heavy particle passes through matter il “sees electrons at all possible impact 
parameters, with weighting according to the area of an annulus, 27 db. The classical 
energy loss per unit distance for collisions with transfer greater than ¢ is therefore 

ch HO ' 2 

= (T > 0) = aanz [™ T(byb db = 2nNZ— aa nf(? Peto) | (13.7) 

Substitution of Pus, and Byin leads directly to (13.6), apart from the relativistic spin cor- 
rection. That we obtain the same result {for a spinless particle) quantum mechanically 
and ‘ally is a consequence of the validity of the Rutherford cross section in both 

regime: 
If we wish to find a classical result for the fotal energy loss per unit distance, we must 

address the influence of atomic binding. Electronic binding can be characterized by the 
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frequency of motion (@) or its reciprocal, the period. The incident heavy particle produces 

appreciable time-varying electromagnetic fields at the atom for a time Ar ~ fy [see 

(11.153)]. If the characteristic time Ar is long compared to the atomic period, the atom 

responds adiabatically—it stretches slowly during the encounter and returns to normal, 
without appreciable energy being transferred. On the other hand. if Aris very short com- 
pared to the characteristic period, the electron can be treated as almost free. The dividing 
tine is (w)Ar = 1, implying a maximum effective impact parameter 

bQ, = 13.8 @ (13.8) 

beyond which no significant energy transfer is possible. Explicit illustration of this cutoff 
for a charge bound harmonically is found in Problems. 13.2 and 13.3. 

If (13.8) is used in (13.7) instead of b{3,(e), the total classical energy loss per unit 
distance is approximately 

aes 
— = 2nNZ 
Gls 

¥Bime Bm? 
cle) ahead (13.10) 

(13.9) 

where 

In (13.10) we have inserted a numerical constant A of the order of unity to allow for our 

uncertainty in 6@),. The parameter y = ze*/hv is a characteristic of quantum-mechanical 

Coulomb scattering: 7 <1 is the strongly quantum limit, 7 >> 1 is the classical limit. 
Equation (13.9) with (13.10) contains the essentials of the classical energy loss for- 

mula derived by Niels Bohr (1915). With many different electronic frequencies, (w) is the 

geometric mean of all the frequencies @;, weighted with the oscillator strength f,: 

Z Inw) = D f, nw, (3.11) 
7 

Equation (13.10) is valid for 7 > 1 (relatively slow alpha particles, heavy nuclei) but 
overestimates the energy loss when 4 < i (muons. protons, even fast alpha particles), We 
see below that when 7 < 1 the correct result sets y = I in (13.10). 

13.2 Energy Loss from Soft Collisions; Total Energy Loss 

‘The energy loss in collisions with energy transfers less than e, including those 

smal! compared to electronic binding energies, really can be treated properly 

only by quantum mechanics, although after the fact we can “explain” the result 

in semiclassical eg ‘The result, first obtained by Bethe (1930), is 

— Z(r< e)= 2aNZ 7 agi ra in {e)] — BY (13.12) 

where 

B,(e) = (13.13) 

The effective excitation energy #(w) is given by (13.11}, but now with the proper 

quantum-mechanical oscillator strengths and frequency differences for the atom, 

inchiding the contribution from the continuum. The upper limit ¢ on the energy 
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transfers is assumed to be beyond the limit of appreciable oscillator strength, 
Such a limit is consonant with the lower limit ¢ in Section 13.1, chosen to make 
the electron essentially free. 

The total energy loss per unit ae is given by the sum of (13.6) and (13,12); 

dE _ 
ag ON ep =e tne.) - BY (13.14) 

where 

_ 29° B?me? 
Bo = Fa) (13.15) 

The general behavior of both the classical and quantum-mechanical energy 
loss formulas is iHustrated in Fig. 13.1. They are functions only of the speed of 
the incident heavy particle, the mass and charge of the electron, and the mean 
excitation energy fw). For low energies (y8 < 1) the main dependence js as 
1/°, while at high energies the slow variation is proportional to In(y). The min- 
imum value of dE/dx occurs at yf ~ 3. The coefficient in (13.12) and (13.14) is 
numerically equal to 0.150 2°(2Z/A)p MeV/cm, where Z is the atomic number 
and A the mass number of the material, while p (g/cm®) is its density. Since 
2Z/A ~ 1, the energy loss in MeV-(cm?/g) for a singly charged particle in alu- 
minum is approximately what is shown in Fig. 13.1. For aluminum the minimum 
energy loss is roughly 1.7 MeV-(cm*/g); for lead, it is 1.2 MeV-(cm’/g). At high 
energies corrections to the behavior in Fig. 13.1 occur. The energy loss becomes 
heavy-particle specific, through the mass-dependent denominator D in Tyyy, and 

1078 rg et oo remy 

dE/de (arbitrary units) 

10% 
1971 104 

vB 

Figure 13.1 Energy loss as a function of yf of the incident heavy particle. The solid 
curve is the total energy loss (13.14) with A(w) = 16 eV (aluminum). The dashed curve 
is the energy loss in soft collisions (13.12) with e = 10 keV. The ordinate scale 
corresponds to the curly-bracketed quantities in (13,12) and (13.14), multiplied by 0.15. 
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has a different energy variation and dependence on the material, because of the 
density effect discussed in Section 13.3. 

The restricted energy loss shown in Fig. 13.1 is applicable to the energy loss 

inferred from tracks in photographic emulsions. Electrons with energies greater 
than about 10 keV have sufficient range to escape from silver bromide grains. 

The density of blackening along a track is therefore related to the restricted 

energy loss. Note that it increases more slowly than the total for large y8—as 

In(y) rather than In(y*). A semiclassical explanation is given below. 

Compurison of B, with the classical B, (13.10) shows that their ratio is y= zerthv, 

To understand how this factor arises, we turn to semiclassical arguments. B, is the ratio 
of B&2, (13.8) to b), = ze2/ymv?. The uncertainty principle dictates a different Bin for 
n <1. In the rest frame of the heavy particle the electron has momentum p = ymu, If it 

is described by a transversely localized wave packet (to define its impact parameter as 
well as possible), the spread in transverse momenta Ap around zero must satisfy Ap << p; 

otherwise, its longitudinal direction would be ill-defined. This limit on Ap translates into 

an uncertainty Ab in impact parameter, Ab >> A/p, or in other words, an effective quan- 

tum-mechanical lower limit, 

fh (a) = —— bn 7] (13.16) 

Evidently, in calculating energy loss as an integral over impact parameters, the larger 
of the two minimum impact parameters shoutd be used. The ratio 69,/54), = 4. When 
11 > 1. the clussicat lower limit applies; for  < 1, (13.16) applies and (13.15) is the correct 
expression for B. 

The value of B,(e) in (13.12) can also be understood in terms of impact parameters. 

The soft collisions contributing to (13.12) come semiclassically from the more distant 

collisions. The momentum transfer Sp to the struck electron in such collisions is retated 
to the energy transfer T according to Sp = (2mT)"?, On the other hand, the localized 

electron wave packet has a spread Ap in transverse momenta. To be certain that the 
collision produces an energy transfer less than e. we must have Ap < 8pypax = (2me)", 
hence Ab > f/(2me)!*. The effective minimum impact parameter for soft collisions with 
energy transfer less than ¢ is therefore 

fh (o(¢) ~ BRO ~ Gore (13.17) 

For collisions so limited in impact parameter between (13.17) and Bux = yuo), we find 
yo(2me)'? 

Be) ~ A 
in agreement with Bethe’s result. 

The semiclassical discussion of the minimum and maximum impact param- 
eters elucidates the reason for the difference in the logarithmic growth between 
the restricted and total energy losses. At high energies the dominant energy 
dependence is through dE/dx « In(B) ~ In(bmax/Pmin). For the total energy loss, 

the maximum impact parameter is proportional to y, while the quantum- 
mechanical minimum impact parameter (13.16) is inversely proportional to y. 
The ratio varies as y*. For energy loss restricted to energy transfers less than e, 
the minimum impact parameter (13.17) is independent of y, leading to B,(e) = y. 
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Despite its attractiveness in making clear the physics, the semiclassical de. 

scription in terms of impact parameters contains a conceptual difficulty that war. 
rants discussion. Classically, the energy transfer T in each collision is relateg 
directly to the impact parameter b. When b >> b),, T(b) = 22°e*#mu’b? (Problem 
13.1). With increasing 6 the energy transfer decreases rapidly until at b = 
Dyyax * Yow) it becomes 

4 
2 fuo\” fh Z(C) (enw om Ay 

c/137 is the orbital speed of an electron in the ground state of hydrogen 
and 1, 6 eV its ionization potential. Since empirically A(w) = ZI, we see 
that for a fast particle (v >> v,) the classical energy transfer (413.18) is much 
smaller than the ionization potential, indeed, smaller than the minimum possible 

atomic excitation. 

We know, however, that energy must be transferred to the atom in discrete 

quantum jumps. A tiny amount of energy such as (13.18) simply cannot be ab- 
sorbed by the atom. We might argue that the classical expression for T() should 
be employed only if it is large compared to some typical excitation energy of the 
atom. This requirement would set quite a different upper limit on the impact 
parameters from bax ~ yu/(@) and lead to wrong results. Could b,,,, nevertheless 
be wrong? After all, it came from consideration of the time dependence of the 
electric and magnetic fields (11.152). without consideration of the system being 

affected. No, time-dependent perturbations of a quantum system cause significant 
excitation only if they possess appreciable Fourier components with frequencies 
comparable to 1/H times the lowest energy difference. That was the “adiabatic” 
argument that led to b,,,, im the first place. The solution to this conundrum lies 

in another direction. The classical expressions must be interpreted in a statistical 
sense. 

The classical concept of the transfer of a small amount of energy in every 
collision is incorrect quantum-mechanically. Instead, while on the average over 
many collisions, a small energy is transferred, the small average results from 
appreciable amounts of energy transferred in a very small fraction of those col- 
lisions. In most collisions no energy is transferred. It is only in a statistical sense 
that the quantum-mechanical mechanism of discrete energy transfers and the 

classical process with a continuum of possible energy transfers can be reconciled, 
The detailed numerical agreement for the averages (but not for the individual 
amounts) stems from the quantum-mechanical definitions of the oscillator 
strengths f; and resonant frequencies «, entering (w). A meaningful semiclassical 
description requires (a) the statistical interpretation and (b) the use of the un- 
certainty principle to set appropriate minimum impact parameters. 

‘The discussion so far has been about energy loss by a heavy particle of mass 
M >> m. For electrons (M = m), kinematic modifications occur in the energy 

loss in hard collisions. The maximum energy loss is Tax = (y — Ume?. The 
argument of the togarithm in (13.6) becomes (y — 1)mc7/e. The Bethe expression 

(43.12) for soft collisions remains the same. The total energy loss for electrons 

therefore has B, (13.15) replaced by 

V2 yBVy — I me? . V2 y? me? 

Alo) ~ ho) 

Trax) ~ 

B, (electrons) = (13.19) 
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the last form applicable for relativistic energies. There are spin and exchange 
effects in addition to the kinematic change, but the dominant effect is in the 
argument of the logarithm; the other effects only contribute to the added 

constant. 

The expressions for dE/dx represent the average collisional energy loss per 

unit distance by a particle traversing matter. Because the number of collisions 

per unit distance is finite, even though large. and the spectrum of possible energy 

transfers in individual collisions is wide, there are fluctuations around the aver- 

age. These fluctuations produce straggling in energy or range for a particle tra- 

versing a certain thickness of matter. If the number of collisions is large enough 

and the mean energy loss not too great, the final energies of a beam of initially 

monocnergetic particles of energy £, are distributed in Gaussian fashion about 

the mean E. With Poisson statistics for the number of collisions producing a given 

energy transfer 7, it can be shown (see, e.g., Bohr, Section 2.3, or Rossi, Section 

2.7) that the mean square deviation in energy from the mean is 

Y = 2aNZze%(y? + 1) (13.20) 

where tis the thickness traversed. This result holds provided Q << E and 0 << 

(Fy — E), and also Q >> Tyg, ~ 2y°6?me’. For ultrarelativistic particles the last 

condition ultimately fails. Then the distribution in energics is not Gaussian, but 
is described by the Landau curve. The interested reader may consult the refer- 

ences at the end of the chapter for further details. 

13.3 Density Effect in Collisional Energy Loss 

For particles that are not too relativistic, the observed cnergy loss is given ac- 
curately by (13.14) [or by (13.9) if 7 > 1] for particles of all kinds in media of all 

types. For ultrarclativistic particles, however, the observed energy loss is less than 
predicted by (13.14), especially for dense substances. In terms of Fig. 13.1 of 

(dE/dx), the observed energy loss increases beyond the minimum with a slope of 

roughly one-half that of the theoretical curve, corresponding to only one power 

of y in the argument of the logarithm in (13.14) instead of two. In photographic 

emulsions the energy loss, as measured from grain densities, barely increases 

above the minimum to a plateau extending to the highest known energies. This 

again corresponds to a reduction of one power of y, this time in Bg(e) (13.13). 

This reduction in energy loss, known as the density effect, was first treated 

theoretically by Fermi (1940). In our discussion so far we have tacitly made one 

assumption that is not valid in dense substances. We have assumed that it is 

legitimate to calculate the effect of the incident particle’s fields on one electron 

in one atom at a time, and then sum up incoherently the energy transfers to all 

the electrons in all the atoms with byj, <b < Bmax. NOW Bmax is very large 

compared to atomic dimensions, especially for large y. Consequently in dense 

media there are many atoms lying between the incident particte’s trajectory and 

the typical atom in question if b is comparable to b,,,,. These atoms, influenced 

themselves by the fast particle’s fields, will produce perturbing fields at the chosen 

atom’s position, modifying its response to the fields of the fast particle. Said in 

another way, in dense media the dielectric polarization of the material alters the 

particle’s fields from their free-space values to those characteristic of macroscopic 
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fields in a dielectric. This modification of the fields due to polarization of the 
medium must be taken into account in calculating the energy transferred in dis- 
tant collisions. For close collisions the incident particle interacts with only one 
atom ata time, Then the free-particle calculation without polarization effects wil] 
apply. The dividing impact parameter between close and distant collisions is of 
the order of atomic dimensions. Since the joining of two logarithms is involved 
in calculating the sum, the dividing value of b need not be specified with great 
precision. 

We will determine the energy loss in distant collisions (b = a), assuming that 
the fields in the medium can be calculated in the continuum approximation of a 
macroscopic dielectric constant e(w). If a is of the order of atomic dimensions, 
this approximation will not be good for the closest of the distant collisions, but 
will be valid for the great bulk of the collisions. 

The problem of finding the electric field in the medium duc to the incident 
fast particle moving with constant velocity can be solved most readily by Fourier 
transforms. If the potentials A,,(x) and source density J/,,(x) are transformed in 
space and time according to the general rule, 

1 
F(x, t) = Gn fax | dw F(k, we!" 

then the transformed wave equations become 

ey 

[« 7 = ew) }o, w) = a p(k, «) 

G z 2 
do) [Ade ) = = Hk, w) 

(13.21) 

(13.22) 

The dielectric constant e(#) appears characteristically in positions dictated by 
the presence of D in the Maxwell equations. The Fourier transforms of 

p(x, 1) = ze &(x — vt) 
and 

Kx, 1) = volx, 

are readily found to be 

ze k, w) = -~k- p(k, w) On 8(@ - k + y) 

Jk, w) = vptk, «) 

From (13.22) we see that the Fourier transforms of the potentials are 

2ze Sm —k-v) (k, o) =. SE 
er = ay BH Es e(w) 

and 

Ak, «) = €(w) : H(k, @) 

(13.23) 

(13.24) 

(13.25) 
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From the definitions of the clectromagnetic fields in terms of the potentials we 
obtain their Fourier transforms: 

E(k, w) = [ete - toa. w) 
(13.26) 

B(k, 0) = ie(w)k x om, o) 

In calculating the energy loss to an electron in an atom al impact parameter b, 
we evaluate 

AE = -ef v-Edt=2e Re [ iwx(w) + E*(w) dw (13.27) 
me lo 

where x(@) is the Fourier transform in time of the electron's coordinate and E(w) 
is the Fourier transform in time of the electromagnetic fields at a perpendicular 
distance 6 from the path of the particle moving along the x axis. Thus the required 
electric field is 

E(w) = on | Ak E(k. we” (13.28) 

where the observation point has coordinates (0, 6, 0). To illustrate the determi- 
nation of E(w) we consider the calculation of F\(@), the component of E parallel 
to v. Inserting the explicit forms from (13.25) and (13.26), we obtain 

E(w) = ize J arcens {sul _ ‘| 5(@ — vk,) (1329) 

oe mS 2 €(w) 

The integral over dk, can be done immediately. Then 

. _ __2izew anny [7 dks 

Ee) = ~G ame [a- elf. dk, i BtR+é 
where 

wa SS ew) = ° [i — Pre(o)] (13.30) 

The integral over dk; has the value a/(A? + k3)! 

oe te izeo ” efftke %- 

E(o) = View [a- 8 | f a+ ey dk, (13.31) 

The remaining integral is a representation of a modified Bessel function.* The 
result is 

izew (2\""[_1 2 
E(w) = — ra a — B°|K,(Ab) (13.32) 

a} | eo) 

so that £,(w} can be written 

*Sce, for example, Abramowitz and Stegun (p. 376. formuia 9.6.25). Magnus, Oberkettinger, and Soni 
(Chapter XI). or Bateman Manuscript Project, fable of Imegral Transforms, Vol. t (Chapters 1-00) 
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where the square root of (13.30) is chosen so that A lies in the fourth quadrant, 
A similar calculation yields the other fields: 

Fx(w) = (2)  K,(ab) 
v «(o) (13.33) 

Bx) = e(w)BE(e) 

In the timit €(@) — 1 it is easily seen that ficids (13.32) and (13.33) reduce to the 
results of Problem 13.3. 

To find the energy transferred to the atom at impact parameter b we merely 
write down the generalization of (13.27): 

AE(b) = 2e D f, Re if iwox,(w) + EX(w) do 

where x,(w) is the amplitude of the jth type of electron in the atom. Rather than 
use (7.50) for x,(w) we express the sum of dipole moments in terms of the mo- 
lecular polarizability and so the dielectric constant. Thus 

-e 2 £8) = a [e(w) — 1]E(w) 

where N is the number of atoms per unit volume. Then the energy transfer can 
be written 

nb) = —— "3 2 AE(b) = 2aN Re i iwe(w) |E(w) [> dw (13.34) 

The energy loss per unit distance in collisions with impact parameter b = a 
is evidently 

dE - 
(7), aean f AE(b)b db (13.38) 

If ficlds (13.32) and (13.33) are inserted into (13.34) and (13.35), we find, after 
some calculation, the expression duc to Fermi, 

(2), = 2 eae Re I ; iwntaki(aadKlaa)( 2 7 *) da (13.36) 

where A is given by (13.30). This result can be obtained more ciegantly by cal- 
culating the clectromagnetic energy flow through a cylinder of radius a around 
the path of the incident particle. By conservation of energy this is the energy lost 
per unit time by the incident particle. Thus 

MEN ga Nak 
AK yng ov dt 

The integral over dx at one instant of time is equivalent to an integral at one 
point on the cylinder over all time. Using dx = v dt, we have 

(2) =-2 1" soe a 

-< | 2maBsE, dx 
Anu J-= 
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Jn the standard way this can be converted into a frequency integral, 

(2) = —ca Re [ Bi(w)E\(w) do (13.37) 
EX Jaca 0 

With fields (13.32) and (13.33) this gives the Fermi result (13.36). 
The Fermi expression (13.36) bears little resemblance to our earlier results 

for energy loss. But under conditions where polarization effects are unimportant 
it yields the same results as before. For example, for nonrelativistic particles 
(8 << 1) it is clear from (13.30) that A = o/v, independent of e(w). Then in 
(13.36) the modified Bessel functions are real. Only the imaginary part of l/e(w) 
contributes to the integral. If we neglect the polarization correction of Section 
4.5 to the internal field at an atom, the dielectric constant can be written 

4nNe* s fi 
Sa 

7 ©; — wo — iol; 
ew) = 1+ (13,38) 

where we have used the dipole moment expression (7.50). Assuming that the 

second term is small, the imaginary part of 1/e(w) can be readily calculated and 
substituted into (13.36). Then the integral over dw can be performed in the 
narrow-resonance approximation. If the small-argument limits of the Bessel 
functions are used, the nonrelativistic form of (13.9) emerges, with B. = 
via(w). If the departure of A from w/yv in (13.30) is neglected, (13.9) emerges 
with B. = yv/a(w). 

The density effect evidently comes from the presence of complex arguments 
in the modified Bessel functions, corresponding to taking into account e(«) in 
(13.30). Since €(w) there is multiplied by A, it is clear that the density effect can 

be really important only at high energies. The detailed calculations for all ener- 
gies with some explicit expression such as (13.38) for e(w) are quite complicated 
and not particularly informative. We content ourselves with the extreme relativ- 
istic limit (8 = 1). Furthermore, since the important frequencies in the integral 
over dw are optical frequencies and the radius a is of the order of atomic dimen- 
sions, |Aa| ~ (@a/c) << 1. Consequently we can approximate the Bessel functions 
by their small-argument limits (3.103). Then in the relativistic limit the Fermi 
expression (13.36) is 

(42) = 28% we fio ~ 1)fin( 22S) — Litt ~ etn} at 
(13.39) 

Jt is worthwhile right here to point out that the argument of the second logarithm 
is actually [1 — 8%e(«)|. In the limit € = 1, this log term gives a factor y in the 
combined logarithm, corresponding to the old result (13.9). Provided e(w) # 1. 

we can write this factor as [1 — e(w)], thereby removing one power of y from 
the logarithm, in agreement with experiment. 

The integral in (13.39) with e(w) given by (13.38) can be performed most 
easily by using Cauchy’s theorem to change the integral over positive real to 
one over positive imaginary #, minus one over a quarter-circle at infinity. The 
integral along the imaginary axis gives no contribution. Provided the I’ in (13.38) 
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are assumed constant, the result of the integration over the quarter-circle can be 

written in the simple form: 

dE e)°o, inf 1123¢ 7 patos in: 
AX Java a aay (13.40) 

where w,, is the electronic plasma frequency 

2 _ 4uNZe* ia 
Wie gaa (13.41) 

The corresponding relativistic expression without the density effect is 

dE (eo, (1.123 yc 
(2) eer: In ao) (13.42) 

We see that the density effect produces a simplification in that the asymptotic 
energy loss no longer depends on the details of atomic structure through (w) 
(13.11), but only on the number of electrons per unit volume through «,. Two 

substances having very different atomic structures will produce the same energy 
loss for ultrarelativistic particles provided their densities are such that the density 
of electrons is the same in each. 

Since there are numerous calculated curves of energy loss based on Bethe’s 
formula (13.14), it is often convenient to tabulate the decrease in energy loss due 
to the density effect. This is just the difference between (13.40) and (13.42): 

_ (dE\ _ _ (ze)Pw, ne) 
lim a( =) = inf (a) (13.43) 

i 

1 1 1 1 L 
Ot 1 10 102 108 10* 

Figure 13.2 Energy loss, including the density effect. The dashed curve is the total 
energy loss without density correction. The solid curves have the density effect 
incorporated, the upper one being the total energy loss and the lower one the energy 
loss due to individual energy transfers of less than 10 keV. 
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For photographic emulsions, the relevant energy loss is given by (13.12) and 
(13.13) with « ~ 10 keV. With the density correction applied, this becomes con- 

stant at high energies with the value, 

dE(e) _, Ge)*wy n( 72) (13.44) 
dx 2c* Peo, 

For silver bromide, #w, = 48 eV. Then for singly charged particles (13.44). di- 
vided by the density, has the value of approximately 1.02 MeV - (cm’/g). This 

energy loss is in good agreement with experiment, and corresponds to an increase 
above the minimum value of less than 10%. Figure 13.2 shows total energy loss 

and loss from transfers of less than 10 keV for a typical substance. The dashed 
curve is the Bethe curve for total energy loss without correction for density effect. 

13.4 Cherenkov Radiation 

The density cffect in energy loss is intimately connected to the coherent response 
of a medium to the passage of a relativistic particle that causes the emission of 
Cherenkov radiation. ‘They are, in fact, the same phenomenon in different lim- 
iting circumstances. The expression (13.36), or better, (13.37), represents the en- 

crgy lost by the particle into regions a distance greater than b = a away from its 
path. By varying a we can examine how the energy is deposited throughout the 
medium. In (13.39) we have considered a to be atomic dimensions and assumed 

|Aa| << 1. Now we take the opposite limit. If |Aa| >> 1, the modified Bessel 
functions can be approximated by their asymptotic forms, Then the fields (13.32) 
and (13.33) become 

a zew 1 ent 

Bia) 2 5) 
ze fa 

ve{w) yb - 

Bw, 6) > Be(w)E{w, b) 

Ex(@, b) > » (13.45) 

‘The integrand in (13.37) in this limit is 

57 g Sai i 24 1 (AF Ate (-caBiE, ( Jef wale ( (13.46) 

The real part of this expression, integrated over frequencies, gives the energy 
deposited far from the path of the particle. If A has a positive real part, as is 
generally true, the exponential factor in (13.46) will cause the expression to van- 
ish rapidly at large distances. All the energy is deposited near the path. This is 

not true only when A is purely imaginary. Then the exponential is unity: the 
expression is independent of a; some of the energy escapes to infinity as radiation. 

From (13.30) it can be seen that A can be purely imaginary if e(w) is real (no 
absorption) and B°e{w) > 1. Actually, mild absorption can be allowed for, but 
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in the interests of simplicity we will assume that e() is essentially real from now 
on. The condition 87¢(@) > 1 can be written in the more transparent form, 

é 

Velo) 
v> (13.47) 

This shows that the speed of the particle must be larger than the phase velocity of 
the electromagnetic fields at frequency w in order to have emission of Cherenkoy 
radiation of that frequency. 

Consideration of the phase of A as 8*« changes from less than unity to greater 
than unity, assuming that €(w) has an infinitesimal positive imaginary part when 
«@ > 0, shows that 

A=-ilA| for Be >1 

This means that (A*/A)'? = i and (13.46) is real and independent of a. Equation 
(13.37) then represents the energy radiated as Cherenkov radiation per unit dis. 
tance along the path of the particle: 

dE) _ (ze? re 
(2) - e Waa: aft wa) ae 

(13.48) 

The integrand obviously gives the differential spectrum in frequency. This is the 
Frank-Tamm result, first published in 1937 in an explanation of the radiation 
observed by Cherenkov in 1934. The radiation is evidently not emitted uniformly 
in frequency. It tends to be emitted in bands situated somewhat below regions 
of anomaious dispersion, where €(w) > 8”, as indicated in Fig, 13.3. Of course, 
if 8 = 1 the regions where e(w) > 8 * may be quite extensive. 

Another characteristic feature of Cherenkov radiation is its angle of emis- 
sion, At large distances from the path the ficlds become transverse radiation 
fields. The direction of propagation is given by E x B. As shown in Fig. 13.4, the 
angle 4 of emission of Cherenkov radiation relative to the velocity of the particle 
is given by 

Ey 
fan 6¢ = -= 

es 

From the far fields (13.45) we find 

0S 6, ! COS Og = 
“pV e(o) 

(eo) Bp? <(o) t 

Figure 13.3 Cherenkov band. 
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ae 

(13.49) 

(13.50) 

Radiation is emitted only in shaded 
frequency range, where e(w) > B?. 
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Figure 13.4 

The criterion Be > 1 can now be rephrased as the requirement that the emission 
angle 4. be a physical angle with cosine less than unity, Jn passing we note from 
Fig. 13.4 that Cherenkov radiation is completely lincarly polarized in the plane 
containing the direction of observation and the path of the particle. 

The emission angle 6, can be interpreted qualitatively in terms of a “shock” 
wavefront akin to the familiar shock wave (sonic boom) produced by an aircraft 
in supersonic flight. In Figure 13.5 are sketched two scts of successive spherical 
wavelets moving out with speed c/Ve from successive instantancous positions of 
a particle moving with constant velocity v. On the left v is assumed to be less 
than, and on the right greater than, c/Ve. For v > c/Ve the wavelets interfere 
so as to produce a “shock” front or wake behind the particle, the angle of which 
is readily seen to be the complement of 6. An observer at rest sees a wavefront 
moving in the direction of @¢. 

The qualitative behavior shown in Fig. 13.5 can be given quantitative treat- 

ut >| 

be cive 

Figure 13.5 Cherenkov radiation. Spherical wavelets of fields of a particle traveling 
less than and greater than the velocity of light in the medium. For v > c/Ve, an 
electromagnetic “shock” wave appears, moving in the direction given by the Cherenkov 
angle @. 
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ment by examining the potentials (x, 7) or A(x, f) constructed from (13.25) with 
(13.21). For example, the vector potential takes the form, 

2ze f : elke ED gik-w 

Qn Bj d Kil — Bre) + ki 

where € = €(k,v), while p and k, are transverse coordinates. With the unrealistic, 
but tractable, approximation that ¢ is a constant the integral can be done in closed 
form, In the Cherenkov regime (f’¢ > 1) the denominator has poles on the path 

of integration. Choosing the contour for the k, integration so that the potential 
vanishes for points ahead of the particle (x — ut > 0), the result is found to be 

A(x, t) = 

a 2ze 

M0 = Bap - Ge ie 
inside the Cherenkov cone and zero outside. Note that A is singular along the 
shock front. as suggested by the wavelets in Fig. 13.5. The expression (13.51) can 
be taken as indicative only. The dielectric constant does vary with w = kv. This 

functional dependence will remove the mathematical singularity in (13.51). 
The properties of Cherenkov radiation can be utilized to measure velocities 

of fast particles. If the particles of a given velocity pass through a medium of 
known dielectric constant e, the light is emitted at the Cherenkov angle (13.50). 

Thus a measurement of the angle allows determination of the velocity. Since the 
dielectric constant of a medium in general varies with frequency, light of different 
colors is emitted at somewhat different angles. Narrow-band filters may be em- 
ployed to select a small interval of frequency and so improve the precision of 
velocity measurement. For very fast particles (8 < 1) a gas may be used to pro- 
vide a dielectric constant differing only slightly from unity and having (€ - 1) 
variable over wide limits by varying the gas pressure. Counting devices using 
Cherenkov radiation are employed extensively in high-energy physics, as instru- 
ments for velocity measurements. as mass analyzers when combined with mo- 
mentum analysis, and as discriminators against unwanted slow particles. 

(13.51) 

13.5 Elastic Scattering of Fast Charged Particles by Atoms 

In Section 13.1 we considered the scattering of electrons by an incident heavy 
particle in that particle’s rest frame in order to treat energy transfers to the 
electrons. We now turn to the elastic scattering that accompanies passage of swift 
particles, whether heavy or light. through matter because of interaction with the 
atoms. Charged particles are elastically scattered by the time-averaged potential 
created by the atomic nucleus and its associated electrons. The potential is 
roughly Coulombic in character but is modified at large distances by the screening 
effect of the electrons and at short distances by the finite size of the nucleus. 

For a pure Coulomb field, the scattering cross section is given by the 
Rutherford formula (13.1), modified at large angles by spin-dependent correc- 

tions [see above (13.5)]. At smail angles, all particles. regardless of spin, scatter 
according to the small-angle Rutherford expression 

do _ (2zZe\’ 1 
po a 

(13.52) 
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Even at 9 = 7/2. the smail-angle result is within 30% of the exact Rutherford 
formula. Such accuracy is sufficient for present purposes. 

The singular nature of (13.52) as @— O is a consequence of the infinite range 

of the Coulomb potential. Because of electronic screening, the differential scat- 
tering cross section is finite at @ = 0. A simple classical impact parameter cal- 
culation (following Problem 13.1b) with a Coulomb force cutoff sharply atr = @ 

gives a small-angle cross section 
2 

do 22Ze*\ 1 - 
a a Reed 13.5 ae) eres eee 

where @,,;, is the classical cutoff angle, 

2zZe? 
On = a (13.54) 

A better form of screened Coulomb interaction is V(r) = (zZe/r)e~"", with 
a = 14 aZ~" (from a rough fit to the Thomas-Fermi atomic potential). A 
classical calculation with such a potential gives a small-angle cross section for 
6 — () that rises less rapidly than @~*. but still is singular at @ = 0. Quantum 
mechanically, cither the Born approximation or a WKB cikonal approach yields 
a small-angle cross section of the form (13.53) with 0, the quantum-mechanical 

cutoff angle 

& 2? me MoS SP gg SS ae. pa 12 p (13.55) 

where p is the incident momentum (p = yMv), and m is the electron’s mass. In 
passing. we note that the ratio of classical to quantum-mechanical angles Oy, is 
n = 2Ze’/hv, in agreement with the corresponding ratio of minimum impact 
parameters [see below (13.16)]. For fast particles in all but the highcst Z 
substances, 4 < 1: the quantum-mechanical expression (13.55) should be used 
for Amine 

At comparatively large angles (but still small in actual magnitude) the scat- 
tering cross section departs from (13.53) because of the finite size of the nucleus. 
For charged leptons (e, jz. 7) the influence of the finite size is a purely electro- 
magnetic effect. but for hadrons (7, K, p. a. etc.) specifically strong-interaction 
effects also arisc. Since the gross overall cffect is to lower the cross section below 
(13.53) at larger angles for whatever reason, we cxamine only the electromagnetic 
aspect. The charge distribution of the atomic nucleus can be approximated 
crudely by a uniform volume distribution inside a sphere of radius R. falling 
sharply to zero outside. The electrostatic potential inside the nucleus is parabolic 
in shape with a finite value at r = 0: 

3zZe* ( ted ) 
=f las rorR 

2R 3R 
Vir) = 9s for (13.56) 

2Ze 
~ : r>R 

The classical scattering cross section from such a potential exhibits singular be- 
havior at a maximum angle given approximately by the classical formula (13.54), 
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but with @ — R. This phenomenon is a consequence of the scattering angle 
Ob) = Ap(b)/p vanishing at b = 0. rising to a maximum at just less than b = R, 
and falling again for larger b. The maximum translates into a vanishing derivative 
dé/db and so an infinite differential cross section. The bizarre classical behavior 
is the vestige of what occurs quantum mechanically. The wave nature of the 
incident particle makes the nuclear scattering very much like the scattering of 
electromagnetic waves by localized scatterers, discussed in Chapter 10. At short 
wavelengths, the scattering is diffractive, confined to an angular range A@~ 1/kR 
where k = p/h. Depending on the radial dependence of the localized interaction, 
the scattcring cross section may exhibit wiggles or secondary maxima and min- 
ima, but it will fall rapidly betow the point Coulomb resuit at larger angles. Said 
another way, in perturbation theory the scattering amplitude is the product of 
the Coulomb amplitude for a point charge and a form factor F(Q”) that is the 
spatial Fouricr transform of the charge distribution. The form factor is defined 
to be unity at Q? = 0, but becomes rapidty smailer for (QR) > 1. Whatever the 
viewpoint, the finite nuclear size sets an effective upper limit of the scattering, 

Omax ~ pR -43° ms (13.57) 

The final expression is based on the estimate, R = 1.4 A’ x 107 m. We note 
that Anax >> Omin for all physical values of Z and A. If the incident momentum 
is so small that 6,,,, = 1, the nuclear size has no appreciable effect on the scat- 
tering. For an aluminum target, Oma. = 1 when p ~ 50 MeVic, corresponding to 

50 MeV kinctic energy for electrons and 1.3 MeV for protons. Only at higher 
energies are nuclear-sized effects important. At p * SO MeV/c, Ain * 107" radian 
in aluminum. 

The general behavior of the scattering cross section is shown in Fig. 13.6. 
The dot-dash curve is the small-angle Rutherford formula (13.52); the solid curve 
shows the qualitative behavior of the cross section including screcning and finite 
nuclear size. The total scattering cross section can be obtained by integrating 
(13.53) over the total solid angle, 

2\2 a 2z2Ze ) ode (13.58) do, 
o= | SE sino dod ~ 2x( m “Sy + Bak 

Figure 13.6 Atomic scattering, 
J] including effects of electronic screening 

9enin max at small angles and finite nuclear size at 

large angles. 
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The result is 
si 

= ma (2228 ) (13.59) 

The final expression is obtained by use of (13.55) for @,,in. It shows that at high 

velocities the total scattering cross section can be far smaller than the classical 

geometrical area wa? of the atom. 

13.6 Mean Square Angle of Scattering; Angular Distribution 
of Multiple Scattering 

Rutherford scattering is confined to very small angles even for a point Coulomb 
field, and for fast particles ,,,. is smal! compared to unity. Thus there is a very 
large probability for small-angle scattering. A particle traversing 4 finite thickness 
of matter will undergo very many small-angle deflections and will generally 
emerge at a small angle that is the cumulative statistical superposition of a large 
number of deflections. Only rarely will the particle be deflected through a large 
angle; since these events are infrequent. such a particle will have made only one 
such collision. This circumstance allows us to divide the angular range into two 
regions—one region at comparatively large angles, which contains only the single 
scatterings, and one region at very small angles. which contains the multiple or 
compound scatterings. The complete distribution in angle can be approximated 
by considering the two regions separately, The intermediate region of so-called 
plural scattering must allow a smooth transition from small to large angles. 

The important quantity in the multiple-scattering region, where there is a 
large succession of small-angle deflections symmetrically distributed about the 
incident direction, is the mean square angle for a single scattering. This is defined 

by 

(8) = ————_. (13.60) 

With the approximations of Section 13.5 we obtain 

(87) = 2Gein In n( =) (13.61) 

If the quantum value (13.55) of @in is used along with @,,,. (13.57). then with 

A = 2Z, (13.61) has the numerical form: 

(8) = 462,q In(204Z“) (13.62) 

If nuclear size is unimportant (generally only of interest for electrons. and per- 
haps other particles at very low energies), 4,4, Should be put equal to unity in 
(13.61). Then instead of (204Z~'*), the argument of the logarithm in (13.62) 

1 
becomes (Fa res 
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Figure 13.7 

It is often desirable to use the projected angle of scattering 6", the projection 

being made on some convenient plane such as the plane of a photographic emul- 
sion or a bubble chamber, as shown in Fig. 13.7. For small angles it is easy to 
show that 

(0) = 5(@) (13.63) 

In each collision the angular deflections obey the Rutherford formula (13.52) 
suitably cut off at Opin AB Oyqx, With average value zero (when viewed relative 
to the forward direction, or as a projected angle) and mean square angle (#”) 
given by (13.61). Since the successive collisions are independent events, the 
central-limit theorem of statistics can be used to show that for a large number n 
of such collisions the distribution in angle will be approximately Gaussian around 
the forward direction with a mean square angle (©?) = n(#°). The number of 
collisions occurring as the particle traverses a thickness ¢ of material containing 
N atoms per unit volume is 

n2 
n= Not = on( 222 ) _— (13.64) 

pu Genin 

This means that the mean square angle of the Gaussian is 

22Ze2\* (@) = 20n zee ) in( 2) 1 (13.65) 
pu Gavin 

Or, using (13.62) for (8°), 
~~ 

(0) = ton 2 ) in(204Z-") ¢ (13.66) 7 

The mean square angie increascs linearly with the thickness ¢. But for reasonable 
thicknesses such that the particte does not lose appreciable energy, the Gaussian 
will still be peaked at very small forward angles. Parenthetically, we remark that 
the numericai coefficient in the logarithm can differ from author to author—for 
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example, Rossi has 175 instead of 204. We also note that in practice the Gaussian 
approximation holds only for large n—see the last paragraph of this section for 

some elaboration on this point. 
The multiple-scattering distribution for the projected angle of scattering is 

FT eee cee ees (Oe Pud@’) dt = Tee oo( a) dé (13.67) 

where both positive and negative values of #' are considered. The small-angle 
Rutherford formula (13.52) can be expressed in terms of the projected angle as 

do _ 1 (2zZe?\" 1 
=> aa 13.68 

ao z( po ) a (13.68) 

This gives a single-scattering distribution for the projected angle: 

do a, (22Ze?\" do" 
Po y= N de =—WN —, 13.69 (01) do" = ME ae = F ( = ) a (13.69) 

The single-scattcring distribution is valid only for angles large compared to (@”)'” 
and contributes a tail to the Gaussian distribution. 

If we express angles in terms of the relative projected angle, 
e 

a= Rn (13.70) 

the multiple- and single-scattering distributions can be written 

Pye) da = Fe" de 
7 (13.71) 

1 da 

Pola) da = STZ) oF 
where (13.66) has been used for (@*). We note that the relative amounts of mul- 
tiple and single scatterings are independent of thickness in these units, and de- 

pend only on Z. Even this Z dependence is not marked. The factor 8 In(204% “) 

has the value 36 for Z = 13 (aluminum) and the value 31 for Z = 82 (Iead). 
Figure 13.8 shows the general bchavior of the scattcring distribution as a function 
of a. The transition from multiple to single scattering occurs in the neighborhood 
of a = 2.5. At this point the Gaussian has a value of 1/600 times its peak value. 

Thus the single-scattering distribution gives only a very small tai] on the multiple- 

scattering curve. 
There are two things that cause departures from the simple behavior shown 

in Fig. 13.8. ‘fhe Gaussian shape is the limiting form of the angular distribution 

for very large n. If the thickness ¢ is such that n (13.64) is not very large (ie. 

n 200), the distribution follows the single-scattering curve to smailer angtes 

than a = 2.5, and is more sharply peaked at zero angle than a Gaussian.* On 

the other hand, if the thickness is great enough, the mean square angle (0”) 

becomes comparable with the angle @y.x (13.57) which limits the angular width 

of the single-scattering distribution. For greater thicknesses the multiple-scatter- 

*For aumerical evaluation for very thin samples (e.g., gases). sce P. Sigmund and K. 8. Winterbon, 
Nucl. Instrum. Methods 119, 541-357 (1974). 
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Figure 13.8 Multiple- and single-scattering distributions of projected angle. In the 
region of plural scattering (a ~ 2-3) the dashed curve indicates the smooth transition 
from the small-angle multiple scattering (approximately Gaussian in shape) to the wide- 
angle single scattering (proportional to « *). 

ing curve extends in angle beyond the single-scattering region, so that there is 
no single-scattering tail on the distribution (see Problem 13.8). 

13.7 Transition Radiation 

A charged particle in uniform motion in a straight line in free space does not 
radiate. It was shown in Section 13.4, however, that a particle moving at constant 
velocity can radiate if it is in a material medium and is moving with a speed 
greater than the phase velocity of light in that medium. This radiation. with its 
characteristic angle of emission. @. = sec '(e''?), is Cherenkov radiation. There 
is another type of radiation. transition radiation, first noted by Ginsburg and 
Frank in 1946, that is emitted whenever a charged particle passes suddenly from 
one medium into another. Far from the boundary in the first medium, the particle 
has certain fields characteristic of its motion and of that medium. Later, when it 
is deep in the second medium. it has fields appropriate to its motion and that 
medium. Even if the motion is uniform throughout, the initial and final fields will 

be different if the two media have different electromagnetic properties. Evidently 
the ficlds must reorganize themselves as the particle approaches and passes 
through the interface. In this process of reorganization some pieces of the fields 
are shaken off as transition radiation. 
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Figure 13.9 A charged particle of charge ze and velocity v is normally incident along 
the z axis on a uniform semi-infinite dielectric medium occupying the half-space z > 0. 
‘The transition radiation is observed at angle @ with respect to the direction of motion 
of the particle, as specified by the wave vector k and associated polarization vectors 
€, and €,,. 

Important features of transition radiation can be understood without elab- 
orate calculation." We consider a relativistic particle with charge ze and speed 
v = Bc normally incident along the z axis from vacuum (z < () on a uniform 
semi-infinite medium (z > 0) with index of refraction n{w). as indicated in Fig. 

13.9. The moving fields of the charged particle induce a time-dependent polar- 
ization P(x’. t) in the medium. The polarization emits radiation. ‘Vhe radiated 
fields from different points in space combine coherently in the neighborhood of 

the path and for a certain depth in the medium, giving rise to transition radiation 
with a characteristic angular distribution and intensity. 

The angular distribution and the formation length D are a direct consequence 

of the requirement of coherence for appreciable radiated intensity. The exciting 

fields of the incident particle are given by (11.152). The dependence at a point 
x’ = (z’, p’. 6’) on inverse powers of [p"? + y*(z' — vf)"] implies that a Fourier 
component of frequency w (a) will move in the z direction with velocity v and so 
have an amplitude proportional to e’**“", and (b) will have significant magnitude 

radially from the path only out to distances of the order of pj, = yo/ew. On the 

“The need for a qualitative discussion has been impressed on me by numerous questions from col- 
Ivagues near and far and by V. F. Weisskopf on the occasion of a seminar by him where he presented 
a similar discussion. 
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other hand, the time-dependent polarization at x‘ generates a wave whose form 
in the radiation zone is 

ihr 
A= 7 exp[—ik(z' cos @ + p' sin @ cos ¢’)] 

where A is proportional to the driving field of the incident particle, k = n(w)e/c 
and it is assumed that the radiation is observed in the x-z plane and in the forward 
hemisphere. Appreciable coherent superposition from different points in the me- 
dium will occur provided the product of the driving fields of the particle and the 
generated wave does not change its phase significantly over the region. The rel- 
evant factor in the amplitude is 

_@ a) .o . 
eo(i e ) op, i = n(w) cos # z| evo|-i z n(w)p’ sin 6 cos «| 

= exp 2 [3 — n{w) cos ole} exp| 

In the radial direction coherence will be maintained only if the phase involving 
p’ is unity or less in the region 0 < p' = py. where the exciting field is appreciable. 
Thus radiation will not be appreciable unless 

n(w)p' sin 6 cos | 

v. 
2 nw) sing <1 
c eo 

or 

n(w)y8 <1 (13.72) 

for y >> 1, The angular distribution is therefore confined to the forward cone, 
@ = 1, as in all relativistic emission processes. 

The z'-dependent factor in the amplitude is 

eli? [ = n(w) cos ale} 

The depth d(w) up to which coherence is maintained is therefore 

1 = [3 =n(w) cos | d(w) = 1 

We approximate n(w) ~ 1 — (w,/2w*) for frequencies above the optical region 
where Cherenkov radiation does not occur, 8"! ~ 1 + 1/27? for a relativistic 
particle, and cos @ = 1, to obtain 

2ycl@y, 
= 73. d{v) ra (13.73) 

where we have introduced a dimensionless frequency variable, 

yo (3.74) 
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We define the formation length D as the largest value of d(v) as a function of v: 

D=d(\)= * (13.75) 
by 

For substances with densities of order of unity. the plasma frequency is @, ~ 
3 x 10'° s“'. corresponding to an energy fiw, ~ 20 eV. Thus c/w, = 10°% em and 
even for y = 10° the formation length D is only tens of micrometers. In air at 

NTP it is a factor of 30 larger because of the reduced density. 
The coherence volume adjacent to the particle's path and the surface from 

which transition radiation of frequency @ comes is evidently 

: cf 
V(0) ~ mpi) deo) 2m(<) WTA 

This volume decreases in size rapidly for » > 1. We can therefore expect that in 
the absence of compensating factors, the spectrum of transition radiation will 
extend up to, but not appreciably beyond, v = 1. 

We have obtained some insight into the mechanism of transition radiation 
and its main features. It is confined to small angics in the forward direction 
(y@ = 1). It is produced by coherent radiation of the time-varying potarization 
in a small volume adjacent to the particle's path and at depths into the medium 
up to the formation length D. Its spectrum extends up to frequencies of the order 
of w ~ yw,. It is possible to continue these qualitative arguments and obtain an 
estimate of the total energy radiated, but the exercise begins to have the ap- 
pearance of virtuosity based on hindsight. Instead, we turn to an actual caicula- 
tion of the phenomenon 

An exact calculation of transition radiation is complicated. Some references 
are given at the end of the chapter. We content ourselves with an approximate 
calculation that is adequate for most applications and is physically transparent. 
It is based on the observation that for frequencies above the optical resonance 
region, the index of refraction is not far from unity. The incident particte’s fields 
at such frequencies are not significantly different in the medium and in vacuum. 

This means that the Fourier component of the induced polarization P(x’, w) can 
be evaluated approximately by 

P(x’, = [et "ew w) (13.76) 

where E, is the Fourier transform of the elcctric field of the incident particle in 

vacuum, The propagation of the wave radiated by the polarization must be de- 

scribed properly, however, with the wave number & = wn(w)/c appropriate to 
the medium. ‘This is because phase differences are important, as already seen in 
the qualitative discussion. 

The dipole radiation ficid from the polarization P(x’, w) d*x' in the volume 
element d°x’ at x’ is, according to (9.18). 

ikR 
dE “Re (kx P) x kdb’ rad = 
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where k is the wave vector in the direction of observation and R ~ r — key’, 

With the substitution of (13.76) and an integration over the half-space z’ > 0, 
the total radiated field at frequency w is 

et a e(w) — 
Baa = 7 4a ‘ef (Kx BE) x ke" drt 

pany 

With the approximation, 

e(oer= = (13.77) 

the radiated field for w > @, becomes 

r 

ike { ~g? 

Bio (=) [ RE) x he dx’ (13.78) 

From equations given later (see (14.52) and (14.60)], this means that the energy 
radiated has the differential spectrum in an angle and energy, 

at __c_ (w\* 
dwdQ 32m \e 

Note that the driving fields E, are defined by the Fourier transform of the ficlds 

of Section 11,10. In our approximation it is not necessary to use the more elab- 
orate fields of Sections 13.3 and 13.4. In the notation of Fig. 13.9 the incident 
ficlds are (sec Problems 13.2 and 13.3) 

Ea) sr en K,(22) 
2 af 7 yu 

EAx, @) = ne oe eK, (22) 
7 U 

The integral in (13.79) can be evaluated as follows. We first exploit the fact that 
the z dependence of E; is only via the factor e“’*", and write 

2 

(13.79) | [kK x E,(x, w)} x ke“** ax 
=50 

(13.80) 

F= [ [k x E,(x, &)] x ke dx 
a 

| dxf ay [Kx Eyj-g x Keene iN dz ewo| (2 — k cos a)e| 

if - ei (: = keos0) )z]| 

= ~~~ f a dy|k x Ejjeey X & em" 
@ — k cos@ 
v 

it 

‘The upper limit Z on the z integration is a formal device to show that the con- 
tributions from different z values add constructively and cause the amplitude to 
grow until Z = D. Beyond the depth D the rapidly rotating phase prevents further 
enhancement. For effectively semi-infinite media (slabs of thickness large com- 
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pared with D) we drop the oscillating exponential in 7 on physical grounds* and 

obtain, for a single interface, 

F = ——_1____ [fae dy{k x Ej) X Re 5" 

(2 — k cos a) 
v 

The electric field transverse to k can be expressed in terms of the components 

E,, E, and the polarization vectors €,, and €, shown in Fig. 13.9 as 

[kK x E] x & = (E, cos 0 cos 6 — E, sin #e, + E, sin bey 

where @ is the polar angle of k and the prime has been dropped from the azi- 
muthal angle of integration. ‘The component parallel to €,, integrates to zero 
because it is odd in y. Thus, substituting from (13.80), we have 

F = ——“«__ I! dee ne [ome as 5 E, — sin a,| 
w x 4 20 
G- — k cos ‘) 

v 

= 8 Ef aay en 
(2 - bene) ~ k cos a)" 

v 

wo 
X | cos 6 sy — [meme ( 

The first term can be transformed by an integration by parts in x, using 

a we x(2 ve=y) = ims K(* Very r) 
x+y ye @ Ox yu 

so that 

ze sin a(x cos 6 — 3) 
2 Aesind Wonlge pet 

Fre, ee dx dye *""K, wt + 

V (2 — k cos a) 
v 

The remaining integra! can be evaluated from the cosine transform, 

/ 2) (13.81) [ KABVZ + ®) cos(az)dz = Wee exp(—|((Vae + B) 

The result for F is 

2V2r ze sin iG cos 6 — +) 

F=e, (13.82) 

(2 — k cos is + a) 

A less cavalier treatment of the dependence on thickness is necessary for foils that are not thick 

compared to D, or when a stack of foils is employed. See Problems 13.13 and 13.14. 
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In the approximation of relativistic motion (y >> 1), small angles (6 << 1), and 
high frequencies (@ >> w,), this becomes 

2 et 
F = ¢4Vin « ( <) x : a (13.83) 

( traoat na +n) 
y 

where v is the dimensionless frequency variable (13.74) and » = (y@)? is an 
appropriate angular variable. With dQ = dé d{cos @) = dd dy/2y’, the energy 
distribution in v and 7 is 

fl om a 
dvdy yp 7?” da dQ (13.84) 

Le yey n 

Te 1 2 
wll ++ apd t+ ny? 

y 

Angular distributions for fixed » values are shown in Fig. 13.10. At low frequen- 
cies the spectrum peaks at 7 = | and then falls relatively slowly as 97! until the 
value = v ? is reached. Then it falls off as 7~*. For y= 1, the spectrum peaks 
at 7» = } and falls at » * for 7 >> 1. At = 0 the denominator in (13.84) is 

1978 rn 1 n J i" J 
0 2 4 6 

a= (76)? —> 

Figure 13.10 Angular distributions of transition radiation at vy = 0.1, » = 1 and » > 1. 
The solid curves are the normalized angular distributions, that is, the ratio of (13.84) to 

(13.87). The dashed curve is v* times that ratio in the limit »— 
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(1 + +, showing that for v >> 1 there is negligible intensity at any angle [cf. 
coherence volume V(w), above]. 

The energy spectrum, integrated over the angular variable y, is 

a _ Peeve, [« +20) w(t + 5) = 2| (13.85) 
dv me 

It has the small and large v limits, 

2@2 2 in{I/ev), yl Te? yw, oe = (13.86) 
ee p> 

6” 

The energy spectrum is shown on a log-log plot in Fig. 13.11. The spectrum 
diverges logarithmically at low frequencics, where our approximate treatment 
fails in any event, but it has a finite integral. The total energy emitted in transition 
radiation per interface is 

* dl Be* yey yho, (13.87) ln dv 3c ——«-3(137), 

IS jot 
aim 

107? 

1073 L | | n 
10-? 107) 1 10 

v= wf Ye, 
Figure 13.11 Normalized frequency distribution (1//)(di/dv) of transition radiation as 
a function of v = w/yw,. The dashed curves are the two approximate expressions in 
(13.86). 
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From Fig. 13.11 we can estimate that about half the energy is cmitted in the range 

0.1 S vy S 1. In quantum language, we say that an appreciable fraction of the 

energy appears as comparatively cnergetic photons. For cxample, with y = 10° 

and fw, = 20 eV, these quanta are in the soft x-ray region of 2 to 20 keV, 

‘The presence of the factor of yin (13.87) makes transition radiation attractive 

as a mechanism for the identification of particles, and perhaps even measurement 

of their cnergies, at very high energies where other means are unavailable. The 

presence of the numerical factor 1/(3 X 137) means that the probability of en- 

ergetic photon emission per transit of an interface is very small. It is necessary 

to utilize a stack of many foils with gaps between. ‘The foils can be quite thin, 

needing to be thick only compared to a formation length D (13.75). Then a 

particle traversing cach foil will emit zwice (13.87) in transition radiation (sce 

Problem 13.13). A typica! set-up might involve 200 Mylar foils of thickness 20 

wm, with spacings 150-300 zm.* The coherent superposition of the fields from 

the different interfaces, two for cach foil, causes a modulation of the energy and 

angular distributions (see Problem 13.14). 

References and Suggested Reading 
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considers the question of fluctuations in energy loss, including the Landau-Symon theory. 
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R. M. Sternheimer, in Methods of Experimental Physics, Vol. SA, Nuclear Phys- 
ics, Part A, eds. L. C. L. Yuan and C. $. Wu, Academic Press, New York (1961), 

pp. 4-55. 

Cherenkov radiation is discussed in many places. Its application to particle detectors 
is described in the book by Yuan and Wu, just mentioned, and also in 

D. M. Ritson, ed., Techniques in High Energy Physics, Inte! 
(1961), 

ence, New York 

‘Transition radiation is reviewed with extensive bibliographies by 
I. M. Frank, Usp. Fiz. Nauk 87, 189 (1965) [transl. Sov. Phys. Usp. 8, 729 (1966)]- 
F. G. Bass and V. M. Yakovenko, Usp. Fiz. Naik 86, 189 (1965) [transl. Sov. 
Phys, Usp. 8, 420 (1965)]. 

*Some examples of practical devices can be found in H. Pieharz, Nucl. Instrum. Methods A 367, 220 

(1995), W. Brickner et al., Nucl Instrum. Methods A 378, 451 (1996). and J. Ruzicka, L. Krupa, and 
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The calculation of transition radiation from the traversal of interstellar dust grains by 
energetic particles, done in the same approximation as in Section 13.7, is given by 

L. Durand, Astrophys. J. 182, 417 (1973). 

A review of both Cherenkov radiation and transition radiation with much history, is 

given by 
V. L. Ginsburg, Usp. Fiz. Nawk 166, 1033 (1996) [trans]. Phys. Usp. 39, 973 
(1996)}. 

For current applications of both Cherenkov and transition radiation, however, the reader 

must turn to specialized journals such as Nuclear Instruments and Methods A. Volume 
367 of that journal (1995), a conference proceedings, contains descriptions of several par- 
ticle physics detectors based on these and other principles. 

Problems 

13.1 If the light particle (electron) in the Coulomb scattering of Section 13.1 is treated 

classically, scattering through an angle 6 is correlated uniquely to an incident tra- 

jectory of impact parameter 6 according to 

ze* 
b= pe cots 

; cacti ig dt. bd 
where p = ymo and the differential scattering cross section is 70 7 sin6 |aal" 

(a) Express the invariant momentum transfer squared in terms of impact param- 
eter and show that the energy transfer 7(d) is 

2z*et 1 : 10) = oS Ee ‘0 
= zeipy and TO) = Trax = 29 Be. 

(b) Calculate the small transverse impulse Ap given to the (nearly stationary) 
light particle by the transverse electric field (11.152) of the heavy particle 
q = ze as it passes by at large impact parameter 6 in a (nearly) straight line 
path at speed v. Find the energy transfer T ~ (Ap)’/2m in terms of b. Com- 
pare with the exact classical result of part a. Comment 

where b{) 

13.2 Time-varying electromagnetic fields E(x, £) and B(x. 1) of finite duration act on a 
charged particle of charge ¢ and mass m bound harmonically to the origin with 
natural frequency « and small damping constant I’. The fields may be caused by 
a passing charged particle or some other external source. The charge’s motion in 
response to the fields is nonrelativistic and small in amplitude compared to the 

scale of spatial variation of the fields (dipole approximation). Show that the energy 

transferred to the oscillator in the limit of very small damping is 

me 5 
AE = — |E(o)|? m 

where E(«) is the symmetric Fourier transform of E(0. 9): 

E(0,) = _ Ls E(wje “da; Elo) ~ ae fe E(0, Del dt 
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13.3 The external ficlds of Problem 13.2 arc caused by a charge ze passing the origin 
in a straight-line path at speed v and impact parameter 5. The fields are given by 
(11.152). 

{a) Evaluate the Fourier transforms for the perpendicular and parallel compo. 
nents of the electric field at the origin and show that 

2 1 
ze {2 Z 

E(w) =[=) éx(2; s(t K, Ew) = (2) ERB lw) = 1 (2) eK 

where £ = wb/yv, and K,(é) is the modified Besse! (unction of the second 
kind and order ». [See references to tables of Fourier transforms in Section 

13.3] 

(b) Using the result of Problem 13.2, write down the energy transfer AE to a 
harmonically bound charged particle. From the limiting forms of the modified 

Bessel functions for small and large argument, show that your result agrees 
with the appropriate limit of 7(6) in Problem 13.1 on the one hand and the 
arguments at the end of Section 13.1 on the adiabatic behavior for b >> yu/ey 
on the other. 

13.4 (a) Taking f() = 12Z eV in the quantum-mechanical cnergy-loss formula, cal- 
culate the rate of energy loss (in MeV/em) in air at NTP, aluminum, copper, 
and lead for a proton and a mu meson, each with kinetic energies of 10, 100, 
1000 MeV. 

(b) Convert your results to energy loss in units of MeV « (cm?/g) and compare 
the values obtained in different materials. Explain why all the energy losses 
in MeV-(cm*/g) are within a factor of 2 of each other, whereas the values in 
MeV/cm differ greatly. 

43.5 Consider the energy loss by close collisions of a fast, but nonrelativistic, heavy 
particle of charge ze passing through an electronic plasma. Assume that the 
sercened Coulomb interaction V(r) = ze” exp(—kpr)/r, where kp is the Debye 

sereening parameter, acts between the electrons and the incident particle. 

(a) Show that the energy transfer in a collision at impact parameter p is given 
approximately by 

AE(b) = 2 ig AE KUkyb) 

where # is the clectron mass and u is the velocity of the incident particle. 

(b) Determine the energy loss per unit distance traveled for collisions with im- 

pact parameter greater than bain. Assuming kpPmin << 1, show that 

ae) ee fd 
rs Oe a 07 

where Prin is given by the larger of the classical and quantum minimum 
impact parameters ((13.16) and above]. 

13.6 The energy loss in a plasma from distant collisions can be found with Fermi’s 

method for the density effect. Consider the nonrelativistic limit of (13,36) with the 

relative dielectric constant of a plasma given by (7.59) augmented by some 
damping, 



13.7 

13.8 

13.9 

13.10 
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Assume that the arguments of the Bessel functions are small (corresponding to a 
speed of the incident particle large compared to thermal speeds in the plasma). 

{a) Show that the energy loss (13.36) for kyb > 1 becomes 

dE 227 [* io 1.123kpe 
==t | Re In dw EE eg WO? Nea) @ 

(b) With the assumption that 1’ << w, in e(w). show that the formula of part a 
yields 

(2) ve, (-2He) 
= lo 

ax hoger ®, 

Combine with the close-collision result of Problem 13.5 to find the total en- 
ergy loss of a nonrclativistic particle passing through a plasma. 

dE ‘eo? Av 

(2) ve “ mS) 

where A is a number of order unity. The presence of «, in the logarithm 
suggests that the energy loss may be quantized in units of fw,. In fact, clec- 
trons passing through thin metallic foils do show this discreteness in energy 
loss, allowing determination of effective plasma frequencics in metals. [See 
H. Racther, Springer Tracts in Modern Physics, Vol. 38, cd. G. Hobler. 
Springer-Verlag, Berlin (1965), pp. 84-157.) 

With the same approximations as were used to discuss multiple scattcring, show 
that the projected transverse displacement y (see Fig. 13.7) of an incident particle 
is described approximately by a Gaussian distribution, 

P(y)dy=A on] | dy 

where the mean square displacement is (y?) = (x7/6)(0*), x being the thickness of 
the material traversed and (0?) the mean square angle of scattering. 

If the finite size of the nucleus is taken into account in the “single-scattering™ tail 
of the multiple-scattering distribution, there is a critical thickness x, beyond which 
the single-scattering tail is absent. 

(a) Define x, in a reasonable way and calculate its value (in cm) for aluminum 
and lead, assuming that the incident particle is relativistic. 

(hb) For these thicknesses calculate the number of collisions that occur and de- 
termine whether the Gaussian approximation is valid. 

Assuming that Plexiglas or Lucite has an index of retraction of 1.50 in the visible 
region, compute the angle of emission of visible Cherenkov radiation for clectrons 
and protons as a function of their kinetic energies in MeV. Determine how many 
quanta with wavelengths between 4000 and 6000 A are emitted per centimeter of 
path in Lucite by a | MeV electron, a 500 MeV proton, and a § GeV proton. 

A particle of charge ze moves along the z axis with constant speed v, passing 
z= (ater = 0. The medium through which the particle moves is described by a 
dielectric constant e(w). 

(a) Beginning with the potential O(k. «) of (13.25), show that the potential of 
frequency w is given as a function of spatial coordinate x by 

ie. |p 
P(w, x} = ela) Va x{lele vim Be 
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13.11 

13.12 

13.13 

where z and p = V2 + ¥ are the cylindrical coordinates of the observation 
point. 

(b) Assuming that € is independent of frequency and that fe < 1, take the 
Fourier transform with respect to # of the expression in part a and obtain 

(x, #). Calculate the clectric and magnetic fields and compare them to the 
vacuum fields (11,152). Show that, among other things, the vacuum factor y 
is replaced by T = (1 ~ Be) 22. 

(c) Repeat the calculations of parts a and b with 6°« > 1. Show that now 

. o[-n{lele var) = u(!2l2 vae=1)] velo) V +|- n( le VB 1 id, Vpre- 1 

for w 0. Calculate the remaining Fourier transform to obtain (x, ?). Relate 
your answer to the result given in Section 13.4 for A(x. 1). 

we 

A magnetic monopole with magnetic charge g passes through matter and loses 

energy by collisions with electrons, just as does a particle with clectric charge ze, 

(a) In the same approximation as presented in Section 13.1, show that the energy 
loss per unit distance is given approximately by (13.14), but with ze > Bg, 
yielding 

dé > (2m? 
(2) AONE Te wf fw) ) 

(b) With the Dirac quantization condition (6.153) determining the magnetic 
charge, what z value is necessary for an or y charged particle in order 
that it lose energy at relativistic speeds at the same rate as a monopole? 
Sketch for the magnetic monopole a curve of dE/dx equivalent to Fig. 13.1 
and comment on the differences. 

A relativistic particle of charge ze moves along the z axis with a constant speed 
Be. The half-space z 5 0) is filled with a uniform isotropic dielectric medium with 
plasma frequency w,, and the space z > 0 with a similar medium whose plasma 
frequency is w:. Discuss the emission of transition radiation as the particle tra- 
verses the interface, using the approximation of Section 13.7. 

(a) Show that the radiation intensity per unit circular frequency interval and per 
unit solid angle is given approximately by 

G1 ee L i 
=< ~ 2 dod re I i ge Lap 

ye w 
where @ is the angle of emission relative to the velocity of the particle and 
=(1-p) 

(b) sity that the total energy radiated i is 

Consider the transition radiation emitted by a relativistic particle traversing a di- 
electric foil of thickness @ perpendicular to its path. Assuming that reflections can 
be ignored because 

IPe() — Leto) + I] 

is very small, show that the differential angular and frequency spectrum is given 
by the single-interface result (13.84) times the factor, 

F=4sin’@, with O= {1 + 5 + n) oD 



13.14 

13,15 

13.16 
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Here D = yclw, is the formation length, » = w/yw,, and 9 = (y6)%. Provided 
a >> D, the factor ¥ oscillates extremely rapidly in angic or frequency, averaging 
to (#) = 2. For such foils the smoothed intensity distribution is just twice that for 
a single interface. Frequency distributions for different values of T = 2D/a are 
displayed in Fig. 1 of G. B. Yodh, X. Artru. and R. Ramaty, Astrophys. J. 181, 725 
(1973). 

Transition radiation is emitted by a relativistic particle traversing normally a uni- 
form array of N dielectric foils, each of thickness a, separated by air gaps (cffcc- 
tively vacuum), cach of length b. Assume that multipic reflections can be neglected 
for the whole stack. This requires 

no) = 1) ee 
no) +1] 4arN 

(a) Show that if the dielectric constant of the medium varies in the z direction 

as e(w. 2) = 1 ~ (@3/e")p(z), the differential spectrum of transition radiation 
is given approximately by the single-interface result (13.84) times 

2 
F= |p | dz p(zje“" oo( —icosé iM k(2’) a) 

where p(0) = 1 by convention, p = wiv — k(0) cos, and k(z) = 
(wie) Velo, 2). 

(b) Show that for the stack of N foi 

where © is defined in Problem 13.13 and VW = v(1 + n)(b/4D), Compare 
G. M. Garibyan, Zh. Eksp. Teor. Fiz. 60, 39 (1970) [transl. Sov. Phys. JETP 
33, 23 (1971)]. 

The practical theory of multilayered transition radiation detectors is 
treated in great detail by X. Artru, G. B. Yodh, and G. Mennessier, Phys. 
Rev. D ¥2, 1289 (1975). 

(a) Find the number N, of transition radiation quanta with frequencies greater 
than «, emitted per interface, starting from the energy spectrum (13.85). 
Show that for y > 1, 

where terms of order 1/7? have been neglected. 
(b) Using the result from part a tor the number of photons and the value 

he, = 20 eV, find the mean cnergy of the photons (in keV) for y = 10°, 
10%, 10°. 

A highly relativistic neutral particle of mass m possessing a magnetic moment 
paralle) to its direction of motion emits transition radiation as it crosses at right 
angles a plane interface from vacuum into a dielectric medium characterized at 
high frequencies by a plasma frequency w,. The magnetic moment y is defined in 
the particle’s rest frame. [The particle could be a neutron or, of more potential 
interest, a neutrino with a small mass.] 

(a) Show that the intensity of transition radiation is given by (13.79), provided 
the electric field of the incident particle E,, is given by (By/yze) times the 
partial derivative in the z direction of E, in (13.80). Note that the electric 
field actually points azimuthally, but this affects only the polarization of the 
radiation, not its intensity. 
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(b) 

{c) 

(dy 

Show that in the combined limit of y >> | and w >> @,, the intensity distri- 

butions in angie and frequency are given by (13.84) and (13.85), cach mul- 

tiplied by (uw/ze yc). 

By expressing y in units of the Bohr magneton iy = ef/2m.c and the plasma 
frequency in atomic units (fay = e/a, = 27.2 eV), show that the ratio of 
frequency distributions of transition radiation emitted by the magnetic mo- 

ment to that emitted by an electron with the same speed is 

aly) _ a! fe ‘ fay ie 
aio) 4 \un) ier 

where a = 1/137 is the fine structure constant and # = wye, is the dimen. 
sionless frequency variable. 
Calculate the total energy of transition radiation, imposing conservation of 

energy, that is, » S Yn = mc/fw,. [This constraint will give only a crude 
estimate of the energy in the quantum regime where Yn, < 1 because the 

derivation is classical throughout.) Show that the ratio of total energies for 

the magnetic moment and an clectron of the same speed can be written as 

4 2 the \* 
noe (4) (=) Gln) 
f 20 \pn} en 

where G = 1 Or Yn > | and G = (10 alz) > [INCL M494.) —2/3] for 

Vax << 1. For fixed particle energy and magnetic moment, how does the 

actual amount of radiated energy vary with the particle’s mass for very small 

mass? 

Hint; the integrals of Section 2.7 of Gradshteyn and Ryzhik may be of use, al- 

though integration by parts is effective. 



CHAPTER 14 

Radiation by Moving Charges 

It is well known that accclerated charges cmit electromagnetic radiation. In 
Chapter 9 we discussed examples of radiation by macroscopic time-varying 
charge and current densities, which are fundamentally charges in motion. But in 
one class of radiation phenomena the source is a moving point charge or a small 
number of such charges. In such problems it is useful to develop the formalism 
in a way that rclates the radiation intensity and polarization directly to properties 
of the charge’s trajectory and motion. Of particular interest are the total radiation 
emitted, the angular distribution of radiation, and its frequency spectrum. For 

nonrelativistic motion the radiation is described by the well-known Larmor result 
(see Section 14.2). But for relativistic particles a number of unusual and inter- 
esting cffects appear. It is these relativistic aspects that we wish to emphasize. In 
the present chapter a number of general results are derived and applied to ex- 
amples of charges undergoing prescribed motions, especially in external force 
fields, 

Deflection of ultrarelativistic electrons in magnetic ficlds found in accelera- 
tors, but also in plasmas and astrophysical contexts, leads to copious emission of 
radiation called “synchrotron radiation.” ‘The basic properties of synchrotron 
radiation are derived in Sections 14.5 and 14.6. ‘The broad frequency spectrum, 
often corresponding to millions of harmonics of the basic frequency of particle 
motion, finds uses in solid-state physics and biology wherever intense beams of 
x-tays are desirable. ‘hese applications have led to the creation of dedicated 
“light sources” with special “insertion devices” called wigglers and undulators. 
The physics of these magnetic structures, designed to produce spectral “lines” 
(actually narrow peaks) of very high brightness and adjustable photon energy, is 
discussed in Section 14.7. 

14.1 Liénard-Wiechert Potentials and Fields for a Point Charge 

In Section 12.11 it was shown that if there are no incoming fields the 4-vector 

potential caused by a charged particle in motion is 

A(x) = aa dty’ Dw — x(x’) (14.1) 

where D,(x — x’) is the retarded Green function (12.133) and 

J*(x') = ec J drV%(7) 8 [x' — r(x] (14.2) 

661 
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is the charge’s 4-vector current, V“{7} its 4-velocity and r“(z) its position. Inser- 

tion of the Green function and the current into (14.1} gives, upon integration 

over d*x’, 

Aw(x) = 2e | drV°(r) Ota — ror] Sfx — r(a)P} (14,3) 

The remaining integral over the charge’s proper time gives a contribution only 
al r= 7%, where 7 is defined by the light-cone condition, 

[x — r(m)P = 0 (144) 
and the retardation requirement xp > 7o{7). The significance of these conditions 

is shown diagrammatically in Fig. 14.1. The Green function is different from zero 
only on the backward light cone of the observation point. The world line of the 
particle r(z) intersects the light cone at only two points, one earlier and one later 
than Xo. The earlier point, r°(7)). is the only part of the path that contributes to 
the fields at x*. To evaluate (14.3) we use the rule, 

afew) = 5 PAS 

“|(2.. 
where the points x = x, are the zeros of f(x), assumed to be linear. We need 

d apt — OOP = ~2fe - rv) (14.5) 
evaluated at the one point, 7 = 7). The 4-vector potential is therefore 

eV(7) 
A(x) = ———_—— 14.6 

©) The ll a 
where zy is defined by (14.4) and the retardation requirement. 

The potentials (14.6) are known as the Liénard-Wiechert potentials. They 
are often written in noncovariant, but perhaps more familiar, form as follows. 
The light-cone constraint (14.4) implies x) — ro(m} = |x — r(7)| = R. Then 

Ve (x = 1) = Volto = ro(t)| — V+ [x — r(70)] 
ycR — yy mR (14.7) 

yeRU — Bn) 

Time 

r{r) 

Figure 14.1 
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where mis a unit vector in the direction of x — (7) and B = v(7)/c. The potentials 
(14.6) can thus be written 

fo nee: 
vem [i me ae la oe (ie) 

The subscript “ret” means that the quantity in the square brackets is to be eval- 
uated at the retarded time 7%, given by. ro(7%) = xo — R. It is evident that for 

nonrelativistic motion the potentials reduce to the well-known results. 
The electromagnetic fields F*4(x) can be calculated directly from (14.6) or 

(14.8), but it is simpler to return to the integral over dz, (14.3). In computing F"* 
the differentiation with respect to the observation point x will act on the theta 
and delta functions. Differentiation of the theta function will give 4]xo — ro(7)] 
and so constrain the delta function to be 6(—R?). There will be no contribution 
from this differentiation except at R = 0. Excluding R = 0 from consideration, 
the derivative a°A4 is 

ata® = 2¢ i) dr V4(r) Oxy — rol 7] a°Slfx — r)I’} (14.9) 

The partial derivative can be written 

eas] - ary. apa orp 22-4 OA = a°f Fe ALL = OF EG. AN 
where f = (x — r(z)[’. The indicated differentiation gives 

aaj) = -—t Mill 7 aa tll 
When this is inserted into (14.9) and an integration by parts performed, the result 
is 

dr 

In the integration by parts the differentiation of the theta function gives no con- 
tribution, as already indicated. The form of (14.10) is the same as (14.3), with 
V*(r) replaced by the derivative term. The result can thus be read olf by substi- 
tution from (14.6). The field strength tensor is 

eal e d | (x — nV? — & — nove 
pen eal V-(x-r | (4) 

Here r* and V° are functions of 7. After differentiation the whole expression is 
to be evaluated at the retarded proper time 7. 

The ficld-strength tensor F** (14.11) is manifestly covariant, but not overly 
explicit. It is sometimes useful to have the ficlds E and B exhibited as explicit 
functions of the charge’s velocity and acceleration. Some of the ingredients 

needed to carry out the differentiation in (14.11) are 

(x — ry = (R,Rm), "= (ye, ycB) 

O°AP = 2e J et [eq OLxo — ro(7)] Sfx — r(P} (4.10) 

“ = [cy'B- B. c¥B + cy'BB - B)] (14.12) 

pala ‘(@-np=-e + —n, oa 
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where B= dB/dr is the ordinary acceleration, divided by c. When these and (14, 7) 

are employed the fields (14.11) can be written in the inelegant, but perhaps more 
intuitive, forms, 

= [nx E]y (14.13) 

_ n-B ¢ [nx {(@m — 8) x 6} 
ici {ra = Sel 7 A (= B-ayR I. we) 

Fields (14.13) and (14.14) divide themselves naturally into “velocity fields,” which 
are independent of acceleration, and “acceleration fields,” which depend linearly 
on B. The velocity ficlds are essentially static ficlds falling off as R ~°, whereas 
the acceleration fields are typical radiation ficlds, both E and B being transverse 
to the radius vector and varying as R7', 

For the special circumstance of a particle in uniform motion the second term 
in (14.14) is absent. The first term, the velocity ficld, must be the same as that 
obtained in Section 11.10 by means of a Lorentz. transformation of the static 
Coulomb field. One way to establish this is to note from (14.11) for F°? that if 
V* is constant, the field is 

ec? 
ha 

[Vs - nF 
» [Oe — yey? — & — rhe] (14.15) 

in agreement with the third covariant form in Problem 11.17. It may be worth- 
while, nevertheless, to make a transformation of the charge’s coordinates from 
its present position (used in Section 11.10) to the retarded position used here in 
order to demonstrate explicitly how the different appearing expressions, (11.152) 
and (14.14), are actually the same. The two positions of the charge are shown 
in Fig. 14.2 as the points P and P’, while O is the observation point. ‘The distance 
P'Qis BR cos 0 = B- nR. Therefore the distance OQ is (1 — B-n)R. But from the 
triangles OPQ and PP’Q we have [(1 — B+ n)RP = r? — (PQ)? = r? — BR? sino. 
‘Then from the triangle OMP’ we have R sin @ = b, so that 

(1. — B+ n)RP = B? + v7? - Be? = rs (+ yvF) (14.16) 

iM L Z ita 
is ‘BR- 7+ ot. 

Figure 14.2. Present and retarded positions of a charge in uniform motion. 
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The transverse component E> from (11.152), 

eyb 
a Bee (14.172) 

can thus be written in terms of the retarded position as 

b 
Cs ae. 14.17b) [orwell ain) 

This is just the transverse component of the velocity field in (14.14), The other 
components of E and B come out similarly. 

14.2 Total Power Radiated by an Accelerated Charge: 
Larmor’s Formula and Its Relativistic Generalization 

If a charge is accelerated but is observed in a reference frame where its velocity 
is small compared to that of light, then in that coordinate frame the acceleration 
field in (14.14) reduces to 

e {nx (nx Bp) 
st ee eee a ot oer ae car 

The instantaneous energy flux is given by the Poynting vector, 

ae = ipp S=ExXB= |g) n (14.19) 

This means that the power radiated per unit solid angle is* 

dP yh wer 5 os 
ao | REcl 7 al" x (n x B){ (14.20) 

If @ is the angle between the acceleration ¥ and n, as shown in Fig. 14.3, then 
the power radiated can be written 

aP emy 
dQ Ane? 

sin® (14.21) 

This exhibits the characteristic sin*@ angular dependence, which is a well-known 
result. We note from (14.18) that the radiation is polarized in the plane containing 
¥and n. The total instantaneous power radiated is obtained by integrating (14.21) 
over all solid angle. Thus 

2 
P==S\vP (14.22) 

This is the familiar Larmor result for a nonrelativistic, accelerated charge. 

*As noted in Chapter 9. in writing angular distributions of radiation we always exhibit the polarization 
explicitly by writing the absolute square of a vector that is proportional to the electric field. If the 
angular distribution for some particular polarization is desired, it can be obtained by taking the scalar 
product of the vector with the appropriate polarization vector before squaring. 
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Figure 14.3 

Larmor’s formula (14.22) can be generalized by arguments about covariance 

under Lorentz transformations to yield a result that is valid for arbitrary velocities 
of the charge. Radiated electromagnetic energy behaves under Lorentz transfor- 
mation like the zeroth component of a 4-vector (see Problem 12.18), This can be 

used (see Rohrlich, p. 109ff.) to show that the power P is a Lorentz invariant. If 
we can find a Lorentz invariant that reduces to the Larmor formula (14.22) for 
f << 1, then we have the desired generalization. There are, of course, many 
Lorentz invariants that reduce to the desired form when 8 — 0. But from (14.14) 

itis evident that the general result must involve only B and B. With this restriction 
on the order of derivatives that can appear, the result is unique. To find the 
appropriate generalization we write Larmor's formula in the suggestive form: 

2 e {dp dp 
3 m?c3 (2 “at (14.23) 

where m is the mass of the charged particle, and p its momentum. The Lorentz 
invariant generalization is 

_ 2 e fdp, dp” 
in 3 mc? (#: dr (14.24) 

where dr = dt/y is the proper time element. and p* is the charged particle’s 
momentum-energy 4-vector.* To check that (14.24) reduces properly to (14.23) 
as B — 0 we evaluate the 4-vector scalar product. 

a 2 2 2 2 
_ ap, dp* _ fdpy . dE\ _ fdpy _ fa dp (14.25) 

dt dt dz e\dr dr dt, 

If (14.24) is expressed in terms of the velocity and acceleration by means of 
E = ymc? and p = ymvy, we obtain the Liénard result (1898): 

p= F= vB) - @ x Br (14.26) 
One area of application of the relativistic expression for radiated power is 

that of charged-particle accelerators. Radiation losses are sometimes the limiting 

factor in the maximum practical energy attainable. For a given applied force (i.e. 

*That (14.24) is unique can be seen by noting that a Lorentz invariant is formed by taking scalar 
products of 4-vectors or tensors of higher rank. The available 4-vectors are p and dp“/d7. Only form 
(14.24) reduces to the Larmor formula for 8 > 0. Contraction of higher rank tensors such as 
p"(dp"idz) can be shown to vanish, or to give results proportional to (14.24) or m’. 
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a given rate of change of momentum), the radiated power (14.24) depends in- 
versely on the square of the mass of the particle involved. Conscquently these 

radiative cffects are largest for electrons. 
Ina linear accelerator the motion is one-dimensional. From (14.25) it is ev- 

ident that in that case the radiated power is 

ase 7 5 (2) (14.27) 
3 mc \ dt 

The rate of change of momentum is cqual to the change in energy of the particle 
per unit distance. Consequently 

2 
2 dE =Gn (€) (14.28) 

showing that for lincar motion the power radiated depends only on the exicrnal 
forces that determine the rate of change of particle energy with distance, not on 
the actual encrgy or momentum of the particle. The ratio of power radiated to 

power supplied by the external sources is 

P__2¢ 1dE _, 2 etme’) dE 
(dEldt) 3mcude 3 me de 

where the last form holds for relativistic particles (8 — 1). Equation (14.29) shows 
that the radiation loss in an electron linear accelerator will be unimportant unless 
the gain in cnergy is of the order of mc? = 0.511 MeV ina distance of e’/me? = 
2.82 X 107"? cm, or of the order of 2 x 10’* MeV/m! Typical energy gains are 
less than 50 MeV/m. Radiation losses are completely negligible in linear accel- 

crators, whether for electrons or heavier particles. 
Circumstances change drastically in circular accelerators like the synchrotron 

or betatron. In such machines the momentum p changes rapidly in direction as 
the particle rotates, but the change in energy per revolution is small. This means 
that 

(14.29) 

1 dE 
ae > 3 F : yo [pl >> = (14.30) 

Then the radiated power sae can be written approximately 

2 
P= 5a Pe pe = Se 4 (1431) 

where we have used w = (cB/p), p being the orbit radius. This result was first 

obtained by Liénard in 1898. ‘The radiative-energy loss per revolution is 

2ap Ane? 
6E = P= —-— py' cB 3 p By 

where Lp is actually 1/27 times the path integral around the ring of {1/p(s))’. For 
high-energy electrons (8 = 1) this has the numcrical value, 

9-2 EGevyy" 
p(meters) 

(14.32) 

SE(MeV) = 8.85 X 1 (14.33) 

In the first electron synchrotrons, p = 1 meter, Emax = 0.3 GeV. Hence 6Emax ~ 

1 keV per revolution. This was less than, but not negligible compared to, the 
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cnergy gain of a few kilovolts per turn. At bigher energies the limitation on 
available radiofrequency power to overcome the radiation loss becomes a dom- 

inant consideration. In the 10 GeV Corneil clectron synchrotron, for example, 
the orbit radius is p ~ 100 meters, the maximum magnetic field is ~3.3 kG, and 

the rf voltage per turn is 10.5 MV at 10 GeV. According to (14.33) the loss per 

turn is 8.85 MeV. These same gencral considerations apply to electron-positron 

storage rings, where rf power must be supplied just to maintain the beams at a 
constant energy as they circulate. At the LEP ring in Geneva, Switzcrland, for 
beams at 60 GeV the loss per turn is about 300 MeV per electron. 

‘The power radiated in circular clectron accelerators can be expressed nu- 
merically as 

P (watts) = 10° SE (MeV) J (amp) (14,34) 

where J is the circulating beam current. This equation is valid if the emission of 
radiation from the different electrons in the circulating beam is incoherent, In 
the largest electron storage rings the radiated power amounts to tens of watts 
per microampere of beam. While this power dissipation is a waste to high-energy 
physicists, the radiation has unique properties that make it a valuable research 
tool. These properties are discussed in Section 14.6, and in greater detail for 
dedicated “light sources” in Section 14.7. 

14.3 Angular Distribution of Radiation Emitted 
by an Accelerated Charge 

For an accelerated charge in nonrelativistic motion the angular distribution shows 
a simple sin*@ behavior, as given by (14.21), where © is measured relative to the 
direction of acccleration. For relativistic motion the acceleration ficlds depend 
on the velocity as well as the acceleration. Consequently the angular distribution 
is more complicated. From (14.14) the radial component of Poynting's vector can 
be calculated to be 

n x [(n— B) x BI 
(i — B+ ny? 

It is evident that there are two types of relativistic cffect present. One is the effect 
of the specific spatial relationship between ® and B, which will determine the 
detailed angular distribution. The other is a gencral. relativistic effect arising from 
the transformation from the rest frame of the particle to the observer's frame 
and manifesting itself by the presence of the factors (1 — B-m) in the denomi- 
nator of (14.35). For ultrarelativistic particles the latter effect dominates the 

whole angular distribution. 
In (14.35) S+n is the energy per unit arca per unil time detected at 

an observation point at time ¢ of radiation emitted by the charge at time ?’ = 
t — R(t’ Ve. LE we wanted to calculate the energy radiated during a finite period 
of acceleration, say from f' = T, to t' = T>, we would write 

re 

2 
} (14.35) S-mha = {z 

#= Tp ¥[RC2¥] rary dt 
E= | [S+ nu dt = i (S-n)— ar’ (14,36) 

Ei tr, de = TART ye] 
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Thus we see that the useful and meaningful quantity is (S- m) (dé/dt'), the power 
radiated per unil area in terms of the charge’s own time. We therefore define 
the power radiated per unit solid angle to be 

dP) | Lee Be ao 3 Wo 7 RSs) Ge = RSA - Ben) (14.37) 

If we imagine the charge to be accelerated only for a short time during which B 

and i are essentially constant in direction and magnitude, and we observe the 
radiation far enough away from the charge that n and R change negligibly during 

the acceleration interval, then (14.37) is proportional to the angular distribution 
of the energy radiated. With (14.35) for the Poynting vector, the angular distri- 

bution is 

dP) __e® |m x {a — B) x BIP 
a2 anc (l—n-B)* 

(14.38) 

The simplest example of (14.38) is linear motion in which B and B are par- 

allel. If @ is the angle of observation measured from the common direction of 8 

and f§, then (14.38) reduces to 

dP’) eo sin’@ 

dQ ~~ 4ac* (1 — B cose) 
(14.39) 

For B << 1, this is the Larmor result (14.21). But as 8 > 1, the angular distri- 
bution is tipped forward more and more and increases in magnitude, as indicated 
schematically in Fig. 14.4, The angle @,,,, for which the intensity is a maximum 

is 

Ayan = COS IF (V1 + 158" - »| (14.40) 
I cae 
2y 

where the last form is the limiting value for 8 > 1. In this same limit the peak 
intensity is proportional to y*. Even for B = 0.5, corresponding to electrons of 

~80 keV kinetic energy, uu. = 38.2°. For relativistic particles, @,,,, is very small, 
being of the order of the ratio of the rest energy of the particle to its total energy. 
Thus the angular distribution is confined (o a very narrow cone in the direction 
of motion. For such small angles the angular distribution (14.39) can be written 

approximately 

AP) 8 ee. (yA)? 
dQ re a+ yey 

(14.41) 

Figure 14.4 Radiation pattern tor 
charge accelerated in its direction of 
motion. The two patterns are not to 

scale. the relativistic one (appropriate 
for y ~ 2) having been reduced by a 
factor ~10° for the same acceleration. 
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Figure 14.5 Angular distribution of radiation for relativistic particle. 

‘The natural angular unit is evidently y~'. The angular distribution is shown in 
Fig, 14.5 with angles measured in these units. The peak occurs al y@ = 3, and the 
half-power points at y@ = 0.23 and y@ = 0.91. The root mean square angle of 
emission of radiation in the relativistic limit is 

1 _ me? 22 (6°) E (14.42) 

This is typical of the relativistic radiation patterns. regardless of the vectorial 
relation between B and B. The total power radiated can be obtained by inte- 
grating (14.39) over all angles. Thus 

S uy (14.43) 

in agreement with (14.26) and (14.27). 

Another cxample of angular distribution of radiation is that for a charge in 
instantancously circular motion with its acceleration B perpendicular to its ve- 
locity B. We choose a coordinate system such that instantaneously is in the z 
direction and B is in the x direction. With the customary polar angles 6, defining 
the direction of observation, as shown in Fig. 14.6, the general formula (14.38) 
reduces to 

aP(') |v? [ sin?@ cos’ | (14.44) 
dQ an (1— Boose) | (1 — Beosey 

We note that, although the detailed angular distribution is different from the 
linear acceleration case, the same characteristic relativistic peaking at forward 

Figure 14.6 
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angles is present. In the relativistic limit (y >> 1), the angular distribution can 
be written approximately 

dP’) _ 2e , IP _ 47 cos’ 
an re” G+ ¥OP a+ pry (14.45) 

The root mean square angle of emission in this approximation is given by (14.42), 

just as for one-dimensional motion. The total power radiated can be found by 

integrating (14.44) over all angles or from (14.26): 

2 4 os 14.4 PQ) <3 a7 (14.46) 

It is instructive to compare the power radiated for acceleration parallel] to 
the velocity (14.43) or (14.27) with the power radiated for acceleration perpen- 
dicular to the velocity (14.46) for the same magnitude of applied force. For cir- 
cular motion, the magnitude of the rate of change of momentum (which is equal 
to the applied force) is ynv. Consequently, (14.46) can be written 

2 ; 
Parcaucl(t!) = 3 as (22) (14.47) 

When this is compared to the corresponding result (14.27) for rectilinear motion, 

we find that for a given magnitude of applied force the radiation emitted with a 
transverse acceleration is a factor of y° larger than with a parallel acceleration. 

14.4 Radiation Emitted by a Charge in Arbitrary, 
Extremely Relativistic Motion 

For a charged particle undergoing arbitrary, extremely relativistic motion the 
radiation emitted at any instant can be thought of as a coherent superposition of 
contributions coming from the components of acceleration parallel to and per- 
pendicular to the velocity. But we have just scen that for comparable parallel 
and perpendicular forces the radiation from the parallel component is negligible 
(of order t/y*) compared to that from the perpendicular component. Conse- 

quently we may neglect the parallel component of acceleration and approximate 
the radiation intensity by that from the perpendicular component alone. In other 
words, the radiation emitted by a charged particle in arbitrary, extreme relativ- 
istic motion is approximately the same as that emitted by a particle moving 
instantaneously along the are of a circular path whose radius of curvature p is 
given by 

p2SeS (14.48) 

where 6, is the perpendicular component of acceleration. The form of the angular 
distribution of radiation is (14.44) or (14.45). It corresponds to a narrow cone or 
searchlight beam of radiation directed along the instantaneous velocity vector of 

the charge. 
For an observer with a frequency-sensitive detector the confinement of the 

radiation to a narrow pencil parallel to the velocity has important consequences. 
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The radiation will be visible only when the particle's velocity is directed toward 
the observer. For a particle in arbitrary motion the observer will detect a pulse 
or burst of radiation of very short time duration (or a succession of such bursts 
if the particle is in periodic motion), as sketched in Fig. 14.7. Since the angular 
width of the beam is of the order of y~', the particle will travel only a distance 
of the order of 

at 
Y 

corresponding to a time, 

ar= 2 
y 

while illuminating the observer. To make the argument conceptually simple, 
neglect the curvature of the path during this time and suppose that a sharp rec- 
tangular pulse of radiation is emitted. In the time Ar the front edge of the 
pulse travels a distance, 

Pw) 

t 

Figure 14.7 A relativistic particle in periodic motion emits a spiral radiation pattern 
that an observer at the point A detects as short bursts of radiation of time duration 
T = Lic, occurring at regular intervals Ty = Lo/c. The pulse length is given by (14.49), 
while the interval 7, = 2ap/v = 2apic. For beautiful diagrams of field lines of radiating 

particles, see R. Y. Tsien, Am. J. Phys. 40, 46 (1972). 
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Since the particle is moving in the same direction with speed v and moves a 
distance @ in the time As, the rear edge of the pulse will be only a distance 

i B22 6P L=p-d=(§-1)8= 14.49) 
B y zy ( 

behind the front edge as the pulse moves off. The pulse length is thus L in space, 
or L/c in time, From general arguments about the Fouricr decomposition of finite 
wave trains this implies that the spectrum of the radiation will contain appreciable 
frequency components up to a critical frequency, 

ee (‘yr (14.50) 

For circular motion c/p is the angular frequency of rotation w, and even for 
arbitrary motion it plays the role of a fundamental frequency. Equation (14.50) 

shows that a relativistic particle emits a broad spectrum of frequencies, up to y* 

times the fundamental frequency. In a 200 MeV synchrotron, Ym, ~ 400, while 

wy ~ 3 X 10% s°'. The frequency spectrum of emitted radiation extends up to 
~2 Xx 10! s"', or down to a wavelength of 1000 A, even though the fundamental 
frequency is in the 100 MHz range. For the 10 GeV machine at Cornell, Ying, = 
2 x 10* and wy = 3X 10°s '. This means that w, ~ 2.4 x 10!°s’ ', corresponding 
to 16 keV x-rays. In Section 14.6 we discuss in detail the angular distribution of 
the different frequency components, as well as the total energy radiated as a 
function of frequency. In Section 14.7 we show how to modify the spectrum with 
magnetic insertion devices. 

14.5 Distribution in Frequency and Angle of Energy 
Radiated by Accelerated Charges: Basic Results 

The qualitative arguments of Section 14.4 show that for relativistic motion the 
radiated energy is spread over a wide range of frequencics. The range of the 
frequency spectrum was estimated by appealing to properties of Fourier integrals. 
The argument can be made precise and quantitative by the use of Parseval’s 
theorem of Fourier analysis. 

The general form of the power radiated per unit solid angle is 

aP( HO ~ awe (1451) 
where 

12 
Ai) = () {RE}. (14.52) 

ar, 

E being the clectric field (14.14). In (14.51) the instantaneous power is expressed 
in the observer's time (contrary to the definition in Section 14.3), since we wish 

to consider a frequency spectrum in terms of the observer's frequencies. For 
definitencss we think of the acccleration occurring for some finite interval of time, 
or at least falling off for remote past and future times, so that the total energy 
radiated is finite. Furthermore, the observation point is considered far enough 
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away from the charge that the spatial region spanned by the charge while accel- 
crated subtends a small solid-angle element at the observation point. 

The total energy radiated per unit solid angle is the time integral of (14.51): 

dw {* 
77 |AOP at (14.53) 

‘This can be expressed alternatively as an integral over a frequency spectrum by 
use of Fourier transforms. We introduce the Fourier transform A(w) of A(z), 

1 
A = +f Atte’ dt 14.5: (o) = Fe} Ae (14584) 

and its inverse, 

At) = an is Alwye “ deo (14.55) 

Then (14.53) can be written 

dw a if E ere tw’ wt aia). a} de = do’ A*(w') + ACwe (14.56) 

Interchanging the orders of time and frequency integration, we see that the time 
integral is just a Fourier representation of the delta function 6(@' — «). Conse- 
quently the energy radiated per unit solid angle becomes 

aw {* ; “es 5 70 . |A(w)P dw (14.57) 

The equality of (14.57) and (14.53), with suitable mathematical restrictions on 
the function A(t), is a special case of Parseval’s theorem. It is customary to in- 
tegrate only over positive frequencies, since the sign of the frequency has no 
physical meaning. Then the relation, 

dW _ {* dw, n) pli 14.5 a hy doan © Mg08) 

defines a quantity that is the energy radiated per unit solid angle per unit fre- 
quency interval: 

ay 

do dQ 
= |A(o})P + |A(-e)? (14.59) 

If A(¢) is real, from (14.55) it is evident that A(—) = A*(w). Then 

a 
dw dQ = 2|A(w)/? (14,60) 

This result relates in a quantitative way the behavior of the power radiated as a 
function of time to the frequency spectrum of the energy radiated. 

By using (14.14) for the electric field of an accelerated charge we can obtain 
a general expression for the energy radiated per unit solid angle per unit fre- 
quency interval in terms of an integral over the trajectory of the particle. We 
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must calculate the Fourier transform (14.54) of A(#) given by (14.52}. Using 

(14.14), we find 

(2 Nf iuf ax [en = B) x B] A(@) = (&) fe [ = pee L: dt (14.61) 

where ret means evaluated at ¢’ + [R(t’)/c] = ¢. We change the variable of inte- 

gration [rom f to “’, thereby obtaining the result: 

A(w) = (=) f pike H1RU VED te ae BY a (14.62) 

Since the observation point is assumed to be far away from the region of space 
where the acceleration occurs, the unit vector n is sensibly constant in time. 

Furthermore the distance R(t’) can be approximated as 

RW’) =x - nel) (14.63) 

where x is the distance from an origin O to the observation point P, and r(z’) is 

the position of the particle relative to O. as shown in Fig. 14.8. Then, apart from 
an overall phase factor, (14.62) becomes 

FE crsemmaiy BX Ll = B) * Bi) A(o) = (&) | _é Can —G-pem dt (14.64) 

The primes on the time variable have been omitted for brevity. The energy ra- 
diated per unit solid angle per unit frequency interval (14.60) is accordingly 

2 

[He BEL eats mae a] 04.65) 
For a specified motion r(t) is known, B(t) and B(s) can be computed, and the 
integral can be evaluated as a function of w and the direction of n. If accelerated 
motion of more than one charge is involved, a coherent sum of amplitudes A,(w), 
one for each charge, must replace the single amplitude in (14.65) (sce Problems 
14.23, 15.1, 15.4-15.8). 

Even though (14.65) has the virtue of explicitly showing the time interval of 

integration to be confined to times for which the acceleration is different from 
zero, a simpler expression for some purposes can be obtained by an integration 

by parts in (14.64). It is easy to demonstrate that the integrand in (14.64), ex- 
cluding the exponential, is a perfect differential: 

n x [— B) xB] _ d [nx (n x B) 
ad -B-n)? - 4 Zit (14.66) 

Che 

dw dQ 4n’c 

Figure 14.8 
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Then an integration by parts leads to the intensity distribution: 

2 
[ nx (mx Bem dy (14.67) 

The reader may rightly ask whether (14,67) is correct in all circumstances as it 
stands. Suppose that the acceferation is different from zero only for T; $< Ty, 
Why then is the integration in (14.67) over all timc? The precise answer is that 
(14.67) can be shown, by adding and subtracting the integrals over the times when 
the velocity is constant, to follow from (14.65) provided ambiguities at 1 = +20 
arc resolved by inserting a convergence factor ¢ ““' in the integrand and taking 
the limit ¢ — 0 after evaluating the integral. In processes like beta decay, where 
the classical description involves the almost instantaneous halting or setting in 
motion of charges, extra care must be taken to specify each particle’s velocity as 
a physically sensible function of time. 

We remind the reader that in (14.67) and (14.65) the polarization of the 
emitted radiation is specified by the direction of the vector integral in cach. The 
intensity of radiation of a certain fixed polarization can be obtained by taking 
the scalar product of the appropriate unit polarization vector with the vector 
integral before forming the absolute square. 

For a number of charges e, in accelerated motion the integrand in (14.67) 
involves the replacement, 

N 
eBe Kann, 6B, Mwomeno (14.68) 

ra 

In the limit of a continuous distribution of charge in motion the sum over j 
becomes an integral over the current density J(x, 1): 

eeteoma , L i Px Ux, Nerolonn (14.69) 
c 

‘Then the intensity distribution becomes 

aI wo 2 

dw dQ 4n°e8 fal ax n x(n x I(x, Ne owl (14.70) 

a result that can be obtained from the direct solution of the inhomogeneous wave 
equation for the vector potential. 

14.6 Frequency Spectrum of Radiation Emitted by a Relativistic 
Charged Particle in Instantaneously Circular Motion 

In Section 14.4 we saw that the radiation emitted by an extremely relativistic 
particle subject to arbitrary accelerations is equivalent to that emitted by a par- 
ticle moving instantaneously at constant speed on an appropriate circular path. 
The radiation is beamed in a narrow cone in the direction of the velocity vector 
and is seen by the observer as a short pulse of radiation as the searchlight beam 
sweeps across the observation point. 
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To find the distribution of energy in frequency and angle it is necessary to 
calculate the integral in (14.67). Because the duration of the pulse is very short, 

it is necessary to know the velocity B and position r(t) over only a small are of 
the trajectory whose tangent points in the general direction of the observation 

point. Figure 14.9 shows an appropriate coordinate system. The segment of tra- 
jectory lics in the x-y plane with instantaneous radius of curvature p, Since an 
integral will be taken over the path, the unit vector n can be chosen without loss 
of generality to lie in the x-z plane, making an angle @ (the latitude) with the x 
axis. Only for very small 6 will there be appreciable radiation intensity. The origin 
of time is chosen so that at 1 = 0) the particle is at the origin of coordinates. 

The vector part of the integrand in (14.67) can be written 

nx (nx B) = a -« sin(%) +e, cos() sin o| (14.71) 

where €) = €, is a unit vector in the y direction, corresponding to polarization in 
the plane of the orbit; €, = n X € is the orthogonal! polarization vector corre- 
sponding approximately to polarization perpendicular to the orbit plane (for @ 
small). The argument of the exponential is 

of 5 2-10) = of - e sin( 2) cos | (14.72) 
€ c Pp 

Since we are concerned with small angles @ and comparatively short times around 
t = 0, we can expand both trigonometric functions in (14.72) to obtain 

. 1 2 
oft - a-#)) = 7 (4 + *) + a | (14.73) 

where # has been put equal to unity wherever possible. Using the time estimate 
picy for « and the estimate (6?)'” (14.42) for @, it is easy to see that neglected 
terms in (14.73) are of the order of y ? times those kept. 

With the same type of approximations in (14.71) as led to (14.73), the radi- 
ated energy distribution (14.67) can be written 

Pl ee 

da dQ 4me 
—eAi(e) + EAC (14.74) 

Figure 4.9 
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where the amplitudes are* 

ef” tig ee 
Ae) = 6 [sexi el(5+ er olf a 

A change of variable to x = [ 

parameter é, 
7 w2 

ga (3 + *) (14.76) 

allows us to transform the integrals in A,(@) and A,(w) into the form: 

Ata) ~2 (446) [ cespliete + te) ax 
; V2 pe (14.77) 

Ato) =2o{ a) fo explitger + be] dr 
The integrals in (14.77) are identifiable as Airy integrals, or alternatively as mod- 
ified Bessel functions: 

ieee 1 
[ x sinf3é(x + 4x°)} dx Vi Ky3(€) 

LY (14.78) 
Va Kusl$) 

Consequently the energy radiated per unit frequency interval per unit solid angle 
Is 

vt __e’ (ep 1 2 : 2 & 2 
do dQ ~ 3a ( c ) (3 +O) [Real + Cay ge Kins) | (14.79) 

The first term in the square bracket corresponds to radiation polarized in the 
plane of the orbit, and the second to radiation polarized perpendicular to that 
plane. 

We now proceed to examine this somewhat complex result. First we integrate 
over all frequencies and find that the distribution of energy in angle is 

di ai 7 1 5 & 
= dw = maa fl +5 2 2 dQ Jo dw dQ 16 p Ge + BY? 7 (ly) + 6 

i cos[3é(x + 4x°)] dx 

| (14.80) 

*The fact that the limits of integration in (14.75) are 1 = +2 may seem to contradict the approxi- 
mations made in going from (14.72) to (14.73). The point is that for most frequencies the phase of 
the integrands in (14.75) oscillates very rapidly and makes the integrands effectively zero for times 
much smaller than those necessary to maintain the validity of (14.73). Hence the upper and lower 
limits on the integrals can be taken as infinite without error. Only for frequencies of the order of 
w ~ (clip) ~ a) does the approximation fail. Bui we have scen in Scction 14.4 that for relativistic 

particles essentially all the frequency spectrum is at much higher frequencies. 
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This shows the characteristic behavior scen in Section 14.3. Equation (14.80) can 

be obtained directly, of course. by integrating a slight generalization of the 
circular-motion power formula (14.44) over all times. As in (14.79), the first term 
in (14.80) corresponds to polarization parallel to the orbital plane, and the second 

to perpendicular polarization. Integrating over all angles, we find that seven times 
as much energy is radiated with parallel polarization as with perpendicular po- 
larization. The radiation from a relativistically moving charge is very strongly, 

but not completely, polarized in the plane of motion. 
The properties of the modificd Bessel functions summarized in (3.103) and 

(3.104) show that the intensity of radiation is negligible for € >> 1. From (14.76) 

we see that this will occur at large angles; the greater the frequency, the smaller 
the critical angle beyond which there will be negligible radiation. This shows that 
the radiation is largely confined to the plane containing the motion, as shown by 

(14.80), being more confined the higher the frequency relative to e/p. Hf w gets 
too large, however, we see that é will be large at af! angles, Then there will be 
negligible total energy emitted at that frequency. The critical frequency w, be- 

yond which there is negligible radiation at any angle can be defined by € = 1/2 
for 6 = 0. Then we find* 

(14.81) 

This critical frequency is seen to agree with our qualitative estimate (14.50) of 
Section 14.4. If the motion of the charge is truly circular, then c/p is the funda- 
mental frequency of rotation, wp. Then we can define a critical harmonic fre- 
quency w, = f,@», With harmonic number, 

5 
3/5 me =5 (4) (14,82) 

Since the radiation is predominantly in the orbital plane for y >> 1, it is 
instructive to evaluate the angular distribution (14.79) at 6 = 0. For frequencies 
well below the critical frequency (w << w,), we find 

2 trgyy'/3\"fap\ 
Le rel@) lay: ~ ae 

For the opposite limit of @ >> w,, the result is 

Ci 

do dQ 

yore (14,84) 

These limiting forms show that the spectrum al # = 0 increases with frequency 
roughly as w” well below the critical frequency, reaches a maximum in the neigh- 
borhood of @,, and then drops exponentially to zero above that frequency. 

The spread in angle at a fixed frequency can be estimated by determining 

*Our present definition of «, differs from carlier editions. The present one, defined originally by 
Schwinger (1949). is in general usc. 
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the angle 6, ai which €(@.) = &(0) + 1. In the low-frequency range ( << w,), 

&(0) is very small, so that €(@,) ~ 1. This gives 

0. = (=) “et (2) (14.85) wp, y\e 

We note that the low-frequency components are emitted at much wider angles 

than the average, (6?)'? ~ y~'. In the high-frequency limit (@ > «,), &(0) is large 

compared to unity. Then the intensity falls off in angle approximately as 

#1 a ae 7s 307 CF 12e. 
dw dQ ~ do dQ,» ° (1480) 

‘Thus the critical angle, defined by the We point, is 
12 

a=t (2%) (14.87) 
y \3we 

This shows that the high-frequency components are confined to an angular range 

much smaller than average. Figure 14.10 shows qualitatively the angular distri- 

bution for frequencies small compared with. of the order of, and much larger 

than w,. The natural unit of angle yé is used. 

The frequency distribution of the total encrgy emitted as the particle passes 

by can be found by integrating (14.79) over angles: 

al ie @I {. al 
_= 20s 0 Sony. / 
deo 2 ban dna 049 27) Goa (14.88) 

{remember that @ is the latitude). We can estimate the integral for the low- 

frequency range by using the value of the angular distribution (14.83) at @ = 0 

and the critical angle @, (14.85). Then we obtain 

di al e* (wp\"" 
— end Cad 4.8! 
dw 2m, dw dQ c (2 (14.89) 

showing that the spectrum increases as w! 3 for w << w,. This gives a very broad, 

flat spectrum at frequencies below «,. For the high-frequency limit where w >> w, 

we can integrate (14.86) over angles to obtain the reasonably accurate result, 

0-0 

V2 
=) evn (14.90) 
@, 

doe 
2. Vian mt 
do c 

Figure 14.10 Differential frequency 
spectrum as a function of angic. For 
frequencies comparable to the critical 
frequency w,. the radiation is confined 
to angles of the order of y '. For 
much smaller (larger) frequencies. the 
angular spread is larger (smaller). 
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A proper integration of (14.79) over angles yields the expression,* 

oe =Vity =f _ Koala) de (14.91) 
de 

In the limit w << w, this reduces to the form Gash with a numerical coefficient 

3.25, while for w >> q, it is equal to (14.90). The behavior of d//dw as a function 

of frequency is shown in Fig. 14.11. The peak intensity is of the order of ¢?y/c, 
and the total energy is of the order of e?yw,/c = 3e*y"/p. This is in agreement 
with the value of 47” y*/3p for the radiative loss per revolution (14.32) in circular 

accelerators. 

The radiation represented by (14.79) and (14.91) is called synchrotron radi- 

ation because it was first observed in electron synchrotrons (1948). The theoret- 

ical results are much older, however, having been obtained for circular motion 

by Schott (1912) although their expression in the present amenable form is due 
to Schwinger. For periodic circular motion the spectrum is actually discrete, being 
composed of frequencies that are integral multiples of the fundamental frequency 
wy = clp. Since the charged particle repeats its motion at a rate of c/2mp revo- 

lutions per second, it is convenient to talk about the angular distribution of power 
radiated into the nth multiple of wo instcad of the energy radiated per unit fre- 
quency interval per passage of the particle. To obtain the harmonic power ex- 
pressions, we merely multiply di/d@ (14.91) or d7I/dw dQ (14.79) by the repetition 
rate c/2mp lo convert energy to power, and by wy = c/p to convert per unit 
frequency interval to per harmonic. Thus 

peat * 
dQ ln dw dO 

1 dl 

Pr = 2a () do 

These results have been compared with experiment at various energy synchro- 
trons.’ The angular, polarization, and frequency distributions are all in good 
agreement with theory. Because of the broad frequency distribution shown in 
Fig. 14.11, covering the visible, ultraviolet, and x-ray regions, synchrotron radi- 
ation is a useful tool for studies in condensed matter and biology. We examine 
synchrotron light sources and some of the insertion devices used to tailor the 

spectrum for special purposes in the next section, 
Synchrotron radiation has been observed in the astronomical realm associ- 

ated with sunspots, the Crab nebula, and from the particle radiation belts of 
Jupiter. For the Crab nebula the radiation spectrum extends over a frequency 
range from radiofrequencies into the extreme ultraviolet, and shows very strong 

polarization. From detailed observations it can be concluded that electrons with 

wis (14.92) 

*This result and the differential distribution {14.79} are derived in a somewhat different way by 

J. Schwinger, Phys. Rev. 78, 1912 (1949). Schwinger later showed that the first-order quantum- 

mechanical corrections to the classical results involve the replacement of w > w{1 + hel) in 
wo ' Pitdes dQ or a! dlidew |Proc. Natl, Acad. Sci, 40, 132 (1954)] and are thus negligible provided 
hos. << E, or equivalently, y << (pmtcth}'*. 

°F. R. Elder, R. V. Langmuir, and H. C. Pollock. Phys. Rev., 74, 52 (1948): D. H. Tomboulain and 

P.L, Hartman, Phys. Rev., 162, 1423 (1956); G. Bathow, E. Freytag, and R. Haensei, J. Appi. Phys.. 
37, 3449 (1966). 
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Figure 14.11, Normalized synchrotron radiation spectrum (1//}(d/idy) = 

eVaismy { Kealx) dx, where y = w/w, and | = 47e? y'/3p: (a) linear abscissa scale 
y 

and (b) logarithmic abscissa scale. 

energies ranging up to 10'* eV are emitting synchrotron radiation while moving 

in circular or helical orbits in a magnetic induction of the order of 10~* gauss 

(see Problem 14.26). The radio emission at ~10* MHz from Jupiter comes from 

energetic electrons trapped in Van Allen belts at distances from a few to 30-100 

radii (R,) from Jupiter’s surface. Data from a space vehicle (Pioncer 10, Decem- 

ber 4, 1973. encounter with Jupiter) passing within 2.8R, showed a roughly dipole 
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magnetic field with a dipole moment of 4R} gauss. Appreciable fluxes of trapped 

electrons with energies greater than 3 MeV and a few percent with energies 
greater than 50 MeV were observed. Taking 1 gauss as a typical field and 5 MeV 
as a typical energy, Eqs. (12.42) and (14.81) show that the spiraling radius is of 

the order of 100-200 meters, w) ~ 2 x 10° s°', and that about 10° significant 
harmonics are radiated. 

The treatment of synchrotron radiation presented here is completely classi- 
cal, but the language of photons can be used, if desired. The number of photons 
per unit frequency interval is obtained by dividing the intensity distribution 
(14.91) [or (14.79)] by fiw. Then the photon frequency distribution is 

dN 1 NB 
dy fiw, 8a 

where y = w/w, and ] = 4re”y*/3p is the total energy radiated per revolution. 

Integration over frequency gives the mean number of photons emitted per rey- 
olution per particle, 

ia Ks3(x) dx (14.93) 

Sa 
N= 4.94 Va (14.94) 

where a is the fine structure constant. The mean energy per photon is //N: 

8 
(ho) = as\3 ho, (14.95) 

As already remarked, because @,. is proportional to y* and y = O(10") for GeV 
energies, fundamental wavelengths (27p) of the order of hundreds of meters give 
rise to synchrotron photons of wavelengths down to 10 '" meter (1 angstrom) or 

less, corresponding to keV x-rays. 

14.7 Undulators and Wigglers for Synchrotron Light Sources 

The broad spectrum of radiation emitted by relativistic electrons bent by the 
magnetic fields of synchrotron storage rings provides a useful source of energetic 
photons for research and was utilized initially in a “parasitic” mode by biologists 
and condensed matter physicists. Curved crystals or other devices were used to 
select specific frequencies from the continuum. As applications grew, the need 
for brighter sources with the radiation more concentrated in frequency led to the 

development of magnetic “insertion devices” called wigglers and undulators to 
be placed in the synchrotron ring. The magnetic properties of these devices cause 
the electrons to undergo special motion that results in the concentration of the 
radiation into a much more monochromatic spectrum or series of separated 
peaks. The basic formula for the radiation is still (14.67), although here we use 
invariance arguments and Lorentz transformations to make the results more 
physically understandable. 

The essential idea of undulators and wigglers is that a charged particle, usu- 
ally an electron and usually moving relativistically, (y >> 1), is caused to move 
transversely to its general forward motion by magnetic fields that allernate pe- 

riodically. The external magnetic fields induce small transverse oscillations in the 
motion; the associated accelerations cause radiation to be emitted. A typical 
configuration of magnets, with an alternating vertical magnetic field at the path 
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Figure 14.12 (a) Schematic diagram of alternating-polarity bending magnets for a 
wiggler or undulator. (b) Sketch of approximately sinusoidal path of electron in the x-z 
plane. The magnet period is Ao, the maximum transverse amplitude is a, and the 
maximum angle is wi. 

of the particle, is sketched in Fig. 14.12a. The path of the particle is in the hori- 
zontal (x-z) plane. 

A. Qualitative Features 

If the periodicity of the magnetic field structure is Ay, the particle's path will 
be approximately sinusoidal in the transverse direction with the same period, as 
sketched in Fig. 14.125. We have x ~ a sin(27z/Ay). with the maximum amplitude 
a dependent on the strength of the wiggler’s magnetic field and the particle's 
energy. The maximum angular deviation yi away [rom the forward direction is 
proportional to a; it is an important parameter, which distinguishes undulators 

from wigglers. We have 

dy = (¢) = oma = kya, where ky = 27/Ay (14.96) 
dzkay Ay 

is the fundamental wave number of the system. [Actually, the time taken for the 
particle to traverse one period of the magnet structure is T = Ay/fe and so the 

real fundamental wave number of the radiation is Bky. For y >> 1 the difference 

is insignificant.] 
For y >> 1, the radiation emitted by the charged particle is confined to a 

narrow angular region of angular width A@ = O(1/y) about the actual path. As 
the particle moves in its oscillatory path sketched in Fig. 14.12, the “scarchlight” 
beam of radiation will flick back and forth about the forward direction. Quali- 
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tatively different radiation spectra will result, depending on whether gy is larger 
or smaller than Aé. 

(a) Wiggler (aj, >> AQ) 

For & >> A@, an observer detects a series of flicks of the scarchlight beam, 
with a repetition rate given by the relation, m = wy/2m = cko/27. With Ay of the 

order of a few centimeters, vy = O(10 GHz). The phenomenon is very much as 

in an ordinary synchrotron with bunches spaced a few centimeters apart. The 
spectrum of radiation extends to frequencies that are y" times the basic frequency 
Q. = c/R, where R is the effective radius of curvature of the path. The minimum 

value of R is generally the one of interest. It occurs at the maximum amplitude 
of the transverse motion and is 

Be he 
ja Ay 

(14.97) 

The wiggler radiation spectrum is a smooth, featureless spectrum very much like 
the synchrotron radiation spectrum of Fig. 14.11, with a fundamental frequency, 

QO = 2ac/Ay, and a critical frequency y* times this value. If the wiggler magnct 
structure has N periods, the intensity of radiation will be N times that for a single 
pass of a particle in the equivalent circular machine. 

It is useful to introduce the parameter K, a scaled angle, by 

K = yo 

A wiggler is characterized by K >> 1. In terms of K, its critical frequency is 

2ae 
o, = of x 2m) (14.98) 

Ao 

Users of synchrotron light sources tend to speak of wavelength rather than fre- 
quency. The critical wavelength is 

S Av Wes of 4) (14,99) 

() Undulators (ify << AO or K << 1) 

If ty << AQ, the searchlight beam of radiation moves negligibly compared to 
its own angular width. This means that the radiation detected by an observer is 
an almost coherent superposition of the contributions from all the oscillations of 

the trajectory. For perfect coherence and an infinite number of magnet periods 
(and infinitesimal angular resolution of the detector), the radiation would be 

monochromatic. For finite N the spread in frequency is Aw/w = O(1/N); finite 
angular acceptance also causes a spread because of the Doppler shift. Neverthe- 
it the frequency spectrum from an undulator is sharply peaked (actually a 
serics of peaks in practice, but with a most intense “fundamental”). 

The frequency of the “‘line™ from an undulator can be estimated by consid- 
ering the particle in its rest frame. The FitzGerald—Lorentz contraction means 
that in that frame the magnet structure is rushing by the particle with a spatial 
period Ao/y. The frequency of simple dipole radiation in that frame is thus 
@' = y(27c/Ao). In the laboratory frame the relativistic Doppler shift, w' = 
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yo(l — B cos 8} ~ w(1 + y°6?)/2y, leads to a spectral line at an angle @ with 
frequency 

2y 2a 
14.1 

~243(%) (19:10) 

Note that at smal] angles (y@ << 1) this frequency has the same y-dependence 
as the wiggler’s critical frequency, (14.98), for a fixed K. 

B. Some Details of the Kinematics and Particle Dynamics 

We wish to consider the particle in its average rest frame, in which it executes 
oscillations both transversely and fongitudinally. If its initial Lorentz parameters 
are y and B, they remain unchanged because the magnetic field does no work on 
the particle. But because of the transverse motion, the particle’s average speed 
in the z direction, Bc. and its associated ¥, are less than the instantaneous param- 
eters, The average rest frame moves with speed Bc with respect to the laboratory, 

One way to find B and 7 is to consider the path shown in Fig. 14.12b and 
compute its length for one cycle: 

Ay “Ag 

s=] viF (dxidzy dz ~ | [1 + 4(dx/dz)? +--+] dz (14.101) 
lo 

or 

5 = Ag(l + G¥d) (14,102) 

Here we have assumed that Y% << 1, and we assume below that y >> 1. Since 

the particle travels this path as speed Bc, we infer that 

a Bt 
1+ wald 

Even though B ~ 1 and y% << 1, so that B ~ 1, the difference between B and B 
produces a finite (not infinitesimal) difference between ¥ and y: 

B= = BL — 440) (14.103) 

1 = 
girl - B~1- wa BW) 

~ yt + bib = 7 70 + KY) 
We therefore find 

(14.104) 

Since K >> 1, is possible even if % << 1, ¥ can differ significantly from y, at least 
for wigglers. 

The transverse motion has been assumed to be sinusoidal. How is that con- 
nected to the structure of the magnet that causes the motion? With 8 and y 
constant, the x component of the Lorentz force equation can be written 
<= —eB,B,/ym, where B,B, is assumed to be negligible or zero. Approximating 
z= ctand B, = 1, we have 

yme* dx _ ym? 
oar) Ka sin kyz (14.105) BZ) = ———— 



Sect. 14.7 Undulators and Wigglers for Synchrotron Light Sources 687 

The requisite magnetic structure is B, = By sin kyz. where By = yme7kjale. Since 
K = ykya, the important parameter K can be expressed in terms of the known 
field of the magnet and its period, 

eBy _ Budo 
~ kame? 2arme? (14.106) 

An actual magnet structure will be periodic, but not sinusoidal. We can, 
however, make a Fourier decomposition of the actual B, in multiples of ky. Each 

component will contribute to the motion. The fundamental will dominate. For 

simplicity, we keep only that contribution. 

The longitudinal oscillations can be found, at least approximately, from the 
constancy of B. We have 6? = 8? — B?. Since |B, << B, we can write 

Bg B: 

B.~ B- T= B- > 

Bul x = a sinkyz © a sin{kyct). Thus B, = kya cos(kyct). We then have the 

component of B in the z direction as 

BAY) ~ B- kb? cos*(kyct) 
=p- wall + cos(2kyct)] 

=p- ay Ke cos(2kyct) 

Integrating ¢B,(t) once with respect to #, we find the longitudinal and transverse 
motions to be 

2(f) = Bet — uk sin(2kyct) and x(t) = so in(ksct (14.107) 

C. Particle Motion in the Average Rest Frame 

It is informative to examine the particle’s motion in the frame K', moving 
with speed in the positive z direction. The Lorentz. transformations equations 
are 

xi=x, 2’ = 72 - Bet), ct’ = Het — Bz) 

Substituting <(1) from (14,107) into the last equation, we have 

eo = = af — B)+ & & sin26| 

where @ = koct. Neglect of the last term rch the first approximation, ¢ = 7’. 
Then with this result inserted into 6, we find a better approximation, 

4koc \2 + K 

or (14.108) 

1 K? 
t= - () sin(2ykoct') 

1f ik aA tS? 
6 = ykyct’ — iS = =) sin(2 ykoct’} 
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Usually the first term is adequate, but in computing time derivatives in the mov- 
ing frame, the second term is necessary when differentiating @(7'). 

The particlc’s coordinates in the moving frame are 

x) = a sin 01’) = a sin 6(1') 

zi’) = sin 26(0') = aoe sin 20(1’) 

The motion is a figure-cight pattern of the form 

yK? 

© By ky 7K 

h (2) Ka 
where ax = ¢ ; BVI RD 

Figure 14.13 shows the shape of the particle's orbit in the moving frame for the 
regime K >> 1. For K = I, the z’ amplitude is 0.576 times as large as is shown, 
For K << 1, the 2’ oscillations are negligible; the motion is simple harmonic in 
the transverse direction. 

An important feature of the motion in the moving frame is the maximum 
speed of the particle. A straightforward calculation yiclds the square of the par- 
ticle’s speed in the moving frame to be 

2K? Kt K? f 
Be = [7 KR oes 26 + qa+K> RE cost |[1 204 KA BR) cos24| 

(14.109) 
where it is now safe to put (¢') = ykyet’. The last factor comes from the form 

of d0(t' dt’, The two limits of K are instructive. For K << 1, the leading term 
gives 

B' ~ K cosé, K<1 (14.110a) 

corresponding to nonrelativistic simple harmonic motion. This limit is for an un- 
dulator. In the opposite limit, K — ©, the leading behavior is 

B= 1 — (cos’e — 4), K>0@ (14.110b) 

In this (strong wiggler) limit, the particle’s speed varies between 3c/4 and c in 
the course of the motion, quite relativistic. From Problems 14,12, 14.14, and 14.15, 

one can infer that the radiation in the moving frame consists of many harmonics 
of the basic frequency, with an angular distribution that is far from a simple dipole 
paticrn. The laboratory radiation pattern from a strong wiggler is better de- 
scribed by the contributions from the successive segments of the path whose 
tangents point in the direction of observation. 

i 

Figure 14.13 Orbit of the particle in 
the moving (average rest) frame for K 
>> 1. The arrow indicates the 
direction of motion in the laboratory 
frame. 
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D. Radiation Spectrum from an Undulator 

When K << 1, the motion in the average rest frame is very simple. The 
particle moves in nonrelativistic simple harmonic motion along the x axis. It emits 
monochromatic dipole radiation whose power differential distribution is 

dP’ _ ec dP! ee is ane BE ka sir 

where k' = Yk, is the wave number in the moving frame. The coordinates are 

shown in Fig. 14.14. Now k" sin?© can be written as k”* sin?@ = k’? — k? cos’°@ 
=k? +k? With K = ykoa ~ Ykya for K << 1, the power angular distribution 
becomes 

AP! eC zip pe fo ae RE +) (4.111) 

To find the laboratory spectrum in angle and frequency (actually, either angle 
or frequency), we exploit certain invariances. Since the phase-space density d°*k/w 
is a Lorentz invariant, it is useful to consider w' d*P'/d*k’, rather than dP'/dQ'. 
Inserting a delta function 5(k’ — ky) to assure the monochromatic nature of the 
radiation in the moving frame, we have 

2K? 
3p = ar = [ees 

where d?k’ = k’? dk' dQ’. Consider now d*P". If we multiply by the time Ar’ it 
takes for one period of the magnet structure to pass by the particle in the moving 
frame (At’ = Ay/ yBe = Ay/¥e), we obtain the energy radiated per period into the 
invariant element of phase space. If we divide by iw’ = fick’, we obtain the 
differential number d*N’ of photons emitted into d*k’/w" per passage of a magnet 
period. But the number of photons is an invariant quantity. We can therefore 
write the connection between the laboratory differential radiation spectrum and 
the spectrum in the moving frame as 

ap AYo@ d’P' 

(kia) At w(K’ /0') 

Spe 
(k2 + 4:2) OL | ak (14.112) 

E ow 

Figure 14.14 Radiation direction and angles 
in average rest frame. Particle motion is in the 
4-2 plane. 
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With Ar'/At = 1/y and d?k/w = k dk dle, we have 

aP_ ecK? 
dkdQ 8ayP ki 

All thai remains is to express the primed quantities in terms of the laboratory 
variables. The Lorentz transformations are 

ky = ky = k sin @sin d, ¢=¢ 

kz = 9k(cos @ — B) 
k' = 7k(1 — B cos 6) 

Using the constraint of the delta function, we have 

k= ko 
1 - Boos@ 

(KE + KP) + BK — Fo) (14.113) 

If we make the appropriate approximations for y >> 1 (ie, @ <« 1, 
B~ 1 — 1/27, etc.), (14.113) can be written 

BP cy Kk | (1 — 9)? + 4ysin’d 
dn dk do Qn (t+ n)* 

where 7 = (70)° is the natural angle variable to replace cos 8. Note that, be- 
cause of the delta function, the frequency and angular distributions are not 
independent. 

Jana +9) — 277ka) (14.114) 

(a) Angular Distribution 

If we choose to integrate over the frequency spectrum dk, we find the angular 
distribution of power to be 

2 tame zy 2 1- 2 + in? dP _ e*cyK7kG | ( ny 4n sin’ (14.115) 

dndd Qn (+n) 

After integration over azimuth, the polar angle spectrum is 

P 1+ 
a? = 3p a (14.116) 
dn (1+ ny 

where 

2m R22 
p= oer K hs (14.117) 

3 

is the total power radiated. It is easy to verify that the average value of 7 is 

(n) = 1. 

(6) Frequency Distribution 

To obtain the frequency distribution emitted into an angular range, 4, < 

1 < mp, we integrate (14.114) over dé dy. The result is 

¢ = 3P[p(L - 2v + 27)] for Yin << max (14.118) y 
where vy = K/2¥7kq and Yin = (1 + 2). Una = VG + m). The complete 
normalized frequency spectrum is plotted in Fig. 14.15a: the sharpty peaked spec- 
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Figure 14.15 (a) Normalized frequency spectrum for K << 1 and sinusoidal motion. 
The dashed lines indicate the frequency interval visible if the angular acceptance is 
0 < yo <4 (b) Log-log plot of intensity of fundamental and second harmonic for K = 
0.5 with a sinusoidal magnetic field. In reai undulators, the spectrum shape depends on 
details of the undulator structure. 
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trum between the dashed lines corresponds to an angular acceptance 0 << 4 < 1/0 
{@ < 1/39). Note that this spectrum is for perfectly sinusoidal motion of the par- 
ticle at all times. If the number N of magnet periods is finite, the duration of the 
oscillatory motion is finite; the radiated wave train will have a fractional spread 

in frequency of the order of 1/N. For large N this spread is generally small com- 
pared to the spread from finite acceptance. 

For small, but not negligible, K, there are higher harmonics. These can be 

thought of as coming from higher multipoles caused by the figure-eight motion 

shown in Fig. 14.13. The second harmonic comes from a coherent superposition 
of the fields of a dipole in the z direction [z’ « sin 26(')] and a quadrupole caused 

by the x' motion. See Problem 14.27. The resulting frequency spectrum is shown 

in Fig. 14.15b for K = 0.5, with higher harmonics decreasing in intensity, at least 
for K <1. 

(c) Energy of Photons and Number Emitted per Magnet Period 

The radiated power is given by (14.117) and the maximum energy of photons 

in the fundamental is f@na, = 27°Kyhc (at 7 = 0). The amount of energy radiated 
per passage of onc magnet period is AE = PAs, where At = Ap/c. The number 
of photons N, emitted per magnet period can thus be estimated to be N, = 
PAt/hey4, = O(aK?), where ais the fine structure constant. A calculation based 
on (14.118) divided by hw gives 

N, = = ak? (14.119) 

E. Numerical Values and Representative Spectra and Facilities 

The parameters K and fiw,,, are given for electrons in practical (accelerator) 
units by 

_ By _ eBydo 
= = = 93.4 BT 

kome? — 2arme* 3.4 BolT )Ao{m) 

and 

9.496[E (GeV) 

(1 + K7/2)Ao(m) 

Typical undulators have By = O(0.5 T), Ay = O(4 cm), E = O(1-7 GeV). Hence 

K = O(2) and R@max = O(80 eV—-4 keV). Wiggiers have B, = O(1 T) and Ag = 
O(20 cm). Then K = O(20). 

There are dozens of synchrotron light facilitics around the worid. Typical of 
the modern dedicated facilities (as of 1998) are 

R@max(€V) = 

Advanced Light Source {ALS), Lawrence Berkeley National Laboratory, 
E= 15 GeV 

Nationai Synchrotron Light Source (NSLS), Brookhaven Nationa! Laboratory, 
E = 0.75, 2.5 GeV 

European Synchrotron Radiation Facility (ESRF), Grenobie, France, E = 6 GeV 
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Figure 14.16 Representative photon spectra for actual light sources. ‘The bending 
magnet and wiggler spectra are continuous and are closely proportional to (14.79). 
evaluated at 6 = 0, The undulator curves are the envelopes of a series of sharp peaks at 
multiples of the fundamental. See text for definition of brightness. 

Tristan Light Source, KEK Nationa! Laboratory, Tsukuba, Japan. E = 6.5 GeV. 

Advanced Photon Source (APS), Argonne National Laboratory, E = 7 GeV 

The lower energy facilities provide photons in the tens of eV to several keV 
range; the high-energy facilities extend to 10-75 keV, and even higher at reduced 
flux. Figure 14.16 shows some representative spectra of actual light sources. The 
spectral brightnesses indicate the typical capabilitics available at relatively low- 
energy rings such as the ALS and the higher energy rings such as the APS. For 
undulators the smooth curves represent the envelope of the narrow “lines.” 
Brightness or brilliance is defined as the number of photons per sccond per mil- 
liradian in the vertical and horizonta! directions per 0.1% fractional bandwidth 
in photon energy, divided by 27 times the effective source arca in square milli- 
meters. High brilliance rather than high flux is generally desired. 

F, Additional Comments 

There is a vast amount of detail about synchrotron light sources, the design 
of beams, the transport of photons to experiments, and so on. We make only a 
few comments here. 

1. An undulator’s fundamental frequency @,, can be tuned by varying the 

undulator parameter K by changing the gap in the magnet structure and so 
changing By [see (14.106)). 

2. The simple undulator with beam oscillations in the horizontal plane provides 

lincarly polarized tight. Circular polarization can be provided by use of a 
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helical undulator designed to make the transverse trajectory an ellipse. Al- 
ternately, two undulators at right angles with an adjustable longitudinal spac- 

ing between them can be used to produce circular polarization or any other 
state because of the coherent superposition of the radiation from all the 

magnet periods. 

3. Free electron lasers are closely related to wigglers and undulators. An un- 

dulator can be thought of as radiating in the forward direction at frequency 

max by spontaneous emission. Addition of a co-traveling electromagnetic 

wave of almost the same frequency provides the possibility of interaction and 
stimulated emission and growth of the wave. 

Further details about the sources and about their uses in research can be 
found in the references cited at the end of the chapter. 

14.8 Thomson Scattering of Radiation 

If a plane wave of monochromatic electromagnetic radiation is incident on a free 
particle of charge e and mass m, the particle will be accelerated and so emit 
radiation. This radiation will be cmitted in directions other than that of the in- 
cident plane wave, but for nonrelativistic motion of the particle it will have the 
same frequency as the incident radiation. The whole process may be described 
as scattering of the incident radiation. 

According to (14.20) the instantaneous power radiated into polarization state 
€ by a particle of charge e in nonrelativistic motion is 

2 dP ek 
Maa Je*- 4? (14.120) 

The acceleration is provided by the incident plane wave. If its propagation vector 
is Ky, and its polarization vector €), the electric field can be written 

E(x, 1) = eyEyeerriet 

Then, from the force equation for nonrelativistic motion, we have the 

acceleration, 

HN) = €y = Eyer" (14.121) € 

mr 

Tf we assume that the charge moves a negligible part of a wavelength during one 
cycle of oscillation, the time average of | ¥/° is}Re(¥ - ¥*). Then the average power 
per unit solid angle can be expressed as 

(in) ~ se 
Since the process is most simply viewed as a scattering, it is convenient to intro- 
duce a scattering cross section, as in Chapter 10 defined by 

(14.122) 

do Energy radiated/unit time/unit solid angle 
= 14.123 

@Q Incident energy flux in energy/unit area/unit time ‘ ) 
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Figure 14.17 

The incident energy flux is just the time-averaged Poynting vector for the plane 
wave, namely, ¢ | Eo|’/87. Thus from (14.122) we obtain the differential scattering 
cross section, 

a 2\? ‘: rie (5) Jet el? (14.124) 

The scattering geometry with a choice of polarization vectors for the outgoing 
wave is shown in Fig. 14.17. The polarization vector €, is in the plane containing 
n and kp, €2 is perpendicular to it. In terms of unit vectors parallel to the coor- 
dinate axes, €, and € are 

€, = cos @(e, cos @ + e, sing) — e, sind 

€ = —e, sing + e, cosd 

For an incident linearly polarized wave with polarization paralicl to the x axis, 
the angular distribution summed over final polarizations is (cos’@ cos’ + sin’), 
while for polarization parallel to the y axis it is (cos’@ sin’ + cos’). For un- 
polarized incident radiation the scattering cross section is therefore 

do & 1 2 Ta = (Sa) 30 + cos) (14.128) 

This is called the Thomson formula for scattering of radiation by a free charge, 
and is appropriate for the scattering of by electrons or gamma rays by 
protons. The angular distribution is as shown in Fig. 14.18 by the solid curve. The 
total scattering cross section, called the Thomson cross section, is 

ar {e\ 
or = a £ ) (14.126) 

3 \nc? 

The Thomson cross section is equal to 0,665 X 10 * cny for electrons. The unit 
of length e/mic? = 2.82 x 10 “cm, is called the classical electron radius, since a 
classical distribution of charge totaling the electronic charge must have a radius 
of this order if its electrostatic self-energy is to equal the electron mass. 

‘The classical Thomson formula is valid only at low frequencies where the 
momentum of the incident photon can be ignored. When the photon’s momen- 
tum kw/e becomes comparable to or larger than mc, modifications occur. ‘These 
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Figure 14.18 Differential scattering cross section of unpolarized radiation by a point 
charged particle initially at rest in the laboratory. The solid curve is the classical 
Thomson result. The dashed curves are the quantum-mechanical results for a spinless 
particle, with the numbers giving the values of hu/me?. For ha/mc? = 0.25, 1.0 the 
dotted curves show the results for spin } point particles (electrons). 

can be called quantum-mechanical effects, since the concept of photons as mass- 
less particles with momentum and energy is certainly quantum mechanical (pace, 
Newton!), but granting that, most of the modifications are purely kinematical. 
The most important change is the one observed experimentally by Compton. The 
energy or momentum of the scattered photon is less than the incident energy 
because the charged particle recoils during the collision. Applying two-body rel- 
ativistic kinematics to the process, we find that the ratio of the outgoing to the 
incident wave number is given by the Compton formula, 

kK 1 

k ho 
1+ —; (1 - cos @) 

me 

where @ is the scattering angle in the laboratory (the rest frame of the target). A 
quantum-mechanical calculation of the scattering of photons by spiniess point 
particles of charge e and mass m yields the cross section, 

de 2 \2 kt 2 s-(S)(Ejiene anim 
to be compared with the classical expression (14.124). In the radiation gauge the 
quantum-mechanical matrix element is the same as the classical amplitude. The 
factor (k’/k)? comes entirely from the phase space. Its presence causes the dif- 
ferential cross section to decrease relative to the Thomson result at large angles, 
as shown by the dashed curves in Fig. 14.18. Also shown in the figure by the 
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dotted curves are the quantum-mechanical results for photon-electron scattering, 
that is, the scattering by a point spin 4 particle described by the Dirac equation. 
The curves are generally similar to those for spinless particles, but are somewhat 
larger at large angles because of scattering by the electron’s magnetic moment.* 
The integral over angles of (14.127) is elementary but slightly involved. We quote 
only the limiting forms for io << me? and fiw >> mc: 

1-248 be ta me? 
2S = JES: (14.128) 
or | 3 me? . 

area hw >> me 
4 ho 

For scattering by electrons the low-frequency limit is the same, but at high fre- 
quencies there is an additional multiplicative factor, (} + 3 In(2kw/mc’)]. 

For protons the departures from the Thomson formula occur at photon en- 
ergies above about 100 MeV. This is far below the critical energy hw ~ Mc? ~ 
1 GeV, which would be expected in analogy with the electron Compton effect. 
The reason is that a proton is not a point particle like the electron with nothing 
but electromagnetic interactions, but is a complex entity having a spread-out 
charge distribution with a radius of the order of 0.8 x 107'* cm caused by the 
strong interactions. The departure (a rapid increase in cross section) from Thom- 
son scattering occurs at photon energies of the order of the rest energy of the pi 
meson (140 MeV). 

References and Suggested Reading 

The radiation by accelerated charges is at least touched on in all electrodynamics 
textbooks, although the emphasis varies considerably. The relativistic aspects are treated 
in more or less detail in 

lwanenko and Sokolow, Sections 39-43 
Landau and Lifshitz, Classical Theory of Fields, Chapters 8 and 9 
Panofsky and Phillips, Chapters 18 and 19 
Sommerfeld, Electrodynamics, Sections 29 and 30 

Extensive calculations of the radiation emitted by relativistic particles, anticipating 
many results rederived in the period 1940-1950, are presented in the interesting mono- 

graph by 
Schott 

Synchrotron radiation has applications in astrophysics. plasma physics. condensed 
matter physics, material science, and biology. Synchrotrons and electron storage rings as 

such are discussed in detail in a classic reference. 
M. Sands, “The physics of electron storage rings,” in Proceedings of the Inter- 
national School of Physics Enrico Fermi, Course No. 46. ed., B. Touschek, 

Academic Press, New York (1971), pp. 257-411. 

“For electrons the cross section equivalent to (14.127) has |e* +e, replaced by 

(Ka KY 
ARK 

It is known as the Klein—Nishina formula for Compton scattering. 

let + ea? + [1 + (& x €)- (x en] 
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Astrophysical applications arc treated in detail in 
A. G. Pacholezyk, Radio Astrophysics, Freeman, San Francisco (1970); Radio 
Galaxies, Pergamon Press, Oxford (1977). 

Plasma physics applications are discussed by 
Bekefi 

The classic reference on the subject of wigglers and undulators is 
H. Motz, J. Appl. Phys. 22, 527 (1951). 

The production and characteristics of synchrotron radiation from bending magnets, un- 
dulators, and wigglers and the many uses are covered exhaustively in the five-volume 
work, 

Handbook on Synchrotron Radiation, eds.. E. E. Koch and others, Vols. 1A, 1B, 

2,3, 4, North-Holland, Amsterdam (1983-1991). 
In Volume 1A, Chapter 2, S. Krinsky, M. L. Perlman, and R. E. Watson cover all of the 
theory and comparison with experiment. 
An unpublished 1972 treatment of undulators and wigglers by E. M. Purcell, very like 
that of Section 14.7, appears in 

Proceedings, Wiggler Workshop, SSRP Report 70/05, eds., H. Winick and T. 
Knight, Stanford Linear Accelerator Center (1977), p. 1V-18. 

The scattering of radiation by charged particles is presented clearly by 
Landau and Lifshitz, Classical Theory of Fields, Sections 9.11-9.13, and Electro- 
dynamics of Continuous Media, Chapters XIV and XV 

Problems 

14.1 Verify by explicit calculation that the Liénard—Wicchert expressions for aff com- 
ponents of E and B for a particle moving with constant velocity agree with the 
ones obtained in the text by means of a Lorentz transformation. Follow the general 
method at the end of Section 14.1. 

14.2 A particle of charge e is moving in nearly uniform nonrelativistic motion. For times 
near f = f, its vectorial position can be expanded in a Taylor series with fixed 
vector coefficients multiplying powers of (¢ — i). 

{a) Show that, in an inertial frame where the particle is instantaneously at rest 

at the origin but has a small acceleration a, the Liénard—Wiechert electric 
field, correct to order 1/c? inclusive, at that instant is E = E, + E,, where 
the velocity and acceleration fields are 

ig € e 
—> + > [a — 3FF - a)): E, = -= [a — (f+ a en + 5; |e (@ ay} 2, | (F-a)] E, 

and that the total electric field to this order is 

The unit vector # points from the origin to the observation point and r is the 
magnitude of the distance. Comment on the r dependences of the velocity 
and acceleration fields. Where is the expansion likely to be valid? 

(b) What is the result for the instantaneous magnetic induction B to the same 
order? Comment. 

{c) Show that the U/c? term in the electric field has zero divergence and that the 
curl of the electric field is V x E = e(? x a)e?r?. From Faraday’s law, find 
the magnetic induction B at times near ¢ = 0. Compare with the familiar 
elementary expression. 
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The Heaviside-Feynman expression for the electric field of a particle of charge ¢ 
in arbitrary motion, an alternative to the Liénard—Wiechert expression (14.14). is 

® R) dfn 7 

ro dr. ‘ae a [2]. +e saa he
 

where the time derivatives are with respect to the time at the observation point. 

The magnetic field is given by (14.13). 
Using the fact that the retarded time is = ¢ — R(t’)/c and that, as a result, 

dt 

dt 
= 1 = BU) mtr) 

show that the form above yields (14.14) when the time differentiations are 

performed. 
Using the Lignard-Wiechert fields, discuss the time-averaged power radiated per 
unit solid angle in nonrelativistic motion of a particle with charge ¢, moving 

{a) along the z axis with instantaneous position z(t) — @ Cos wf. 

(b) ina circle of radius R in the x-y plane with constant angular frequency wy. 

Sketch the angular distribution of the radiation and determine the total power 
radiated in each case. 

A nonrelativistic particle of charge ze, mass , and kinetic energy E makes a head- 
on collision with a fixed central force field of finite range. The intcraction is re- 
pulsive and described by a potential V(r), which becomes greater than E at close 
distances. 

{a) Show that the total energy radiated is given by 
2 a ff” , 

aw-! iS “ a 3c’ y 2 dr} VV (rnin) — Vr) 

where rin is the closest distance of approach in the collision. 

(b) If the interaction is a Coulomb potential V(r) = zZe’/r. show that the total 

energy radiated is 

where by is the velocity of the charge at infinity. 

(a) Generalize the circumstances of the collision of Problem 14.5 to nonzero 

angular momentum (impact parameter) and show that the total cnergy 

radiated is given by 
Me 2 rr 

_ 4zte? {m f av\(. LB : 
BW are (3) at Nate) VE > ara JO 

where rin is the closest distance of approach (root of B — V — L7/2mr), 
L = mbvuy, where 6 is the impact parameter, and v, is the incident speed 

(E = mui/2). 
(b) Specialize to a repulsive Coulomb potential V(r) = zZe*/r. Show that AW 

can be written in terms of impact parameter as 

tan ' ( 
2zmvy 

AW =] ett tt 
Ze 

where ¢ = bmv}/zZe? is the ratio of twice the impact parameter to the distance 
of closest approach in a head-on collision. 
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14.7 

148 

14.9 

Show that in the limit of ¢ going to zero the result of Problem 14.5b is 

recovered, while for : >> 1 one obtains the approximate result of Probiem 
14.7a. 

(c) Using the relation between the scattering angle @ and 1 (= cot #2), show that 
AW can be expressed as 

dem OT 1 é é 3 aa |= 14+ 3tav—}— - AW Te tar’ 3 g™ 0): tan 3 tans 

(d) What changes occur for an attractive Coulomb potential? 

A nonrelativistic particle of charge ze, mass m, and initial speed v, is incident on 

a fixed charge Ze at an impact parameter + that is large enough to ensure that the 
particle’s deflection in the course of the collision is very small. 

(a) Using the Larmor power formula and Newton’s second law, calculate the 
total cnergy radiated, assuming (after you have computed the acceleration) 
that the particle’s trajectory is a straight line at constant speed: 

(b) The expression found in part a is an approximation that fails at small enough 
impact parameter. For a repulsive potential the closest distance of approach 
al ero impact parameter, r, = 22Ze7/muj, serves as a length against which 
to measure 6. The approximation will be valid for b >> r,. Compare the 
result of replacing ) by r, in part a with the answer of Problem 14.5 for a 
head-on collision. 

(c) A radiation cross section x (with dimensions of energy times area) can be 
defined classically by multiplying AW(5) by 276 db and integrating over all 
impact parameters. Because of the divergence of the expression at small b, 
one must cut off the integration at some b = dy. Hf, as in Chapter 13, the 
uncertainty principle is used to specify the minimum impact parameter, one 
may expect to obtain an approximation to the quantum-mcchanical result, 
Compute such a cross section with the expression from part a. Compare your 
result with the Bethe-Heitler formula |N~' times (15.30)]. 

A swiltly moving particle of charge ze and mass m passes a fixed point charge Ze 
im an approximately straight-line path at impact parameter b and nearly constant 
speed v. Show that the total cnergy radiated in the encounter is 

me Ty: 3 AW = eal ere (r+ile 
‘This is the relativistic generalization of the result of Problem 14.7. 

A particle of mass m, charge q. moves in a plane perpendicular to a uniform, static, 
magnetic induction B. 
{a) Calculate the total energy radiated per unit time, expressing it in terms of 

the constants already defined and the ratio y of the particles’s total energy 
to its rest energy. 

(b) If at time 1 = 0 the particle has a total energy Ey = yomnc?, show that it will 
have energy F = yme? < Ey ata time ¢, where 

= ee (:-2) 
2q°B \y yw. 

provided y >> 1. 
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article is initially nonrelativistic and has a kinetic energy Ty at r= 0. 
s kinetic energy at time (? 

(d) If the particle is actually trapped in the magnetic dipole field of the earth 
and is spiraling back and forth along a line of force, does it radiate more 
energy while near the equator, or while near its turning points? Why? Make 
quantitative statements if you can. 

A particle of charge e moves at constant velocity Be for ¢ < 0. During the short 
time interval, 0 < ¢< Az its velocity remains in the same direction, but its speed 
decreases linearly in time to zero. For ¢ > Az, the particle remains at rest. 

(a) Show that the radiant energy emittcd per unit solid angle is 

dE ef? (2 ~ Bcos@}[l + (1 — £ cos 0)") sin’ 
dQ lémc At (1 - Bcos @)* 

where @ is the polar angle relative to the direction of the initial velocity. 
(b) in the limit of yy >> 1, show that the angular distribution can be expressed 

as 

car (1 + €yt 

where & = (y@)*. Show that (@)!? = V2/y and that the expression for the 
total energy radiated is in agreement with the result from (14.43) in the same 
limit. 

A particle of charge ze and mass m moves in external electric and magnetic fields 
E and B. 

(a) Show that the classical relat 

per unit time can be written 

2 se lk + Bx B 3 me 

ic result for the instantaneous energy radiated 

= (B-#Y] 

where E und B are evaluated at the position of the particle and y is the 
particle’s instantaneous Lorentz factor. 

{b) Show that the expression in part a can be put into the manifestly Lorentz- 
invariant form, 

2z4r 
Bate 

"DPE sn 

where ry = elm? is the classical charged particle radius. 

As in Problem 14.4a a charge ¢ moves in simple harmonic motion along the z axis, 
z(t") = a cos(at’). 
(a) Show that the instantancous power radiated per unit solid angle is 

dP(') _ eB" _sin’@ cos*(wot’} 
dQ Ana (1 + Boos Osin ay’) 

where £ = aanic 
(b) By performing a time averaging, show that the average power per unit solid 

angle is 

dP _ cept |_4 + Brcos'é_] a 
dQ. 32ma | — B cosy”? | 
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14.13 

14.14 

14.15 

14.16 

{ce} Make rough sketches of the angular distribution for nonrelativistic and rel- 
ativistic motion. 

Show explicitly by use of the Poisson sum formula or other means that, if the 
motion of a radiating particle repeats itself with periodicity 7. the continuous 
frequency spectrum becomes a discrete spectrum containing frequencies that are 
integral multiples of the fundamental. Show that a general expression for the time- 
averaged power radiated per unit solid angle in each multiple of the fundamen- 
tal frequency «, = 2a/T is: 

2a : 
[ "0 xn exp| ima: - a20)] al 

(a) Show that for the simple harmonic motion of a charge discussed in Problem 
14.12 the average power radiated per unit solid angle in the mth harmonic is 

dBm _ cB 
dQ ~ Ina? 

dP, _ ebm? 
dQ (2ace)* 

ne tan’ J2,(mB cos @) 

(b) Show that in the nonrelativistic limit the total power radiated is all in the 
fundamental and has the value 

where a is the mean square amplitude of oscillation. 

A particle of charge e moves in a circular path of radius R in the x-y plane with a 
constant angular velocity «,. 

(a) Show that the exact expression for the angular distribution of power radiated 
into the mth multiple of wy is 

AP _ easR?  [[dln(mB sin 8], cord, 
dQ ~ Pme® ™ Y| along sin ay | * pe Zm(mB sin 6) 

where 6 = «Ric, and J,,(x) is the Bessel function of order m. 

(b) Assume nonrelativistic motion and obtain an approximate result for dP,,,/dQ. 
Show that the results of Problem 14.4b are obtained in this limit. 

(c) Assume extreme relativistic motion and obtain the results found in the text 
for a relativistic particle in instantaneously circular motion. [Watson (pp. 79, 
249) may be of assistance to you.] 

Exploiting the fact that kod?N/d*k, the number of quanta per invariant phase-space 
element d?k/ky. is a Lorentz-invariant quantity, show that the energy radiated per 
unit frequency interval per unit solid angle. (14.79), can be written in the invariant 
and coordinate-free form 

@N de? (wkF (dep) (PGP) ps 
Pk 3 ee ( dt ) Kino + Bee Kia) 

where dris the proper time interval of the particle of mass m. p is the 4-momen- 
tum of the particle. & is the 4-wave vector of the radiation, and ¢), €, are polar- 
ization vectors parailel to the acceleration and in the direction €, x k, respectively. 
The parameter is 

hoa 

22 (p- ky? 

3m (|p - ide? | 
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This expression can be used to obtain the results of Problem 14.17 in an alternative 
manner. Hint: In proceeding with a solution, it is useful to expand k - r(¢) around 
¢ = 0 in terms of the velocity, acceleration, etc. and compare with (14.72). One 
finds, for example, that we%/p? = — k-d?v(OVde, and, because the energy is 
constant, 

ate |e(p- Ride | 
A patticle of charge ¢ and mass m moves relativistically in a helical path in a 
uniform magnetic field B. The pitch angle of the helix is a (a = 0 corresponds io 
circular motion). 

(a) By arguments similar to those of Section 14.4, show that an observer far from 
the helix would detect radiation with a fundamental frequency 

wn 
cost Wy 

and that the spectrum would extend up to frequencies in the order of 

3a w, = 5 ¥'wy cosa 

where w, = eBlymc. (Take care in determining the radius of curvature p of 

the helical path.) 

(b) From part a and the results of Section 14.6, show that the power received by 

the observer per unit solid angle and per unit circular frequency interval is 

*) a+ very [ Ki (+ ts Ke W 

where w, and w, are defined above, = (wi2w,)(1 +e")? and wis the 
angle of observation measured relative to the particle's velocity vector, as in 
Fig. 14.9. 

(a) By comparison of (14.91) with (14.79), show that the frequency spectrum of 
the received power for the situation in Problem 14.17 is 

aP _ (V3e ya of 2 
do \2me cosa} ’\w, 

where G(x) =x Ks.(#) dt and the other symbols are as in Problem 14.17 

This expression shows that the shape of the power spectrum in units of w/e, 
is unchanged by the spiraling. 

(b) Show that the integral over frequencies yields 

p = 2c 
3c 

Comparison with (14.31) shows that the total received power is independent 
of the pitch angle of motion. 

[In doing the integration over solid angles in part a. note that y = G corresponds 
to #= a2 - a] 

Consider the angular and frequency spectrum of radiation produced by a magnetic 
moment in nonrelativistic motion, using (14.70) and the fact that a magnetization 
density Al produces an effective current density Jug = cV x ML. 
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14.20 

14.21 

14.22 

(a) Show that a magnetic moment p with magnetization, dt = (r) Sfx — r(9]. 
in nonrelativistic motion gives a radiation intensity (energy radiated per unit 
solid angle per unit frequency interval). 

dl, i 
packiel a ee 
dowd 4rc? 

5 f aon x wiper nuns 

{b) The magnetic moment is located at the origin and is caused to precess by an 
external torque such that pt, = py SiN wef and yw, = jy COS wy for the time 

interval ¢ = —7/2 to z = 7/2, where woT/2a >> 1. Show that the frequency 

distribution of the radiation is very strongly peaked at @ = ws, that the an- 
gular distribution of radiation is proportional to (1 + sin?@ sin?¢), and that 
for T — ©, the total time-averaged power radiated is 

2a 
P)= Fa 

Compare the result with the power calculated by the method of Section 9.3. 

Apply part a of Problem 14.19 to the radiation emitted by a magnetic moment at 
the origin flipping from pointing down to pointing up, with components, 

Bz = py tanh(v), Hy = fy sech(17}, By = 0 

where v™' is characteristic of the time taken to flip. 

(a) Find the angular distribution of radiation and show that the intensity per unit 
frequency interval is 

dlnue _ 4 {v\" =4{*\ 2 ‘A ccach®l ti eecht ae 3 (2) Bi (16(x/77)*[cosech*x + sech?x]} 

where x = w/2v is a dimensionless frequency variable and the quantity in 
curly brackets is the normalized frequency distribution in x. Make a plot of 
this distribution and find the mean value of w in units of ». 

(hb) Apply the method of Problem 9.7 to calculate the instantaneous power and 
total energy radiated by the flipping dipole. Compare with the answer in 
part a. 

Bohr's correspondence principle states that in the limit of large quantum numbers 
the classical power radiated in the fundamental is equal to the product of the 
quantum energy (fiw) and the reciprocal mean lifetime of the transition from 
principal quantum number x to (n — 1). 

(a) Using nonrelativistic approximations, show that in a hydrogen-like atom the 
transition probability (reciprocal mean lifetime) for a transition from a cir- 
cular orbit of principal quantum number to (7 — 1) is given classically by 

1_ 2e? (Ze?\* me? 1 
rt She \ he Aw 

(b) For hydrogen compare the classical value from part a with the correct 
quantum-mechanical results for the mean lives of the transitions 2p > 1s 
(1.6 x 10°% s), 4f > 3d (7.3 X 10°* 8). 6h > Se (6.1 X 10°78). 

Periodic motion of charges gives rise to a discrete frequency spectrum in multiples 
of the basic frequency of the motion. Appreciable radiation in multiples of the 
fundamental can occur because of relativistic effects (Problems 14.14 and 14.15) 

even though the components of velocity are truly siusoidal, or it can occur if the 
components of velocity are not sinusoidal, even though periodic. An example of 
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this latter motion is an electron undergoing nonrelativistic elliptic motion in a 
hydrogen atom. 

The orbit can be specified by the parametric equations 

= a(cosu — 8 
y=aVl—eésinu 

where 

@of =u — esin 

a is the semimajor axis, € is the eccentricity, @, is the orbital frequency, and 
u is an angle related to the polar angle @ of the particle by tan (1/2) = 
Vl 6i(1 + 6) tan(o/2). In terms of the binding energy B and (he angular mo- 
mentum /., the various constants are 

(a) Show that the power radiated in the kth multiple of «wy is 
ip a 

P, Ecooure[p [ieee + (: = Jnae]} 
where J,{x) is a Bessel function of order k. 

(b) Verify that for circular orbits the general result above agrees with part a of 
Problem 14.21. 

Instead of a single charge e moving with constant velocity w)R in a circular path 
of radius R, as in Problem 14.15, N charges g; move with fixed relative positions 
6; around the same circle. 

(a) Show that the power radiated into the vith multiple of wy is 

APAAN) _ AP nd) 
dQ dQ 

where dP,,(1)/d9 is the result of part a in Problem 14.15 with e > 1, and 

Fn(N) 

v 2 
> qe 
mn 

FAN) = 

{b) Show that, if the charges are all equal in magnitude and uniformly spaced 
around the circle, energy is radiated only into multiples of Ne, but with an 
intensity N’ times that for a single charge. Give a qualitative explanation of 
these facts. 

(c) For the situation of part b, without detailed calculations show that for non- 
relativistic motion the dependence on N of the total power radiated is dom- 
inantly as 6’, so that in the limit N — » no radiation is emitted. 

(d) By arguments like those of part c show that for N relativistic particles of 
equal charge and symmetrically arrayed, the radiated power varies with N 
mainly ase?" for N >> y', so that again in the limit N > ~ no radiation 
is emitted. 

(e) What relevance have the results of parts ¢ and d to the radiation properties 
of a steady current in a loop? 

As an idealization of steady-state currents flowing in a circuit. consider a system 
of N identical charges ¢ moving with constant speed v (but subject to accelerations) 
in an arbitrary closed path. Successive charges are separated by a constant small 
interval A. 
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14.25 

14.26 

Starting with the Liénard—Wiechert potentials for each particle, and making 
no assumptions concerning the speed v relative to the velocity of light show that, 
in the limit N > &, g > 0, and A > G, but Ng = constant and q/A = constant, no 
radiation is emitted by the system and the electric and magnetic fields of the system 
are the usual static values. 

(Note that for a real circuit (he stationary positive ions in the conductors 
neutralize the bulk charge density of the moving charges.) 
(a) Within the framework of approximations of Section 14.6, show that, for a 

relativistic particle moving in a path with instantaneous radius of curvature 
p. the frequency-angle spectra of radiations with positive and negative helic- 
ity are 

fe (ae) yg) xc so K Al dodh GENE) \F ) nlf) 2 Te Kal) 
z+) 

(b) From the formulas of Section 14.6 and part a above, discuss the polarization 

of the total radiation emitted as a function of frequency and angle. In par- 
ticular, determine the state of polarization at (1) high frequencies (w@ > w,) 
for all angles, (2) intermediate and low frequencies (w < «,) for large angles, 
(3) intermediate and low frequencies at very small angles, 

(c) See the paper by P. Joos, Phys. Rev. Letters. 4, 558 (1960), for experimental 
comparison. Sce also Handbook on Synchrotron Radiation, (op. cit.), Vol. 
1A, p. 139, 

Consider the synchrotron radiation from the Crab nebula. Electrons with energies 
up to 10 cV move in a magnetic ficld of the order of 10 4 gauss, 

(a) For F = 10" eV, B = 3 X 10°" gauss, calculate the orbit radius p, the fun- 
damental frequency a) = c/p, and the critical frequency w,. What is the en- 
ergy iw, in keV? 

(b) Show that for a relativistic clectron of energy £ in a constant magnetic field 
the power spectrum of synchrotron radiation can be written 

ws 
P(E. @) = cons ®) (2) 

where f(x) is a cutoff function having the value unity at x = 0 and vanishing 
rapidly forx >> 1 leg. f ~ exp(—w/@,)], and w, = (3/2)(eBlme)(Elmc?)*cos 8, 
where (is the pitch angle of the helical path. Cf. Problem 14.17a, 

(c} If electrons are distributed in cnergy according to the spectrum N(E)} dE 
« E " dF, show that the synchrotron radiation has the power spectrum 

(P(w)) dw x w@ * de 

where a = (n — 13/2. 

(d) Observations on the radiofrequency and optical continuous spectrum from 
the Crab nebula show that on the frequency interval from @ ~ 10° 5 | to 
w~ 6X 10's ! the constant a = 0.35. At frequencies above 10's ! the 
spectrum of radiation falls steeply with a = 1.5. Determine the index ” for 
the clectron-energy spectrum, as well as an upper cutoff for that spectrum. 
Is this cutoff consistent with the numbers of part a? 

(e} The half-life of a particle emitting synchrotron radiation is defined as the 

time taken for it to lose one half of its initial energy. From the result of 
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Problem 14.9b, find a formula for the half-life of an electron in years when 

Bis given in milligauss and £ in GeV. What is the half-life using the numbers 
from part a? How does this compare with the known lifetime of the Crab 
nebula? Must the energetic electrons be continually replenished? From what 
source? 

44.27 Consider the radiation emitted at twice the fundamental frequency in the average 
rest frame of an electron in the sinusoidal undulator of Sections 14.7.C and 14.7.D. 

The radiation is a coherent sum of £1 radiation from the z‘(:') motion and F2 

radiation from the x'(1') motion. 
(a) Using the techniques and notation of Chapter 9, show that the radiation-zone 

magnetic induction is given to sufficient accuracy by 

~iek?a K 

8 1 + K*i2 
nx [2 — 48(n- %)] 

where k' = 27ky, mis a unit vector in the direction of k’, and a factor of 

exp[ik'(r' — ct'))/r' is understood. 

(b) Show that the time-averaged radiated power in the average rest frame, 
summed over outgoing polarizations. can be written 

ape Kw 

dQ! 8w (1 + K7/2) 64 

where 

SU KU RS + SKK)? + UTR? + 2K? + BRAK, 
(c) Using the invariance arguments in the text in going from (14.111) to (14.118), 

show that the laboratory frequency spectrum of the second harmonic is 

a 3p =2p—<—— = B65 e716 Oe RE MIO — 21 + 2007 ~ 6y4) 

where v = k/27’k, and P, is the power in the fundamental, (14.117). For the 
angular range 7, < 7 < 7. the minimum and maximum p values are Ymig = 
2 + mp) and Ym. = 2/(1 + mm). What is the total power radiated in the 

second harmonic? 
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Bremsstrahlung, Method of Virtual 
Quanta, Radiative Beta Processes 

708 

in Chapter 14 we discussed radiation by accelerated charges in a general way, 
deriving formulas for frequency and angular distributions, and presenting ex- 
amples of radiation by both nonrelativistic and relativistic charged particles in 
external ficlds. This chapter is devoted to problems of emission of electromag- 
netic radiation by charged particles in atomic and nuclear processes. 

Particles passing through matter are scattcred and lose energy by collisions, 
as described in detail in Chapter 13. In these collisions the particles undergo 
acceleration; hence they emit clectromagnetic radiation. The radiation emitted 
during atomic collisions is customarily called bremsstrahlung (braking radiation) 
because it was first observed when high-energy electrons were stopped in a thick 
metallic target. For nonrelativistic particles the loss of energy by radiation is 
negligible compared with the collisional energy loss, but for ultrarelativistic par- 
ticles radiation can be the dominant mode of energy toss. 

Our discussion begins with consideration of the radiation spectrum at very 
low frequencies where a gencral expression can be derived, valid quantum me- 
chanically as well as classically. The angular distribution, the polarization, and 
the integrated intensity of radiation emitted in collisions of a general sort are 
treated before turning to the specific phenomenon of bremsstrahlung in Coulomb 
collisions, When appropriate. quantum-mechanica! modifications are incorpo- 
rated by treating the kinematics correctly (including the cnergy and momentum 
of the photon). All important quantum effects are included in this way, some- 
times leading to the exact quantum-mechanical result. Relativistic effects, which 
can cause significant changes in the results, are discussed in detail. 

The creation or annihilation of charged particles is another process in which 
radiation is emitted. Such processes are purely quantum mechanical in origin. 
There can be no attempt at a classical explanation of the basic phenomena. But 

given that the proccss does occur, we may legitimately ask about the spectrum 
and intensity of electromagnetic radiation accompanying it. The sudden creation 
of a fast electron in nuclear beta decay, for example. can be viewed for our 
purposes as the violent acceleration of a charged particic initially at rest to some 
final velocity in a very short time interval. or, alternatively, as the sudden switch- 
ing on of the charge of the moving particle in the same short interval. We discuss 
nuclear beta decay and orbital-electron capture in these terms in Sections 15.6 
and 15,7. 

In some radiative processes like bremsstrahlung it is possible to account for 
the major quantum-mechanical effects merely by treating the conservation of 
energy and momentum properly in determining the maximum and minimum 
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effective momentum transfers. In other processes like radiative beta decay the 
quantum effects are more serious. Phase-space modifications occur that have no 
classical basis. Radiation is emitted in ways that are obscure and not easily related 

to the acceleration of a charge. Generally, our results are limited to the region 
of “soft” photons, that is, photons whose energies are small compared to the 
total energy available. At the upper end of the frequency spectrum our semi- 
classical expressions can be expected to have only qualitative validity. 

15,1 Radiation Emitted During Collisions 

If a charged particle makes a collision, it undergoes acceleration and emits ra- 

diation. If its collision partner is also a charged particle, they both emit radiation, 
and a coherent superposition of the radiation fields must be made. Since the 
amplitude of the radiation fields depends on the charge times the acceleration, 
the lighter particle will radiate more, provided the charges are not too dissimilar. 
In many applications the mass of one collision partner is much greater than the 

mass of the other. Then for the emission of radiation it is sufficient to treat the 
collision as the interaction of the lighter of the two particles with a fixed field of 
force. We will consider only this situation, leaving more involved cases to the 
problems at the end of the chapter. 

A. Low-Frequency Limit 

From (14.65) and (14.66) we see that the intensity of radiation emitted by a 
particle of charge ze nee the collision can be expressed as 

#1 = lf4 [? ax iox 8) <b), atime gy 
do dQ i (a 

Let us suppose that the collision has a duration 7 during which significant accel- 
eration occurs and that the collision changes the particle's velocity from an initial 
value cB to a final value cB’. The spectrum of radiation at finite frequencies will 
depend on the details of the collision, but its form at low frequencies depends 
only on the initial and final velocities. In the limit w — 0 the exponential factor 
in (15.1) is equal to unity. Then the integrand is a perfect differential. The spec- 
trum of radiation with polarization € is therefore 

i _ ve *- BB 
i-n-pf’ t-a-B we, de dt ~ aac 

The result (15.2) is very general and holds quantum mechanically as well as 
classically. To establish the connection to the quantum-mechanical form, we first 
convert (15.2) into a spectrum of photons. The energy of a photon of frequency 
w is hw. By dividing (15.2) by #’w we therefore obtain the differential nanber 
spectrum per unit energy interval and per unit solid angle of “soft” photons 
{iw — 0) of polarization e: 

B' B — = 
ha (2s T—a-B 

2 

(15.1) 

2 

(15.2) 

2 
fina PN va 
tw (ho) dQ, 4aho (15.3) 
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' 
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Figure 15.1 Quantum-mechanical diagrams describing the scattering of a particle 

without photon emission (top) and with the emission of a photon (bottom). 

where a = e*/he = 1/137 is the fine stracture constant if ¢ is the proton’s charge. 
The subscript y on the solid-angle element serves to remind us that it is the solid 
angle into which the photon goes. The spectrum (15.3) is to be interpreted as 
follows. Suppose that the collision is caused by an external potential or other 
interaction. Let the cross section for scattering that causes a change in velocity 
cB > cB’ be denoted by da/dQ,, where p stands for particle. Then the cross 
section for scattering and at the same time for producing a soft photon of energy 
hw, per unit energy interval and per unit solid angle, is 

do =| tim @N do 

dO, d{hw) dQ, — [1 0 d(iw) d2,] dQ, 

The expression (15.3) can be made to appear more relativistically covariant by 
introducing the energy-momentum 4-vectors of the photon, k* = (h/c)(o, on), 
and of the particle, p“ = Mc(y, yB). It is also valuable to make use of the Lorentz- 

invariant phase space d*k/k, to write a manifestly invariant expression,* 

aN 2 AN co at 

(15.4) 

= = 5.5. (Pkik,) hw d(ha) dQ, ~ thoy dw dO, (153) 
Then we find from (15.3), 

aN Da |e +p! ep lim —* - 28 OSE 5, sono (@kiky) 4a? |k-p' k-p O58) 

where the various scalar products are 4-vector scalar products [in the radiation 

gauge, e* = (0, €)]. That (15.6) emerges from a quantum-mechanical calculation 
can be made plausible by considering Fig. 15.1. The upper diagram indicates the 
scattering process without emission of radiation. The lower three diagrams have 
scattering and also photon emission. Their contributions add coherently. The two 
diagrams on the left have the photon emitted by the external lines, that is, before 

*The fact that w 7 times d?fdw dO is a Lorentz invariant is not restricted to the limit of o > 0. We 

find this result useful in some of our later discussions. 
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or after the collision; both involve propagators for the particle between the scat- 
tering vertex and the photon vertex of the form 

1 1 
(ptkP- M2 +2p-k 

In the limit » — 0 these propagators make the contributions from these two 
diagrams singular and provide the (fw) ' in (15.3). On the other hand, the dia- 
gram on the right has the photon emitted from the interior of the scattering 
vertex. Its contribution is finite as # — 0 and so is negligible compared to the 
first two. The explicit calculation yields (15.4) with (15.6) in the limit that the 

energy and the momentum of the photon can be neglected in the kinematics. 
Soft photon emission occurs only from the external tines in any process and is 
given by the classical result. 

B, Polarization and Spectrum Integrated over Angles 

Some limiting forms of (15.2) are of interest. If the particle moves non- 

relativistically before and after the collision, then the factors in the denominators 
can be put equal to unity. The radiated intensity becomes 

Bly, — 2e? 
ii = 
wo odw dQ 49°c 

where A® = B’ — B is the change in velocity in the collision. This is just a dipole 
radiation pattern and gives, when summed over polarizations, and integrated 
over angles, the total energy radiated per unit frequency interval per nonrelativ- 
istic collision, 

P (15.7) 

dive _ 227e” 7 
ia do” 3ac |B! U8) 

For relativistic motion in which the change in velocity AB is smail, (15.2) can be 
approximated to lowest order in AB as 

_ at ze? AB + nx (B x Ap)\| F 

lim Go dQ” 4n’e -( (l-n-py ) (15.9) 

where cB is the initial (or average) velocity. 

We now consider the explicit forms of the angular distribution of radiation 
emitted with a definite state of polarization. In collision problems it is usual that 
the direction of the incident particle is known and the direction of the radiation 
is known, but the deftected particle’s direction, and consequently that of AB. are 
not known. Consequently the plane containing the incident beam direction and 
the direction of the radiation is a natural one with respect to which one specifies 
the state of polarization of the radiation. 

For simplicity we consider a small angle defiection so that AB is approxi- 
mately perpendicular to the incident direction. Figure 15.2 shows the vectorial” 
relationships. Without loss of generality n, the observation direction, is chosen 
in the x-z plane, making an angle @ with the incident beam. The change in velocity 
AB lies in the x-y plane, making an angle # with the x axis. Since the direction 
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Figure 15.2 

of the scattered particle is not observed, we will average over ¢. The unit vectors 
€ and €, are polarization vectors parallel and perpendicular to the plane con- 
taining B and n. 

We leave to Problem 15.6 the demonstration that (15.9) gives the expressions 
(averaged over d) 

2 (8 — cos 0° 
harry daw dQ ier a BI (1 — B cos 6)* 

él, 1 (15.10) 
lim —— = am BP 5 
on dw an — B cos 6Y 

for the low-frequency limits for the two states of linear polarization. These an- 
gular distributions are valid for small-angle collisions of all types. The polariza- 
tion P(8), defined as (d?Z, — d?1.)(d7J. + d?1,), vanishes at @ = 0, has a maximum 
value of +1 at cos @ = , and decreases monotonically for larger angles. For 
y >> 1, it has the form, P(6) ~ 2y67/(1 + y'6"). This qualitative behavior is 
observed experimentally,* but departures from the w > () limit are significant 
even for W/@ a. = 0.1. 

The sum of the two terms in (15.10) gives the angular distribution of soft 
radiation emitted in an arbitrary smail-angle collision (AB small in magnitude 
and perpendicular to the incident direction). For relativistic motion the distri- 

bution is strongly peaked in the forward direction in the by-now familiar fashion, 
with a mean angle of emission of the order of y~"' = Mc7/F. Explicitly, in the 
limit y >> 1 we have 

tim OL _ Ze’y' |ABP + ye") 
ewdodQ ~~ we (+7 ey (15.11) 

The total intensity per unit frequency interval for arbitrary velocity is found by 
elementary integration from (15.10) to be 

*Some data for clectron bremsstrahlung are given by W. Lichtenberg. A. Przybylski, and M. Scheer, 
Phys, Rev. A HL. 480 (1975). 
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For nonrelativistic motion this reduces to (15.8). Since the particle’s momentum 
is p = yMcR, this result can be written as 

a2 ee 
(15.12) 

where Q = |p’ — p|is the magnitude of the momentum transfer in the collision. 
Equations (15.10) and (15.12) are valid relativistically, as well as nonrelativ- 

istically, provided the change in velocity is not too large. For relativistic motion 
the criterion is 

[ABI < or Q<2Me (15.13) 

This can be seen from (15.2). If the two velocities B and B' have an angle 
|4B|/6 between them of more than 2/y, the two terms in the amplitude will not 
interfere, When the direction of emission n is such that one of them is large, the 

other is negligible. The angular distribution will be two searchlight beams, one 
centered along B and the other along B’, each given by the absolute square of 
one term. The radiated intensity integrated over angles is then approximately 

i 4z*e? 
lim doo wae In (Q/Mc) {15.14) 

For Q > 2Mc the radiated intensity of soft photons is logarithmically dependent 
on Q?, in contrast to the linear increase with Q? shown by (15.12) for smaller 
momentum transfers. For nonrelativistic motion the momentum transfers arc 
always less than the limit of (15.13). The intensity is therefore given by (15.12) 
for all momentum transfers. 

C. Qualitative Behavior at Finite Frequencies 

So far we have concentrated on the very-low-frequency limit of (15.1), It is 
time to consider the qualitative behavior of the spectrum at finite frequencies. 

The phase factor in (15.1) controls the behavior at finite frequencies. Appreciable 
radiation occurs only when the phase changes relatively little during the collision. 
if the coordinate r(t) of the particle is written as 

r(t) = 1(0) + [ c(t") de’ 

then, apart from a constant, the phase of the integrand in (15.1) is 

(0) = of: -n a) a’) 

If we imagine that the collision occurs during a time 7 and that B changes rela- 
tively smoothly from its initial to final value, the criterion for appreciable radi- 
ation is 

or] — n+ (B)) <1 (15.15) 
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where (B) = (1/7) I £(1) dt is the average value of B during the collision. For ‘0 
nonrelativistic collisions this reduces to 

ors 

At low frequencies the radiated intensity is given by (15.7), but for w7 > 1 the 
oscillating phase factor will cause the integral to be much smaller than when 
w = 0, The intensity will thus fai! rapidly to zero for @ > 1/7. For relativistic 
motion the situation is more complex. For small |AB| but with y >> 1 the criterion 
(15.15) is approximately 

yl + YO) <1 (15.16) 

Now there is angular dependence. For w7 < 1, there is significant radiation at all 
angles that matter. For wr on the range, 1 < wr < y’, there is appreciable radi- 
ation only out to angles of the order of @,,.., Where 62,,, = I/w7. For wr > yy 
(15.16) is not satisfied at any angle. Hence the spectrum of radiation in relativistic 
collisions is given approximately by (15.11) and (15.12) provided wr << y’, but 
modifications occur in the angular distribution as wr approaches y”, and the in- 
tensity at all angles decreases rapidly for w = y*/7. 

15.2 Bremsstrahlung in Coulomb Collisions 

The most common situation in which a continuum of radiation is emittcd is in 
the collision of a fast particle with an atom. Because of its greater charge, the 
nucleus is more effective at producing deflections of the incident particle than 
the electrons. Consequently we ignore the effects of the electrons for the present 
and consider the radiation emitted in the collision of a particle of charge ze, mass 
M, and initial velocity cB with the Coulomb field of a fixed point charge Ze. 

The elastic scattering of a charged particle by a static Coulomb ficld is given 
by the Rutherford formula (see Section 13.1): 

do, (2zZe2\" 1 
x = eer 15.1 

an’ ( po ) (2 sin 672)" Co 

where 6' is the scattering angle of the particle. This cross section is correct non- 
relativistically at all angles, and is true quantum mechanically for the relativistic 
small-angle scattering of any particle. It is convenient to express (15.17) as a cross 
section for scattering per unit interval in momentum transfer Q. For clastic 
scattering, 

Q? = 4p*sin?(0'/2) = 2p*(1 — cos 6’) (15.18) 

With dQ’ = dd’ d cos & = —Q dd’ dQ/p*, integration over azimuth of (15.17) 
gives 

y 2\2 

dos _ wo( ) wok (15.19) 
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In a Coutomb collision with momentum transfer Q the incident particle is 
accelerated and cmits radiation. From Section 15.1 we know that the angular 
distribution is given by (15.10), at least for small deflections, and the integrated 
intensity by (15.12). Since the angular distributions have already been discussed, 
we focus on the frequency spectrum, integrated over angles. In analogy with 
(15.4) we define the differential radiation cross section, 

@x _ dw, Q) do, 
dwdQ dw = dO 

where di(w, Q)/dq is the energy radiated per unit frequency interval in a collision 
with momentum transfer Q. The differential radiation cross section has dimen- 
sions of (area x energy/frequency X momentum). The cross section for photon 
emission per unit energy interval is obtaincd by dividing by Aw. 

The low-frequency radiation spectrum is given by (15.12), provided Q is not 
too large. Inserting both (15.12) and (15.19) into (15.20) we obtain 

By _ 16 Ze? (ze)? 1 1 xX. — (25) —. (15.21) dwdQ 3 c¢ \Mc?} Bp? Q 
This result is valid at frequencies and momentum transfers low enough to ensure 
that the criteria of Section 15.1 are satisfied. The radiation cross section inte- 
grated over momentum transfers is 

dy _ 6 Z2 (4). 1 (2m dQ 

(Q) (15.20) 

do 3 ¢ \Mc} Blom Q 
or (15.22) 

dy _ 16 Ze aan Qraae 
deo 3 ¢ \Me? B Qrin 

In summing over momentum transfers we have incorporated the limitations on 
the range of validity of (15.21) by means of maximum and minimum values of 
Q. At any given frequency (15.21) describes approximately the differential ra- 
dation cross section for only a limited range of Q. Outside that range the cross 
section falls below the estimate (15.21) because one or the other of the factors 
in (15.20) is much smaller than (15.12) or (15.19) (or zero). This effectively limits 
the range of Q and leads to (15.22). Determination of the values of Om. and 
Qmin for different physical circumstances is our next task. 

A. Classical Bremsstrahlung 

In our discussion of cnergy loss in Chapter 13 we saw that classical consid- 
erations were applicable provided 

_ Ze? 
2 av 

>1 

For particles of modest charges this means 8 << 1. In this nonrelativistic limit 
the maximum cffective momentum transfer is not restricted by failure of (15.12). 
The only limit is kinematic. From (15.18) we see that 

Qmax = 2p = 2Mv (15.23) 
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The lower limit on Q is determined classically by the relation between frequency 
and collision time that must be satisfied if there is to be significant radiation, 
From Section 11.10 and Problem 13.1 we have 

2zZe* 
bv 

Q=~ 

so that the condition w < 1/7 can be written in terms of Q as 

22Ze?w 
2 > Ofte = (15.24) 

The classical radiation cross section is therefore 

dy. 16 Ze? (z’e?\" 41 AMv> 
dw 3 c \Mc)  B i 2Ze7w, (15.25) 

where A is a number of order unity that takes into account our ignorance of 
exactly how the intensity falls to zero around wr = 1. This cross section is mean- 
ingful only provided the argument of the logarithm is greater than unity. There 
is thus an upper limit w), on the frequency spectrum. Phrased in terms of a 
photon energy it is 

2 
ho), = = (#) (15.26) 

Since 7 is large compared to unity in this classical situation, we find that the range 
of photon energies is limited to very soft quanta whose energies are all very small 
compared to the kinetic energy of the incident particle. For 7 = 10 the classical 
spectrum is shown in Fig. 15.3, with A = 2 (chosen so that for y = 1 and w = 0 
the classical and quantum-mechanical cross sections agree). 

Figure 15.3 Radiation cross section (energy x area/unit frequency) for nonrelativistic 
Coulomb collisions as a function of frequency in units of the maximum frequency (E/h) 
The classical spectrum is confined to very low frequencies. The curve marked “Bethe— 
Heitler” is the quantum-mechanical Born approximation resullt, i.e., (15.29) with A’ = 1. 
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B. Nonrelativistic Bremsstrahlung 

In the classical limit the energy and the momentum of the photon were not 
considered. A posteriori such neglect was justified because (15.26) shows that the 

spectrum is confined to very low-energy photons. But for fast, though still non- 
relativistic, particles with » < 1, it is necessary to consider conservation of energy 
and momentum including the photon. For scattering by a fixed (or massive} cen- 

ter of force, the conservation requirements are 

E=E'+ho (15.27) 

Q = (p-p’— ky = PP 
where E = p?/2M and E' = p’'/2M are the kinetic cnergics of the particle before 
and after the collision, Aw and k = fwn/c are the energy and momentum of the 
photon, and Q is the momentum transfered to the scattering center, as before. 
The reader can verify that the neglect of the photon’s momentum k in the second 
expression for Q? is justified independently of the directions of the momenta 
provided the particles are nonrelativistic. 

The maximum momentum transfer effective for radiation is again that al- 
lowed by the kinematics. Similarly the minimum effective Q is determined by 
the kinematics and not by the collision time.* From the second equation in 
(15.27) we obtain 

Qmox _p +p! (VE + VE ~ ho) 

Onin P-P ho 

The second form is obtained by using conservation of energy. The radiation cross 
section (15.22) is therefore 

dxwn _ 16 Ze? (24) Ly, [MOVE + VE = hay 
do 3 ¢ \Me?) B - hw 

where again A‘ is a number expected to be of order unity. Actually, with A’ = 1, 
(15.29) is exactly the quantum-mechanical result in the Born approximation, first 
calculated by Bethe and Heitler (1934). The shape of the radiation cross section 

as a function of frequency is shown in Fig. 15.3. 
The fact that we have obtained the correct quantum-mechanical Born ap- 

proximation cross section by semiclassical arguments in which the quantum as- 

pects were included only in the kinematics can be understood from the consid- 

crations of Section 15.1, especially Fig. 15.1. In the Born approximation the 
scattering vertex, drawn as a blob there to indicate complicated things going on, 

reduces to a point vertex like the photon-particle vertices. The third diagram at 
the bottom is absent. Only the external lines radiate; the amplitude is given by 

(15.6); the exact kinematics and phase space conspire to yield (15.29). 

The radiation cross section dy/dw depends on the properties of the particles 

involved in the collision as Z*z‘/M?, showing that the emission of radiation is 
most important for clectrons in materials of high atomic number. The total energy 

(15.28) 

| (15.29) 

*£or soft photons Omin = p ~ p’ can be approximated by Qmin ~ 2hwole, while the classical expression 
(15.24) is O9, = 2phelu. With » < 1 the quantum-mechanical Oz, is larger than the classical and 
so governs the lower cutoff in Q. For more energetic photons (p — p’} is even larger. In relativistic 
collisions Q&), is y 7 times its nonrelativistic value and so is much smaller than the quantum minimum 
[see (15.33)]. 
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lost in radiation by a particle traversing unit thickness of matter containing N 
fixed charges Ze (atomic nuclei) per unit volume is 

dE yy _ free 
Gee dace. Gage oo 

Using (15.29) for dy/dw and converting to the variable of integration x = (Aw/E), 
we can write the radiative energy loss as 

dE na 16 Ze?\ ziet if 1+Vi-«x at = — NZI = F dx 3 (= Me Jy ™ Va dz (15.30) 
The dimensionless integral has the value unity. For comparison we write the ratio 
of radiative energy loss to collision energy loss (13.14): 

dEma 4 > Zmiv\ 1 
@Eq, 30° 137M \c} inB, coll 

For nonrelativistic particles (v << c) the radiative loss is completely negligible 

compared to the collision loss. The fine structure constant (e?/Ac = 1/137) enters 

characteristically whenever there is emission of radiation as an additional step 
beyond the basic process (here the deflection of the particle in the nuclear 
Coulomb field). The factor m/M appears because the radiative loss involves the 
acceleration of the incident particle, while the collision loss involves the accel- 
eration of an electron. 

(15.31) 

C. Relativistic Bremsstrahlung 

For relativistic particles the limits obtained from conservation of energy must 
be modified. The changes are of two sorts. The first is that the maximum effective 
Q value is no longer determined by kinematics. It was shown in Section 15.1 that 

{15.12) is valid only for Q < 2Mc. For larger Q the radiated intensity is logarith- 
mic in Q and given by (15.14). Because of the Q * behavior of (15.19) this means 
that Qn tn (15.22) is 

Qrnax = 2Me (15.32) 

The second modification is that the photon’s momentum can no longer be ignored 
in determining the minimum momentum transfer from (15.27). The minimum 

clearly occurs when all three momenta are parallel: 

Qmin = Pp — p'—k 

For relativistic motion of the particle both initially and finally (even though the 
photon may carry off appreciable energy), we can approximate cp ~ E — 
M?c'/2E, cp' = E' — M’c*/2E’, where now E and E’ are the total energies. Then 
we obtain 

Mecho 
Qmin ~ See (15.33) 

With (15.32) and (15.33), the radiation cross section {15.22} becomes 

2,2 f92,2\2 ep xp _ 16 Ze (5) mn (AEE) (15.34) 
do 3 ¢ \Mc? Mc*heo 
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with the customary 4” of order unity. This result is the same as is obtained quan- 
tum mechanically in the relativistic limit, provided the photon energy satisfies 

hw << E. In the limit of E, E’ >> Mc’, the quantum formula is 

2 
xr 16 Z7e? (ze? ho | 380 2EE' i 

= LS + 1 ate Bs 
( hom 3 € \Me Et ae} \eha) ~2| (39) 

We note in passing that since Onn4, ~ 2Mc, the small change in velocity AB 

always lies in the plane perpendicular to the incident direction in a relativistic 
collision. The angular distribution of the radiation is thus given by (15.11). The 
doubly differential radiation cross section for energy radiated per unit frequency 

interval and per unit solid angle for ha << E is then 

xe _ | 3 (1+ y'e) | dye 
[z r a+ ye) | dw (15:36) do dQ, 

where 4 is the angle of emission of the photon and dy,/dw is given by (15.34). 

The smallness of Q,,,./p justifies the use of the relativistic Rutherford formula 

(15.19) without quantum-mechanical corrections for spin. 

D. Relativistic Bremsstrahlung by a Lorentz Transformation 

It is instructive to consider the calculation of relativistic bremsstrahlung from 
a somewhat different point of view. Suppose that instead of using the laboratory 
frame where the force center is at rest we view the process as taking place in the 
rest frame K’ of the initial particle. The emission process as it appears in the two 
frames is indicated schematically in Fig. 15.4. A small-angle deflection in the 
laboratory corresponds to nonrelativistic motion during the whole collision in the 
frame K’. The differential radiated intensity in K’ is thus given by the sum of 
the two terms in (15.10) with 8 = 0: 

Cr _ Ze ap 29! To’ dn’ = 3a (ABI (1 + cos*6') 

where primes denote quantities evaluated in the frame K’. The change in velocity 
can be written for nonrelativistic motion as AB’ = Ap'/Mc, where Ap’ is the 
change of momentum in KX’. For a small deficction in the laboratory, Ap’ is per- 
pendicular to the direction of motion and so is the same in the laboratory as in 

Ze fa 7 

ze 

+ + 
Laboratory Coordinate 
frame frame K' 

Figure 15.4 Radiation emiited during relativistic collisions viewed from the laboratory 
(nucleus at rest) and the frame K’ incident particle essentially at rest). 
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K’. Its magnitude is the momentum transfer Q. The radiated energy spectrum 

can therefore be written as 

ar ee Q 2 Spe 

Jar a ~ Bn% (2 (grees 2) Me. 

The triply differential radiation cross section for emission of radiation per unit 

frequency interval, per unit solid angle, and per unit interval in momentum trans- 
fer is, in analogy to (15.20), 

ay’ ve? ( Q y do, z 29" 5 
de do’ dO ~ ac \Me) ao“ * 08%) (15.37) 

This is the cross section in frame K’. No primes appear on do,/dQ or on Q* 

because to the extent that Q is transverse, these quantities are obviously invariant 
under Lorentz transformations.* 

The emission of radiation in the frame K’ appears as simple dipole radiation 
in (15.37). To obtain the cross section in the laboratory we must make a Lorentz 

transformation. In Section 15.1 we saw that (15.5) is a Lorentz-invariant quantity. 
With what has just been said about do,/dQ, it is clear that the equation relating 
the differential cross sections in the two frames is 

1 ay 1 a’y' 

wdodQdQ 0” dw’ dO’ dQ (15.38) 

‘Thus the triply differential cross section in the laboratory is 

dy 2 ve /Q\ de, s feV - 
as. 2)  @&. . 

dwdQdQ 37 ¢ (2 dQ | 16m \w’ (1 + cos?6')} (15,39) 

The quantities in the square brackets must, of course, be expressed in terms of 
(unprimed) laboratory quantities. The relativistic Doppler shift formulas are 

w = yo'(1 + £8 cos 6’) 

and 

w = yo(l — B cos @) 

Combining the two equations we obtain 

o 1 2y 
of (1 Boos) 1+ ¥e 

and (15.40) 
cosd-B 1- ye gas FL 

cose = 1- Boost 1+ 70 

ually. we can use (he manifestly invariant ¢-momentum transfer whose square is given by 
(pp = (pr pay (Ey — Ey)’ ie°. For elastic scattering by a massive center of force. 

. and for small angles and very high energies, the energy difference term can be neglected 
even for inelastic collisions. 
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The approximations on the right are appropriate for small angles around the 
incident direction in the laboratory. With these approximate forms, the square- 
bracketed quantity in (15.3%) becomes 

3 (w\ es 377 (1 + ¥*6") 
lies (5) Me cov] - Bs + pe 

which is exactly the normalized expression in (15.36). [Use of the exact forms 
from (15.40) leads to the sum of the two terms in (25.10).] With the Rutherford 
cross section (15.19), or some othcr collision cross section for da,/dQ, if appro- 
priate, we obtain from (15.39) the relativistic bremsstrahtung results as before. 

The Doppler shift formulas illustrate an important point. Photons of energies 
fiw’ in K’, emitted at essentially any angle in that frame, appear in the laboratory 
within the forward cone and with energies of the order of hw ~ ytiw’. Thus 
energetic photons in the laboratory energy range Mc? << hw << yMc* come 
from soft quanta with hw’ << Mc? in the rest frame of the incident particle. 

15.3 Screening Effects; Relativistic Radiative Energy Loss 

In the treatment of bremsstrahlung so far we have ignored the effects of the 
atomic electrons. As direct contributors to the acceleration of the incident par- 
ticle they can be safely ignored, since their contribution per atom is of the order 
of Z~’ times the nuclear one. But they have an indirect effect through their 
screening of the nuclear charge. The potential energy of the incident particle 
in the field of the atom can be approximated by the Yukawa form, V(r) = 
(2Ze7/r) exp(~rla), with a = 1.4a)Z~"®. Instead of (15.17) the scattering cross 
section is (13.53) with Mi, given by (13.55). In terms of momentum transfer 
(15.19) is replaced by 

do, Ze2\" 
a0 Ge) ee ee 

where 

A 79 
Q, = pO, = Piha (15.42) 

is the momentum transfer associated with the screening radius a. Note that m1 is 
the clectronic mass. 

The calculation of bremsstrahlung proceeds as at the beginning of Scction 
15.2, but with the replacement in (15.22), 

Cmax 
i dQ _,[™" _@' do 
nm OQ Onin (Q? + QF? 

With the assumption that QOnax is very large compared with both Qpi, and Q,, 

we find that the logarithm in (15.22) is replaced by 

nae Om: \ 
(S=) up (va Cin a) Wnt ay =) 
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For Quin >> Q, the effects of screening are unimportant and the results of the 
preceding section are unaffected. But for Q,,,, = Q,, important modifications 
occur. 

From (15.23), (15.28), and (15.32) we see that Q,,., can be written in all 
circumstances as 

Quay = 2Mv (15.44) 

while from (15.28) and (15.33) we find Q,,;,, values, 

iO = p — pt = he 
(15.45) 

OW) = ho _ ho min ~ Die ~ Dp 

The approximations on the right are applicable for soft photons. (Note that, up 
to factors of 2 in the logarithms. a universal formula for Q,,;, for soft photons is 

Qmin = hol y’v.) Since both values of Q,,i. are proportional to w for soft photons, 
it is clear that there will always be a frequency below which screening effects are 
important. With Q, given by (15.42). the ratio of Q,,, to Q, for nonrelativistic 
bremsstrahlung is 

WM 384 hw — 192MB ho 

ZB mvc mZ"9 max 

where (AW)ma, = Mv?/2. Except for extremely slow speeds. the frequency at 
which OW) =< Q.isa tiny fraction of the maximum. For example, with 100 keV 

electrons on a gold target (Z = 79), only for @/m@p,. < 0.04 is screening important. 
For particles heavier than electrons the factor M/m makes screening totally in- 
significant in nonrelativistic bremsstrahlung. 

For relativistic bremsstrahlung. however, scrcening effects can be important. 
The ratio Of Onin to Q, is now 

ON 96h 96M ho 
QQ. yy'me*z'* ~ YMZ" (Re) nay 

where (#@),ns, = yMc?. The presence of the factor 7’ in the denominator implies 
that at sufficiently high energies O(? can be less than Q, for essentially the whole 
range of frequencies [if @/@,,,. = x, then y’ = (1 — x)y]. Then the screening is 
said to be complete. The incident energies for complete screening are defined as 
E >> F,, where the critical energy E, is 

E,= (on) (15.46) mz 

For energies large compared to E,. Q,,,;, can be neglected compared to Q, in 

(15.43) at all frequencics except the very tip of the spectrum. The radiation cross 
section in the complete screcning limit is thus the constant valuc. 

dy _ 16 Ze? fze?\’ (233M 
do 3 ¢ \Me}  \nz (3-47) 
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Bethe-Heitler- Figure 15.5 Radiation cross section in 
the complete screening limit. The 
constant value is the semiclassical 
result. The curve marked “Bethe~ 

Heitler™ is the quantum-mechanical 
Born approximation. 

The numerical coefficient in the logarithm is subject to some uncertainty, of 
course. Bethe and Heitler found a result with 183 instead of 233 in the logarithm 
and with the polynomial (1 — hw/E + 3h?w?/4F?) of (15.35) multiplying it. 

For electrons, Z, ~ 42 MeV in aluminum (Z = 13) and 23 MeV in lead 

{Z = 82). The corresponding values for mu mesons are 2 X 10° MeV and 10° 
MeV. Because of the factor M/m, screening is important only for electrons. When 
E > E,, the radiation cross section is given by the constant value (15.47) for all 
frequencies. Figure 15.5 shows the radiation cross section (15.47) in the limit of 
complete screening, as well as the corresponding Bethe—Heitler result. Their 
proper quantum treatment involves the slowly varying polynomial, which 
changes from unily at w = 0 to 0.75 at © = @mpyx. For cosmic-ray electrons and 
for electrons from most high-energy clectron accclerators, the bremsstrahlung is 
in the complete screening limit. Thus the photon spectrum shows a typical (fiw) '! 
behavior. 

The radiative cnergy loss was considered in the nonrelativistic limit in Section 
15.2.B and was found to be negligible compared to the energy loss by collisions. 
For ultrarelativistic particles, especially electrons, this is no longer true. The ra- 
diative energy loss is given approximately in the limit y >> 1 by 

7242 [p2,2\2 pyMcin 
a 16 N Ziet (35) In (apf ) daw 
dx 3 c \Mc 0 VOiin + Q ‘min s 

For negligible screening we find approximately 

dEng 16, Ze (2e2\ 
de 3 te ( In QyyMe 

For higher energics where complete screening occurs this is modified to 

dE ws 416. Ze? {z’e?\" (233M P ; 
dx - [5 No NM) Ze) Me (15.48) 

showing that eventually the radiative loss is proportional to the particle’s encrgy.* 
The comparison of radiative loss to collision loss now becomes 

ia (Ft) 

aE wa 4 (3) m  \Z'°m 
~ Y dE gy 37 \137 In B, 

*With the Bethe-Heitler energy dependence shown in Fig. 15.5, the coefficient 16/3 is replaced by 4: 
if atomic electrons are counted. the factor of Z’ is replaced by Z(Z + 1) 
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The value of y for which this ratio is unity depends on the particle and on Z. For 
electrons it is y ~ 200 for air and y ~ 20 for lead. At higher energies. the radiative 
energy loss is larger than the collision loss and for ultrarelativistic particles is the 
dominant loss mechanism. 

At energies where the radiative energy loss is dominant, the complete screen- 
ing result (15.48) holds. Then it is useful to introduce a unit of length X, called 
the radiation length, which is the distance a particle travels while its energy falls 
toe”! of its initial value. By conservation of energy, we may rewrite (15.48) as 

aE _ _E 
dx Xo 

with solution 

E(x) = Eye" 

where the radiation length Xp (including quantum corrections, loc. cit.) is 
2 -1 

X= [+ AZ Ne Ne (=) In (Bx) (15.49) 

For electrons, some representative values of Xo are 37 g/em? (310 m) in air at 
NTP. 24 g/cm? (8.9 cm) in aluminum, and 5.8 g/em? (0.51 cm) in lead. In studying 
the passage of cosmic-ray or man-made high-energy particles through matter, the 
radiation length X, is a convenient unit to employ, since not only the radiative 
energy loss is governed by it, but also the production of electron-positron pairs 
by the radiated photons, and so the whole development of the electronic cascade 
shower. 

15.4 Weizsticker-Williams Method of Virtual Quanta 

The emission of bremsstrahlung and other processes involving the electromag- 
netic interaction of relativistic particles can be viewed in a way that is very helpful 
in providing physical insight into the processes. This point of view is called the 
method of virtual quanta. It exploits the similarity between the fields of a rapidly 

moving charged particle and the fields of a pulse of radiation (see Section 11.10) 
and correlates the effects of the collision of the relativistic charged particle with 

some system with the corresponding effects produced by the interaction of ra- 

diation (the virtual quanta) with the same system. The method was developed 
independently by C. F. Weizsacker and E. J. Williams in 1934. Ten years earlier 
Enrico Fermi had used essentially the same idea to relate the energy loss by 

ionization to the absorption of x-rays by atoms (see Problem 15.12). 
In any given collision we define an “incident particle™ and a “struck system.” 

The perturbing fields of the incident particle are replaced by an equivalent pulse 
of radiation that is analyzed into a frequency spectrum of virtual quanta. Then 
the effects of the quanta (either scattering or absorption) on the struck system 
are calculated. In this way the charged-particle interaction is correlated with the 

photon interaction. Table 15.1 lists a few typical correspondences and specifies 
the incident particle and struck system. From the table we see that the struck 
system is not always the target in the laboratory. For bremsstrahlung the struck 
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Table 15.1 Correspondences Between Charged Particle Inicractions 
and Photon Interactions 

Incident Struck 
Particle Process Particle System Radiative Process Brsin 

Bremsstrahlung in Nucleus Electron Scattering of virtual Ri2Mv 
electron (light (light photons of nuclear 
particte)-nucleus particle Coulomb field by 
collision mass M) the clectron (light 

particle) 

Collisional ionization Incident Atom Photoejection of a 

of atoms (in distant Particle atomic clectrons by 
collisions) virtual quanta 

Elcctron disintegration — Electron Nucleus Photodisintegration of 
of nuclei (mass m) nuclei by virtual Larger 

quanta of 
Production of pions in Electron Nucleus Photoproduction of Alymv 

electron-nuclear (mass m) pions by virtual and R 
collisions quanta interactions 

with nucleus 

system is the lighter of the two collision partners. since its radiation scattering 
power is greater. For bremsstrahlung in electron-electron collision it is necessary 
from symmetry to take the sum of two contributions where each electron in turn 
is the struck system at rest initially in some reference frame. 

The chief assumption in the method of virtual quanta is that the effects of 
the various frequency components of equivalent radiation add incoherently. This 
will be true provided the perturbing effect of the fields is small, and is consistent 
with our assumption in Section 15.2.D that the motion of the particle in the frame 
K’ was nonrelativistic throughout the collision. 

It is convenient in the discussion of the Weizsacker—Williams method to usc 
the language of impact parameters rather than momentum transfers in order to 
make use of results on the Fouricr transforms of fields obtained in previous 
chapters. The connection betwecn the two approaches is via the uncertainty- 
principle relation, 

Peo 
Q 

With the expression (15.44) for Q,,4x in bremsstrahlung, we see that the minimum 

impact parameter effective in producing radiation is 

bain = * (15.50) 

as listed in Table 15.1. The maximum impact parameters corresponding to the 
Qmin Values of (15.45) do not need to be itemized. The spectrum of virtual quanta 
automatically incorporates the cutoff equivalent to Qnin- 

The spectrum of equivalent radiation for an independent particle of charge 
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q. velocity v = c. passing a struck system S at impact parameter 5. can be found 
from the fields of Section 11.10: 

EQ) = 4 eee 

Bx(t) = BE2{) 

yor 
EQ = -q + yp 

For 6 = 1 the fields £,(t) and B,(1) are completely equivalent to a pulse of plane- 

polarized radiation P, incident on S in the x, direction, as shown in Fig. 15.6, 
There is no magnetic field to accompany E(t) and so form a proper pulse of 
radiation P, incident along the x2 direction. as shown. Nevertheless. if the motion 

of the charged particles in S is nonrelativistic in this coordinate frame, we can 
add the necessary magnetic field to create the pulse P, without affecting the 
physical problem because the particles in S respond only to electric forces. Even 
if the particles in S$ are influenced by magnetic forces, the additional magnetic 
field implied by replacing E,(t) by the radiation pulse P, is not important, since 
the pulse P, will be seen to be of minor importance anyway. 

From the discussion Section 14.5, especially equations (14.51), (14.52), and 
(14.60), it is evident that the equivalent pulse P, has a frequency spectrum (en- 
ergy per unit area per unit frequency interval) d/\(@, b)/dw given by 

dT : 
& (wo, b) = & | E(w)? (15.51a) 
de 2a 

where E(w) is the Fourier transform (14.54) of E(t). Similarly the pulse P2 has 
the frequency spectrum 

dh ¢ 2 
(wb) =s-|E 5.51 we (wb) = 5 1EW(o)| (15.51b) 

The Fourier integrals, calculated in Chapter 13, are given by (13.80). The two 
frequency spectra are 

dl,(w, b) wb\" {wb 
“do | _ 4 @ fe\1 | \e) Se. 

=a |a 2 (15.52) 
dl(o, b) wc \uy BLA fab KA wb 

da ¥ lw Vw 

te ” 

ti 

Ss pd Ds 

if 

lb Py 

x x 
i 3 

Figure 15.6 Relativistic charged particle passing the struck system S and the 
equivalent pulses of radiation. 
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We note that the intensity of the putse P, involves a factor y * and so is of little 

importance for ultrarelativistic particles. The shapes of these spectra are shown 
in Fig, 15.7. The behavior is easily understood if one recalls that the fields of 
pulse P, are bell-shaped in time with a width Ar ~ b/yv. Thus the frequency 
spectrum will contain all frequencies up to a maximum of order @_,, ~ 1/At On 

the other hand, the fields of pulse P, are similar to one cycle of a sine wave of 

frequency w ~ yu/b. Conscquently its spectrum will contain only a modest range 

of frequencies centered around yo/b. 

In collision problems we must sum the frequency spectra (15.52) over the 
various possible impact parameters. This gives the energy per unit frequency 
interval present in the equivalent radiation field. As always in such problems we 
must specify a minimum impact parameter byin. The method of virtual quanta 
will be uscful only if by, can be so chosen that for impact parameters greater 

than b,j, the cffccts of the incident particle's fields can be represented accurately 

by the effects of cquivalent pulses of radiation, while for small impact parameters 
the effects of the particle's fields can be neglected or taken into account by other 
means. Setting aside for the moment how we choose the proper value of Dmin in 
general [(15.50) is valid for bremsstrahlung|, we can write down the frequency 
spectrum integrated over possible impact paramcters, 

dl i 
a I w) = 2m is {4 (w, b) + = (w, 2 (wo) | db (15.53) 

where we have combined the contributions of pulses P, and P . The result is 

al 2¢(c\ ? f= <¢ (<) {xxioxiey 7 oe x>{K%Ux) — Ki} (15.84) 

where 

bmn x= Sse (15.55) 

0.001 0.01 OL 1 10 

wb 
re 

Figure 15.7 Frequency spectra of the two equivalent pulses of radiation. 
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For low frequencies (@ << yu/byi,) the energy per unit frequency interval re- 
duces to 

2 
dd 2¢ fe 1.123w v? 

= a = 15.5 aoa Fe Mo) Lenn J 2A (15.0) 
whereas for high frequencics (@ >> yu/Bmin) the spectrum falls off exponentially 
as 

2 
d F fe v ZOD iin =2(-}{1- - 15. 
dw () c (‘) ( 2e2) O*P! yw (1357) 

Figure 15.8 shows an accurate plot of /(w) (15.54) for v ~ ¢, as well as the low- 
frequency approximation (15.56). We sce that the energy spectrum consists pre- 
dominantly of low-frequency quanta with a tail extending up to frequencies of 
the order of 2yv/Dyin- 

The number spectrum of virtual quanta N(iw) is obtained by using the 
relation 

dl 
ig (2) do = hea hee) d(hoo) 

‘Thus the number of virtual quanta per unit energy interval in the low-frequency 
limit is 

2(¥\fc an pata) Ayu 

Ge) tale 0 [” abn) 22 (38) 

oliiil oe ral 
Ol 05 1 5 

abrin-ys —> 
Figure 15.8 Frequency spectrum of virtual quanta for a relativistic particle, with the 
cnergy per unit frequency di{w)/de in units of g?/me and the frequency in units of 
‘ylbein The oumber of virtual quanta per unit energy interval is obtained by dividing 
by Hw. 
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The choice of minimum impact parameter ,,,,, must be considered. In brems- 

strahlung. yi = 2/2Mu. where M is the mass of the lighter particle. as already 
discussed. For collisional ionization of atoms, Pmin = @. the atomic radius, with 

closer impacts treated as collisions between the incident particle and free elec- 
trons. In electron disintegration of nuclei or electron production of mesons from 
nuclei, the wave nature of the particle whose fields provide the virtual quanta 
sets the effective minimum impact parameter. In these circumstances. min = 

AlyMo or bin = R, the nuclear radius, whichever is larger. The values are sum- 

marized in Table 15.1. 
The quantum-mechanical version® of the Weizsacker—Williams method of 

virtual quanta for ultrarelativistic spin 5 electrons (8 > 1) replaces the square- 

bracketed quantity in (15.58)—“the logarithm"—by 

E? + E”? 2EE' (E+ EP E+E’ E 
L= i = it =] 15.59 ( 2E ) " (222 | qe \ Ko ze (1559 

where E and E’ = E — hw are the initial and final energies of the electron. In 

the limit Aw << E, “the logarithm” reduces to 

(hw) (ho)? E? 
L = (1 — fw/E) In (Ele?) — ; + of et BoE In Ache 

which is consistent with (15.58) with Dyin ~ c/w = X, the wavelength (divided by 

27) of the virtual photon. The quantum-mechanical version finds extensive ap- 
plication in the so-called two-photon processes in electron-positron collisions." 

15.5 Bremsstrahlung as the Scattering of Virtual Quanta 

The emission of bremsstrahlung in a collision between an incident relativistic 
particle of charge ze and mass M and an atomic nucleus of charge Ze can be 
viewed as the scattering of the virtual quanta in the nuclear Coulomb field by 
the incident particle in the coordinate system K’, where the incident particle is 
at rest. The spectrum of virtual quanta d/’{w')/dw' is given by (15.54) with g = Ze. 
The minimum impact parameter is #/2Mv. so that the frequency spectrum ex- 
tends up to w’ ~ yMc7/h. 

The virtual quanta are scattered by the incident particle (the struck system 

in K’) according to the Thomson cross section (14.125) at low frequencies. Thus, 
in the frame K’ and for frequencies small compared to Mc?/f, the differential 
radiation cross section is approximately 

dy _ (ve) , aan al! 
da! dQ ~ (3) PE CO ON a 

Since the spectrum of virtual quanta extends up to yMc7/h, the approximation 
(15.56) can be used for d/’(w’)/de' in the region w’ << Mc?/h. Thus the radiation 
cross section in K' becomes 

2 [5292\? 2 ze 2, AyMc: 
+ 15,6¢ (i ja cos’a’) - in( he! (15.60) 

ay’ 1 

dw’ dQ’ 

*R. H. Dalitz and D. R. Yennic, Phys. Rev. 108, 1598 (1957). 
'H. Terazawa, Rev. Mod. Phys. 45, 615 (1973). 
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The cross section in the laboratory can be obtained in the same fashion as in 
Section 15.2.D. Using (15.38) and the Doppler formulas (15.40) we find 

dy _ 16 Ze (2 in (2avMe 37 + v'OD] eg 
dwd2 3 ¢ \Me? hol + ¥0)) [270 + Ye) (15.61) 

This is essentially the same cross section as (15.36). Upon integration over angles 
of emission, it yields an expression equal to the soft-photon limit of (15.34). 

Equations (15.60) and (15.61) are based on the Thomson scattering cross 
section and so are restricted to w’ < Mc7/h in the rest frame K'. Of course, as 
observed in Section 15.2.D, such soft photons transform into energetic photons 
in the laboratory. But the spectrum of virtual quanta contains frequencies up to 
w' = yMc*/h. For such frequencies the scattering of radiation is not given by the 
Thomson cross section. but rather by (14.127) for spinless struck particles or the 
Klein-Nishina formula for particles of spin 3. The angular distribution of scat- 
tering of such photons is altcred from the dipole form of (15.60), as is shown in 
Fig. 14.18. More important, the total cross section for scattering decreases rapidly 
for frequencies larger than Mc’/h, as can be seen from (14.128). This shows that 
in the frame K’ the bremsstrahiung quanta are confined to a frequency range 
0 < w' = Mc’/f, even though the spectrum of virtual quanta in the nuclear 
Coulomb field extends to much higher frequencies. The restricted spectrum in 
K’ is required physically by conservation of cnergy. since in the laboratory system 
where w ~ yo the frequency spectrum is limited to 0 < w < (yMc’/h). A detailed 
treatment using the angular distribution of scattering from the Klcin-Nishina 
formula yields a bremsstrahlung cross section in complete agreement with the 
Bethe-Heitler formulas (Weizsicker. 1934). 

The effects of screening on the bremsstrahlung spectrum can be discussed in 
terms of the Weizsicker—Williams method. For a screened Coulomb potential 
the spectrum of virtual quanta is modified from (15.56), The argument of the 
logarithm is changed to a constant, as discussed in Section 15.3. 

Further applications of the method of virtual quanta to such problems as 
collisional ionization of atoms and electron disintegration of nuclei are deferred 
to the problems at the end of the chapter. 

15.6 Radiation Emitted During Beta Decay 

in the process of beta decay an unstable nucleus with atomic number Z trans- 
forms spontaneously into another nucleus of atomic number (7 + 1) while emit- 
ting an electron (+e) and a neutrino. The process is written symbolically as 

Zo>(Ztlbte ty (15.62) 

The energy releascd in the decay is shared almost entirely by the electron and 
the neutrino, with the recoiling nucleus getting a completely negligible share 
because of its very large mass. Even without knowledge of why or how beta decay 
takes place. we can anticipate that the sudden creation of a rapidly moving 
charged particle will be accompanied by the emission of radiation. As mentioned 
in the introduction, either we can think of the electron initially at rest and being 
accelerated violently during a short time interval to its final velocity, or we can 
imagine that its charge is suddenly turned on in the same short time interval. The 
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heavy nucleus reccives a negligible acceleration and so docs not contribute to 
the radiation. 

For purposes of calcutation we can assume that at ¢ = 0 an ciectron is created 
at the origin with a constant velocity vy = cB. Then from (15.1) or (15.2) the 
intensity distribution of radiation is given by 

dle 

dw dQ Amc 
eRe 
I-n-f8 

This is the low-frequency limit of the energy spectrum. The intensity will decrease 
from this value at frequencies that violate the condition (15.15). Although it is 

difficult to be precise about the value of (B) that appears there, if the formation 
process is imagined to involve a velocity-versus-time curve, such as is sketched 

in Fig, 15.9, the value of (8) should not be greater than 4. In that case, the criterion 

(15,15) is equivalent to wr < 1. The formation time 7 can be estimated from the 
uncertainty principic to be 

(15.63) 

~~ (15.64) 

since in the act of beta decay an electron of total energy E is suddenly created. 
This estimate of 7 implics the frequencies for appreciable radiation are limited 
tow < E/h, This is just the limit imposed by conservation of energy. The radiation 
is scen from (15.63) to be linearly polarized in the plane containing the velocity 
vector of the electron and the direction of observation. The differential distri- 
bution in spherical coordinates is 

eT Gas sin’@ 
a BF 5.65 
dod ~ Swe? {1 — B cos 6)” (3.65) 

while the total intensity per unit frequency interval is 

a 2 [4 ( + e) | 
—In =2) 15.66 ‘ 1-6 ee 

For B << 1, (15.66) reduces to di/dw ~ 2¢?p?/3ac, showing that for low-energy 
beta particles the radiated intensity is negligible. 

The intensity distribution (15.66) is a typical bremsstrahlung spectrum with 
number of photons per unit cnergy range given by 

2 f1\fi, (+8) Nhe) = (5 In ( - g) 2| (15.67) 

olth 

ot 7—> Figure 15.9 
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It sometimes bears the name inner bremsstrahlung to distinguish it from brems- 

strahlung emitted by the same beta particic in passing through matter. 
The total energy radiated is approximaiely 

=f a ~# fly (t+ 8) 
En =f Seo) do = 5 [Fm (+8) ale 115.68) 

For very fast beta particles, the ratio of energy going into radiation to the particle 
energy is 

: 2? 2E 
=e =)-1 5. 

E whe [m (2) | 19,69) 

This shows that the radiated energy is a very small fraction of the total energy 
released in beta decay. even for the most cnergetic beta processes (Emyx ~ 

30mc?), Nevertheless, the radiation can be observed and provides usefut infor- 

mation for nuclear physicists. 

In the actual beta process the energy release is shared by the clectron and 
the neutrino so that the electron has a whole spectrum of energies up to some 
maximum. Then the radiation spectrum (15.66) must be averaged over the cnergy 
distribution of the beta particles. Furthermore, a quantum-mechanical treatment 
leads to modifications near the upper end of the photon spectrum. These are 
important details for quantitative comparison with experiment. But the origins 
of the radiation and its semiquantitative description are given adequately by our 
classical calculation. 

15.7 Radiation Emitted During Orbital-Electron Capture: 
Disappearance of Charge and Magnetic Moment 

In beta emission the sudden creation of a fast clectron gives rise to radiation. In 
orbital-electron capture the sudden disappearance of an electron does likewise. 
Orbital-clectron capture is the process whereby an orbital clectron around an 
unstable nucleus of atomic number Z is captured by the nucleus, which is trans- 
formed into another nucleus with atomic number (Z ~ 1), with the simultancous 
emission of a neutrino that carries off the excess energy. The process can be 
written symbolicaily as 

Zt+es(Z-ity (15.70) 

Since a virtually undetectable neutrino carrics away the decay cnergy if there is 
no radiation, the spectrum of photons accompanying orbital-electron capture is 
of great importance in yielding information about the energy release. 

As a simplified model we consider an ciectron moving in a circular atomic 
orbit of radius a with a constant angular velocity « The orbit lies in the x-y 

plane, as shown in Fig. 15.10, with the nucleus at the center. The observation 

direction n is defined by the polar angie @ and lies in the x-z plane. The velocity 
of the electron is 

vit) = —e;eya sin(wft + a} + €,aya cos(wt + aw) (15.71) 
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Figure 15.10 

where ais an arbitrary phase angle. If the electron vanishes at 1 = 0, the frequency 
spectrum of emitted radiation (14.67) is approximatcly* 

ui ee [ n x [n x v(A]e dt 15.72) dodQ tre 

where we have assumed that {wa/c) << 1 (dipole approximation) and put the 

retardation factor equal to unity. The integral in (15.72) can be written 

“0 
ig dt = —wyalet; + € cos 64) (15.73) 

where 

= ip cos{wf + ae dt 

* (15.74) 
h= f sin{ayt + ae” dt 

and €,, €, are unit polarization vectors perpendicular and parallel to the plane 
containing n and the z axis. The integrals are elementary and fad to an intensity 
distribution, 

I ew? wha? dae Pios 
To dO = ana @- ap [(@? cos’a + wi sin?a) 

+ cos?@(w* sin’?a + wi cos*a)] 
(15.75) 

Since the electron can be captured from any position around the orbit, we av- 
erage over the phase angle «. Ther the intensity distribution is 

i é& (24) wo? + wa) 1 cee 20)” 1+ cos?6 157 dod 4a ce | (ot aa? 21 * 008% (3-76) 

The total energy radiated per unit frequency interval is 

dkw) _ 2 @ (2#) [2% + 2] asi 
do 3r7ce\e)| (— wy 

*Yo conform to the admonition following (14.67), we should multiply the velocity (15.71) by a factor 
such as (1 ~ e”*)0(~1) in order to bring the velocity to zero continuously in a short time 7 near 
1 = 0. The reader may verify that in the limit «7 << 1 and a7 <I the results given below emerge. 
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while the number of photons per unit cnergy interval is 

_ 2 fe2\feya\"[ o(a8 + w?)] 1 
Mio) = (=)( ¢ ) [ (w - way | hw (15.78) 

For w >> o the square-brackcted quantity approaches unity. Then the spectrum 
is a typical bremsstrahlung spectrum. But for w = q, the intensity is very large 
(infinite in our approximation). The behavior of the photon spectrum is shown 
in Fig. 15.11. The singularity at # = «, may seem alarming, but it is really quite 
natural and expected. If the clectron were to keep orbiting forever, the radiation 
spectrum would be a sharp line at @ = w). The sudden termination of the periodic 
motion produces a broadening of the spectrum in the neighborhood of the char- 
acteristic frequency. 

Quantum mechanically, the radiation arises when an / = 1 electron (mainly 
from the 2p orbit) makes a virtual radiative (transition to an / = 0 state, from 

which it can be absorbed by the nucleus. Thus the frequency w, must be identified 
with the frequency of the charact 2p — Is x-ray, ftw, = (3Z7e7/8a,). Simi- 
larly the orbit radius is actually a transitional dipole moment. With the estimate 
a = a/Z, where ay is the Bohr radius, the photon spectrum (15.78) is 

3. ,,fe?\ 1 [oo + 02) 
i a (E) ho [ (a = way 1872) 

The essential characteristics of this spectrum are its strong peaking at the x-ray 
energy and its dependence on atomic number as Z’. 

So far we have considered the radiation that accompanies the disappearance 
of the charge of an orbital electron in the clectron-capture process. An electron 
possesses a magnetic moment as well as a charge. The disappearance of the 
magnetic moment also gives rise to radiation, but with a spectrum of quite dif- 
ferent character. The intensity distribution in angle and frequency for a point 
magnetic moment in nonrelativistic motion is given in Problem 14.19a. The ¢lec- 
tronic magnetic moment can be treated as a constant vector in space until its 

Nffiw) 

L 

kia 

Figure 15.11 Spectrum of photons emitted in orbital-electron capture because of 
disappearance of the charge of the electron. 
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disappearance at ¢ = 0. Then, in the dipole approximation, the appropriate in- 
tensity distribution is 

Cal ww (P ; r Sore ie nx pede (15.80) 

which gives 

tal oe 4. ‘ 
do dd ~ Fee # 8iN°O (15.81) 

where @ is the angle between p and the observation direction n. 
In a semiclassical sense the electronic magnetic moment can be thought of 

as having a magnitude 4 = V3(eh/2mc), but being observed only through its 
projection uw, = *(eh/2mc) on an arbitrary axis. The moment can be thought of 

as precessing around the axis at an angle a = tan7! V2, so that on the average 
only the component of the moment along the axis survives. It is casy to show 
that on averaging over this precession sin? in (15.81) becomes equal to its av- 
crage value of 3, independent of observation direction. Thus the angular and 

frequency spectrum becomes 

a1 _ @ (tw) : — =-;/{-> AY 
dw dQ 87re (5) (15.82) 

The total energy radiated per unit frequency interval is 

die fho\ 
de 7 2a (45) (15.83) 

while the corresponding number of photons per unit cnergy interval is 

2 hw 

2irhe (me*)? 

These spectra are very different in their frequency dependence from a brems- 
strahlung spectrum, They increase with increasing frequency, apparently without 
limit. Of course, we have been forewarned that our classical results are valid only 
in the low-frequency limit. We can imagine that some sort of uncertainty- 
principle argument such as was used in Section 15.6 for radiative beta decay holds 
here and that conservation of energy, at least, is guaranteed. Actually, modifi- 
cations arise because a neutrino is always emitted in the clectron-capture process. 
The probability of emission of the neutrino can be shown to depend on the square 
of its energy E,. When no photon is emitted, the neutrino has the full decay 
energy E, = Ey. But when a photon of energy fw accompanies it, the neutrino’s 
energy is reduced to E, = Ey — Aw. Then the probability of neutrino emission is 
reduced by a factor, 

E\’ ho\” 2 — 5.85 
(2) (: ) ee) 

This means that our classical spectra (15.83) and (15.84) must be corrected by 

multiplication with (15.85) to take into account the kinematics of the neutrino 
emission. The moditicd classical photon spectrum is 

eke hw\” 
Mio) = Sake nz ( = ) (15.86) 

Nho) = (15.84) 
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Figure 15.12 Spectrum of photons emitted in orbital-electron capture because of 
disappearance of the magnetic moment of the electron. 

This is essentially the correct quantum-mechanical result. A comparison of the 
corrected distribution (15.86) and the classical one (15.84) is shown in Fig, 15.12. 

Evidently the neutrino-cmission probability is crucial in obtaining the proper 
behavior of the photon cnergy spectrum. For the customary bremsstrahlung spec- 
tra such correction factors are less important because the bulk of the radiation 
is emitted in photons with cnergics much smaller than the maximum allowable 
value. 

The total radiation emitted in orbital-clectron capture is the sum of the con- 
tributions from the disappearance of the electric charge and of the magnetic 
moment. From the different behaviors of (15.79) and (15.86) we see that the 
upper end of the spectrum will be dominated by the magnctic-moment contri- 

Nia) 

0 hwo Eo 
ka —— 

Figure 15.13 Typical photon spectrum for radiative orbital-electron capture with 
energy release E,,, showing the contributions from the disappearance of the electronic 
charge and magnetic moment. 
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bution unless the cnergy release is very small. whereas the lower end of the 
spectrum will be dominated by the clectric-charge term, especially for high Z. 
Figure 15.13 shows a typical combined spectrum for Z ~ 20-30. Observations 
on a number of nucici confirm the general features of the spectra and allow 
determination of the cnergy release Fy. 
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Problems 

15.1 In radiative collision problems it is uscful to have the radiation amplitude ex- 

pressed explicitly as an integral involving the accelerations of the particles, as in 
(14.65), for example. In the nonrelativistic limit, particles do not move rapidly or 
far during the period of acceleration; only the lowest order velocity and retardation 
effects need be kept in an approximate description. 
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15.2 

15.3 

(a) Show that the integral (times ¢) in (14.65), which is. apart from an inessential 
phase, cR times the Fourier transform of the Liénard—Wiechert electric field 
at distance R, can be expanded in inverse powers of c (remembering that 
B = vie and k = wie) as follows: 

S=ef dem, + BB. + BB. — kB +9 
or 

J ef aen(s, +4 (6, - arb, + ) 

where B; = B-n, 7, = r+n, and B, = (mn x B) X n. Neglected terms are of 
order I/c? and higher. 

(b) Show that the first term in part a corresponds to the electric dipole approx- 
imation, while the next terms are the magnetic dipole and the electric quad- 

rupole contributions. [Some integrations by parts are required, with a con- 
vergence factor ¢~*"' to give meaning to the integrals, as discussed following 
(14.67).] For a group of charges, show that the generalization of part a can 
be written as 

Lf) vai @2p.d) , d?m(e) 1 £Q, 
| ave (20. ri x04 2M ay +) 

and the radiated intensity per unit solid angle and per unit frequency as 

fal oo( £0 wa) Em) LED yy II 
Wadd are de a be de 

where 

nx 

p= Dat, m= a Be Quy = E (Bieta — 77 Ba) 
7 7 7 

and the vector Q(n) has components. Q, = TpQ.gnp. Relate to the treatment 

of multipole radiation in Sections 9.2 and 9.3 and Problem 9.7. 

A nonrelativistic particle of charge ¢ and mass m collides with a fixed, smooth, 
hard sphere of radius R. Assuming that the collision is elastic. show that in the 
dipole approximation (neglecting retardation effects) the classical differential 
cross section for the emission of photons per unit solid angle per unit energy 
interval is 

Cmca Re fv 

a0 d(hw) — 2m he (2 ses PANO) 

where @ is measured relative to the incident direction. Sketch the angular distri- 
bution. Integrate over angles to get the total bremsstrahlung cross section. Qual- 
itatively, what factor (or factors) govern the upper limit to the frequency 
spectrum? 

Treat Problem [5,2 without the assumption of nonrelativistic motion, using (15.2) 
and assuming the clastic impact is of negligible duration. Show that the cross sec- 
tion for photon emission is now 

@o_ Re # sin?e 1 r+ 8) _ 2 
dQ dia) 4zhcha|G—BcosOe B  \1-p) B 
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15.5 

15.6 

€h.15 Problems 739 

A group of charged particles with charges ¢, and coordinates r,() undergo inter- 
actions and are accelerated only during a time — 7/2 << 7/2, during which their 
velocities change from cB; to cB}. 

{a) Show that for a7 << | the intensity of radiation emitted with polarization € 

per unit solid angle and unit ae interval is 

@ = scree 
do dO ae [se 

where 

B; B, ) ay a “aes 
PL Ceara T= a0-p)° 

(b) An w" meson of mass 784 MeV decays into 7° and e'e with branching 

ratios of 1.3 X 10 ” and 8 X 107%, respectively. Show that for both decay 
modes the frequency spectrum of radiated cnergy at low frequencies is 

th S [(452) » ($24) -2]-€[»(2)-3] 
where M,, is the mass of the w meson and m is the mass of one of the decay 
products. Evaluate approximately the ora! energy radiated in each decay by 
integrating the spectrum up to the maximum frequency allowed kinemati- 
cally. What fraction of the rest cnergy of the @® is it in cach decay? 

A situation closely related to that of Problem 15.4b is the emission of radiation 
caused by the disappearance of charges and magnetic moments in the annihilation 
of electrons and positrons to form hadrons in high-energy storage ring experi- 
ments. Tf the differential cross section for the process e*¢7 — hadrons is dug, 
without the emission of photons, calculate the cross section for the same process 
accompanied by a soft photon (Aw — 0) in the energy interval d(fw) around hw. 
Compare your results with the quzntum-mechanical expressions: 

Rar 
B sin?@ + ———, $ (l= B* cos’ ‘0 

#o _ @ dos’) = ams! il + 2m? 
a0 dio) hw = ams ~ B cosy 

do _ 4a das’) 
d(ho) 

7 amis’ [i eae 1+8\ 
2 —4ms \2] 28 "\i-B 

(22) -] 
where s = (p1 + p2)’.s’ = (p; + p2 — &)’. B — clectron vic in cm. frame. Neglect 
the emission of radiation by any of the hadrons, all assumed to be much heavier 
than the electrons. 

The factors proportional 10 ” in the numerators of these expressions can be 
attributed to the disappearance of the magnetic moments. If you have not included 
such contributions in your semiclassical calculation, you may consider doing so. 
For the soft-photon limit of radiation emitted when there is a small change AB of 

velocity, (15.9) applies. with convenient polarization vectors shown in Fig. 15.2. 

(a) Show that 

e - {AB + n x (B x AB)] = |AB|(B — cos #} cosh 
e,-fAB +n x (B x AB)] = |ABI{i — B cos 6) sin & 

leading to (15.10) after averaging over 6. 



740° Chapter 15 Bremsstrahlung, Method of Virtual Quanta, Radiative Beta Processes—G 

15.7 

15.8 

{b) Show that in the limit y >> | and ¢ <1 

Pt vey |ABP [Or - 1" 1 
(+ fey + vey om Go dl Dae 

where the first (second) term in square brackets corresponds to the parallel 
(perpendicular) polarization. This expression leads immediately to (15.11), 

{c) Show that the result of part b gives the expression for P(@) given following 
(15.10). 

(a) Show that the angular integral of (15.11) or the answer in part b can be 
written 

a Pe ere 4 sete ARR 
tim En, CPP IABP Fav Oy oy 4. yay = 2 Zero ABE 
wo da mm ly 3 ae 

Consider the radiation emitted in nuclear fission by the sudden creation of two 
fragments of charge and mass (Ze. Aym) and (Z,e, A,m) recoiling in opposite 
directions with total c.m.s. kinetic energy E. Treat the nuclei as point charges and 
their motion after the very short initial period of acceleration is nonrelativistic, 
but keep terms up to second order in 1/c, as in Problem 15.1. For simplicity, assume 

that the fragments move with constant speeds in opposite directions away from 
the origin for ¢ > 0. The relative speed is cB. 

(a) Using the appropriate generalization of Problem 15.1a, show that the inten- 
sity of radiation per unit solid angle and per unit photon energy in the c.m, 
system is 

21 _ apt sin? f 
Tho) AQ age__‘|? + 4B C08 6 

where @ is the angle between the line of recoil and the direction of obser- 
vation, and 

Ar — ZA. _ ZAR + ZAG 
Avan 4 Gray 

Show that the radiated energy per unit photon energy is 

dl _ 2ap? { , Pe Be 
dio) 37 5 

where the first term is the electric dipole and the second the quadrupole 
radiation 

(b) As an example of the asymmetric fission of ?°U by thermal neutrons, take 
Z, = 36, A, = 95 (krypton), Z, = 56, A, = 138 (barium) {three neutrons are 
emitted during fission), with £ = 170 MeV and me? = 931.5 MeV. What are 

the values of p? and q?? Determine the total amount of energy (in MeV) 
tadiated by this “inner bremsstrablung™ process, with the substitution, 6? > 
B'(1 — Aw/E), as a crude way to incorporate conservation of energy, What 
ate the relative amounts of en radiated in the dipole and quadrupole 
modes? In actual fission, oughly 7 MeV of electromagnetic energy is radi- 
ated within 107% s. How does your estimate compare? If it is much smaller 
or larger, attempt te explain. 

Two identical point particles of charge g and mass m interact by means of a short- 
range repulsive interaction that is equivalent to a hard sphere of radius R in their 
relative separation. Neglecting the electromagnetic interaction between the two 
particles, determine the radiation cross section in the center-of-mass system for a 
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collision between these identical particles to the lowest nonvanishing approxima- 
tion. Show that the differential cross section for emission of photons per unit solid 
angle per unit energy interval is 

Co BR 1 Dents eo 3 oRV {3 , 
an ( BE 1 [eZ +ssnacose + (A>) (1-3 sin'e 

where @ is measured relative to the incident direction and cf is the relative speed. 

By integration over the angles of emission, show that the total cross section for 
radiation per unit photon energy fw is 

do _(@\ BR 1 oR\ 
dhe) () 15 ha [e a ( ¢ ) | 

Compare these results with that of Problem 15.2 as to frequency dependence, 

relative magnitude, etc. 

A particle of charge ze, mass m, and nonrelativistic velocity v is deflected im a 
scrcened Coulomb field, V(r) = Zze7e~“"/r, and consequently emits radiation. 1is- 
cuss the radiation with the approximation that the particle moves in an almost 
straight-line trajectory past the force center. 

(a) Show that, if the impact parameter is 6, the cnergy radiated per unit fre- 
quency interval is 

a? K}(ab) 

for @ << vib, and negligible for w >> v/b. 

(b) Show that the radiation cross section is 

Pre 2, 202 we dx(w) __ 16 Ze (==) (<) {E [xivo ~ Ki) + 2Hetevte))} 
ie 73 oe . 

where x) = OBgya. X2 = AD max- 

(0) With Byyig = A/V, Poye = vl, and @ '= 1.4e)Z 1. determine the radiation 
cross section in the two | xy << 1 and x, >> 1. Compare your results 
with the “screcning™ and “no screcning™ limits of the text 

A particle of charge ze, mass mm, and velocity v is deflected in a hyperbolic path 
by a fixed repulsive Coulomb potential, V(r) = Zze’/r. Assume the nonrelativistic 
dipole approximation (but no further approximations). 

(a) Show that the energy radiated per unit frequency interval by the particle 
when initially incident at impact parameter b is 

2 Hw, b) = = ena” e cowl | con(#4) | + 

(b) Show that the radiation cross section is 

d 16 (zea? rainy © o w = He (inn 2K -K; Ho x(a) 3 e e: eye ay, rion oy 

(ec) Prove that the radiation cross section reduces to that obtained in the text for 

classical bremsstrahlung for @ << w). What is the limiting form for w >> @,? 

(d) | What modifications occur for an attractive Coulomb interaction? 

The hyperbolic path may be described by 

x=aletcoshd, y= —bsinh& wt = (E 4 e sinh 
oy 

= VIF Gla, a, = via. where « = Zze7/mw>. 
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15.11 Using the method of virwal quanta. discuss the relationship between the cross 

section for photodisintegration of a nucleus and electrodisintegration of a nucleus. 

(a) Show that, for electrons of energy F = yne? >> me”, the clectron disinte- 
gration cross section is approximately: 

2 hit aes 
ot) = EE Pca) in) & whe he o 

where fiw, is the threshold cnergy for the process and k is a constant of order 
unity. 

{b) Assuming that opnou{a) has the resonance shape: 

A r 
2m Me (w ~ oy) + (1/2)? 

Fpverol @) = 

where the width I’ is small compared to (a, — @,). sketch the behavior of 
@o{E) as a function of F and show that for E >> hay, 

2 2 2 cal E) = 2/e\ Ae 1 Por KE’ 

@% me hey, wr \he. 

(c) In the limit of a very narrow resonance. the photonuclear cross section can 
be written as proo(@) = (Ae?/Mc} 8(w — ay). Then the result of part b would 
teprescnt the electrodisintegration cross section for E > hwy. The corre- 
sponding bremsstrablung-induced cross section is given in the same approx- 
imation by (15.47). multiplied by (Ae/Mcha,), where Z is the atomic number 
of the radiator. Comparisons of the clectron- and bremsstrahlung-induced 
disintegration cross sections of 2 number of nuclei are given by E. Wolynec 
etal. Phys. Rev. C11, 1083 (1975). Calculate the quantity called F as a fune- 

tion of E (with a giant dipole resonance energy fay ~ 20 MeV) and compare 
its magnitude aad energy dependence (at the high cnergy cnd) with the data 
in Figures 1-5 of Wolynce et al. The comparison is only qualitative at E = 
hay because of the breadth of the dipole resonance. [F is the ratio of the 
bremsstrahlung-induced cross section in units of Z7r} to the electrodisinte- 
gration cross section.] 

15.12 A fast particle of charge ze. mass M, and velocity v. collides with a hydrogen-like 

atom with one electron of charge —¢, mass m, bound to a nuclear center of charge 
Ze. The collisions can be divided into wo kinds: close collisions where the particle 

passes through the atom (b < d), and distant collisions where the particle passes 
by outside the atom (6 > d). The atomic “radius” d can be taken as @/Z. For the 
close collisions the interaction of the incident particle and the clectron can be 
treated as a two-body collision and the energy transfer calculated from the Ruth- 
erford cross section. For the distant collisions the excitation and ionization of the 
atom can be considered the result of the photoelectric effect by the virtual quanta 
of the incident particle's fields. 

For simplicity assume that for photon energies Q greater than the ionization 
potential / the photoelectric cross section is 

82? fa) f1\ 
742) = 15 (3 r) 

(This obeys the empirical Z4A7 law for x-ray absorption and has a coefficient ad- 
justed to satisfy the dipole sum rule, f 7(Q) dQ = 27 e*himc.) 
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(a) Caiculate the differcntial cross sections de/d@ for energy transfer Q for close 
and distant collisions {write them as functions of Q// as far as possible and 

in units of 2az*e‘fnv'l?). Plot the two distributions for Q// > 1 for non- 
relativistic motion of the incident particle and $miv? = 10°. 

(b} Show that the number of distant collisions measured by the integrated cross 

section is much larger than the number of close collisions, but that the energy 

transfer per collision is much smaller. Show that the energy loss is divided 

approximately equally between the two kinds of collisions, and verily that 
your total energy loss is in essential agrcement with Bethe's result (13.14). 

In the decay of a pi meson at rest a mu meson and a neutrino are created. The 
total kinetic energy available is (m_ — #t,)c? = 34 McV. The mu meson has a 
kinetic cnergy of 4.1 McV. Determine the number of quanta emitted per unit 
cnergy interval because of the sudden creation of the moving mu meson. Assuming 
that the photons are emitted perpendicular to the direction of motion of the mu 
meson (actually it is a sin’4 distribution), show that the maximum photon energy 
is 17 MeV. Find how many quanta are emitted with energies greater than one- 
tenth of the maximum, and compare your result with the observed ratio of radi- 
ative pi-nu decays. (1.24 + 0.25 x 10 * for muons with kinetic cnergy less than 
3.4 MeV. See also H. Primakoff, Phys. Rev., 84, 1255 (1951).] 

in internal conversion, the nucleus makes a transition from one state to another 
and an orbital electron is ejected. The clectron has a kinctic energy equal to the 
transition energy minus its binding energy. For a conversion line of 1 MeV deter- 
mine the number of quanta emitted per unit energy because of the sudden cjection 
of the electeon. What fraction of the electrons will have energies less than 99% of 
the total energy’ Will this low-energy tail on the conversion line be experimentally 
observable? 

One of the decay modes of a K~ meson is the three-pion decay, K* > wa! a . 
The energy release is 75 MeV, small cnough that the pions can be treated non- 
relativistically in rough approximation. 

(a) Show that the differential spectrum of radiated intensity at low frequencies 
in the K meson rest frame is approximately 

&t = 

do dQ 

where T is the kinetic energy of the negative pion and 8 is the angle of 
emission of the photon relative to the momentum of the negative pion. 

(b) Estimate the branching ratio for emission of a photon of energy greater than 
A relative to the nonradiative three-pion decay. What is its numerical value 
fur A = 1 MeV? 10 MeV? Compare with experiment (~2 X 10 ? for A = 11 
MeV). 

One of the decay modes of the charged K meson (My = 493.7 MeV) is K' > 
= 139.6 MeV, M,» = 135.0 MeV). Inner bremsstrahlung is emitted by 

‘ion of the positive pion. A study of this radiative decay mode was made 
by Edwards et al. |Phys. Rev. DS, 2720 (1972). 

(a) Calculate the classical distribution in angle and frequency of soft photons 

and compare with the data of Fig. 6 of Edwards et al. Compute the classical 
distribution also for 8 = 0.71, corresponding to a charged pion of kinetic 
energy 58 MeV, and compare. 
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(b) Estimate the number of radiative decays for charged pion kinetic energies 
on the interval, 55 MeV = T,, = 90 MeV. as a fraction of all K' decays (the 

a'a® decay mode is 21% of all decays). You can treat the kinematics, in- 
cluding the photon, correctly, or you can approximate reality with an ideal- 
ization that has the neutral pion always with the same momentum and the 
photon and the charged pion with parallel momenta {see part a for justifi- 
cation of this assumption). This idealization permits you to correlate directly 
the limits on the charged pion’s kinetic energy with that of the photon. Com- 
pare your estimate with the experimental value for the branching ratio for 
a* ny (with the limited range of 7! energies) of (2.75 * 0.15) x 10. 



CHAPTER 16 

Radiation Damping, Classical Models 
of Charged Particles 

16.1 Introductory Considerations 

In the preceding chapters the problems of clectrodynamics have been divided 

into two classes: one in which the sources of charge and current are specified and 

the resulting electromagnetic ficlds are calculated. and the other in which the 
external clectromagnetic ficlds are specified and the motions of charged particles 
or currents are calculated. Waveguides, cavities. and radiation from prescribed 
multipole sources are examples of the first type of problem, while motion of 
charges in electric and magnetic fields and energy-loss phenomena are examples 
of the second type. Occasionally. as in the discussion of bremsstrahlung, the two 
problems are combined. But the treatment is a stepwise one—first the motion of 
the charged particle in an external field is determined, neglecting the emission 
of radiation; then the radiation is calculated from the trajectory as a given source 
distribution. 

It is evident that this manner of handling problems in electrodynamics can 
be of only approximate validity. The motion of charged particles in external force 
fields necessarily involves the emission of radiation whenever the charges are 
accelerated. The emitted radiation carries off energy, momentum, and angular 
momentum and so must influence the subsequent motion of the charged particles. 
Consequently the motion of the sources of radiation is determined, in part. by 
the manner of emission of the radiation. A correct treatment must include the 
reaction of the radiation on the motion of the sources. 

Why is it that we have taken so long in our discussion of electrodynamics to 
face this fact? Why is it that many answers calculated in an apparently erroneous 
way agree so well with experiment? A partial answer to the first question lies in 
the second. There are very many problems in electrodynamics thal can be put 
with negligible error into one of the two categories described in the first para- 
graph. fence it is worthwhile discussing them without the added and unnecessary 
complication of including reaction effects. The remaining answer to the first ques- 
tion is that a completely satisfactory classical treatment of the reactive effects of 
radiation does not exist. The difficulties presented by this problem touch one of 
the most fundamental aspects of physics. the nature of an elementary particle. 
Although partial solutions, workable within limited areas, can be given, the basic 
problem remains unsolved. 

In quantum mechanics, the situation at first appeared worse. but develop- 
ment of the renormalization program of quantum field theory in the 1950s led to 
a consistent theoretical description of electrodynamics (called quantum electro- 

745 
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dynamics or QED, the interaction of electrons and positrons with electromag- 
netic fields) in terms of observed quantities such as mass and static charge. A 
weak-coupling theory (@ ~ 1/137), QED has proven remarkably successful in 
explaining to amazing accuracy the tiny radiative corrections observed in preci- 
sion atomic experiments (Lamb shift, anomalous magnetic moments, etc.) by 
calculating to higher and higher orders in perturbation theory. More recently, 
the success has been extended to weak and strong interactions as well within the 
standard model, sketched briefly at the beginning of the Introduction. Unfortu- 
nately, the strong interactions are not really amenable to accurate calculations 
via perturbation theory. 

In this chapter we address only some of the classical aspects of radiation 
reaction. 

The question of why many problems can apparently be handled neglecting 
reactive effects of the radiation has the obvious answer that such effects must be 
of negligible importance. To see qualitatively when this is so. and to obtain 
semiquantitative estimates of the ranges of parameters where radiative effects 
are or are not important, we need a simple criterion. One such criterion can be 
obtained from energy considerations. If an external force field causes a particle 
of charge e€ to have an acceleration of typical magnitude a for a period of time 
T, the energy radiated is of the order of 

207 T 
3 (16.1) cad 

from the Larmor formula (14.22). If this energy lost in radiation is negligible 
compared to the relevant energy Ey of the problem, we can expect that radiative 
effects will be unimportant. But If E,g 2 Eo. the effects of radiation reaction will 
be appreciable. The criterion for the regime where radiative effects are unim- 
portant can thus be expressed by 

Eng << Eo (16.2) 
The specification of the relevant energy Ey demands a little care. We distin- 

guish two apparently different situations, one in which the particle is initially at 
test and is acted on by the applied force only for the finite interval T, and one 
where the particle undergoes continual acceleration, ¢.g., in quasiperiodic motion 
at some characteristic frequency wy. For the particle at rest initially, a typical 
energy is evidently its kinetic energy after the period of acceleration. Thus 

Ey ~ maT 

The criterion (16.2) for the unimportance of radiative effects then becomes 

2, 
2 et, << mrt? 
Sy ie 

or 

2 e 
TS 

3 me 

It is useful to define the characteristic time in this relation as 

2 
T= 5 

3 mc* 
(16.3) 
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Then the conclusion is that for time T long compared to 7 radiative effects are 
unimportant. Only when the force is applicd so suddenly and for such a short 
time that T ~ 7 will radiative effects modily the motion appreciably. It is useful 
to note that the longest characteristic time 7 for charged particles is for electrons 
and that its value is t = 6.26 X 10° * s. This is of the order of the time taken for 
light to travel 107'° m. Only for phenomena involving such distances or times 
will we expect radiative effects to play a crucial role. 

If the motion of the charged particle is quasiperiodic with a typical amplitude 
d and characteristic frequency @,, the mechanical energy of motion can be iden- 
tified with E, and is of the order of 

Ey ~ med 

‘The accelerations are typically a ~ wid, and the time interval T ~ (I/m). Con- 
sequently criterion (16.2) is 

3c°wy 
or (16.4) 

yt K 1 

<< mod? 

where 7 is given by (16.3). Since @,' is a time appropriate to the mechanical 
motion, again we see that, if the relevant mechanical time interval is long com- 
pared to the characteristic time 7 (16.3), radiative reaction effects on the motion 
will be unimportant. 

The examples of the last two paragraphs show that the reactive effects of 
radiation on the motion of a charged particle can be expected to be important if 
the external forces are such that the motion changes appreciably in times of the 
order of r or over distances of the order of cr. This is a general criterion within 
the framework of classical electrodynamics. For motions less violent, the reactive 
effects are small enough to have a negligible effect on the short-term motion. 
Their long-term, cumulative effects can be taken into account in an approximate 
way, as we sce immediately. 

16.2 Radiative Reaction Force from Conservation of Energy 

‘The question now arises as to how to include the reactive effects of radiation in 
the equations of motion for a charged particle. We begin with a simple plausibility 
argument based on conservation of energy for a nonrelativistic charged particle. 
A more fundamental derivation and the incorporation of relativistic cffects are 
deferred to later sections. 

If the emission of radiation is neglected, a charged particle of mass m and 
charge ¢ acted on by an external force F,,, moves according to the Newton equa- 
tion of motion: 

my = Fou (16.5) 

Since the particle is accelerated, it emits radiation at a rate given by the Larmor 
power formula (14.22), 

Pu) = 250) 066) 
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To account for this radiative energy loss and its effect on the motion of the 
particle we modify the Newton equation (16.5) by adding a radiative reaction 
force Bras: 

my = Foy + Fra (16.7) 

While F,,g is not determined at this stage. we can sce some of the requirements 
it “must” satisfy: 

Fig “must” (1) vanish if ¥ = 0, since then there is no radiation; 
(2) be proportional to e?, since (a) the radiated power is pro- 

portional to e*, and (b) the sign of the charge cannot enter 
in radiative effects; 

(3) in fact involve the characteristic time 7 (16.3), since that is 

apparently the only parameter of significance available. 
We determine the form of F,,4 by demanding that the work done by this 

force on the particle in the time interval t; <1 < f be cqual to the negative of 
the energy radiated in that time. Then energy will be conserved, at least over the 
interval (f), 2). With the Larmor result (16.6), this requirement is 

M2 Wa pe 

{ Frat ¥ dt = -[ ze ye vdt 

The second integral can be integrated by parts to yield 

" " le le. 
if Fra ¥ de = 3 ; Vevdi—Za-y) 

4“ 

If the motion is periodic or such that (¥- v) = Oat ¢= 4, and f = &, we may write 

)-va=o 

(16.8) 

The moditied cquation of motion then reads 

m(¥ — TV) = Fog (16.9) 

Equation (16.9) is sometimes called the Abraham—Lorentz equation of mo- 
tion. It can be considered as an equation that includes in some approximate and 
time-averaged way the reactive effects of the emission of radiation. The equation 
can be criticized on the grounds that it is second order in time. rather than first, 
and therefore runs counter to the well-known requirements for a dynamical equa- 
tion of motion. This difficulty manifests itself immediately in “runaway” solu- 
tions. If the external force is zero, it is obvious that (16.9) has two possible 
solutions, 

ep (0 
vt = a 

where a is the acceleration at ¢ = 0. Only the first solution is reasonable. 

The method of derivation shows that the second solution is unacceptable, since 
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(¥-+¥) # 0 at 4 and 4. It is clear that the equation is useful only in the domain 

where the reactive term is a small correction. Then the radiative reaction can be 

treated as a perturbation producing slow or smail changes in the state of motion 
of the particle. 

An alternative to (16.9) can be obtained by using the zeroth-order equation 
of motion, mv = F,.,., to evaluate the radiation reaction term. The resulting 

equation, 

mv = Buy + 7 dBe _ Fug + [a + (ve VF (16.10) 
dt at 

is a valid equation of motion without runaway solutions or acausal behavior. It 
is a sensible alternative to the Abraham—Lorentz equation for the classical re- 
gime of small radiative effects. It also emerges from a different starting point— 
see G. W. Ford and R. F, O'Connell [Phys. Lett. A, 157, 217 (1991)]. Relativistic 
generalizations of (16.9) and (16.10) can be constructed—see Problems 16.7 and 

16.9. 

To illustrate the use of (16.10) to account for small radiative effects, we 
consider a particle moving in an attractive, conservative, central force field. In 
the absence of radiation reaction, the particle's energy and angular momentum 
are conserved and determine the motion. The emission of radiation causes 
changes in these quantities, Provided the accelerations are not too violent. the 
energy and angular momentum will change appreciably only in a time interval 
that is long compared to the characteristic period of the motion. Thus the motion 
will instantaneously be essentially the same as in the absence of radiative reac- 
tion. The long-term changes can be described by averages over the particle's 
unperturbed orbit. 

If the conservative central force field is described by a potential V(r), the 
acceleration, neglecting reactive effects. is 

-lfdV\r 
yt (@)t (16.11) 

m r 

By conservation of energy, the rate of change of the particle's total energy is 
given by the negative of the Larmor power: 

dE 2e de (a ; 
de 38) ante Var 

With the definition of 7 (16.3) this can be written 

dE_ + {dv\ 
a@oom (2) (16.12) 

Since the change in energy is assumed to be small in one cycle of the orbit, the 
right-hand side may be replaced by its time-averaged value in terms of the 

Newtonian orbit. Then we obtain 

(f)--2()) tam 
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The secular change in angular momentum can be found by considering the 
vector product of (16.10) with the radius vector r. Since the angular momentum 
is L = mr x ¥, we find 

dL 
—=rxF, 

ak, 7 fon toe K SE = oe x (9 YBa (16.14) a 

where the second form results because the force is central and time independent. 
With (16.11), the right-hand side of (16.14) is found to be 

av t dV 
xX (v- VB = == WS BE ar X (v- VF = 7 x ( ay, a Par L (16.15) 

With the average of this torque over the slowly changing orbit, the secular rate 
of change of angular momentum can be written as 

aL t [dV —\~=-2(-\ : Gaya) ws 
Note that this result for the decay of the particle's angular momentum is exactly 

the negative of the rate one calculates for the angular momentum radiated in 
electric dipole radiation (Problem 9.9). 

Equations (16.13) and (16.16) determine how the particle orbit changes as a 
function of time because of radiative reaction, Although the detailed behavior 
depends on the specific law of force, some qualitative statements can be made. 
If the characteristic frequency of motion is ), the average value in (16.16) can 
be written 

= (i a) ~ = Moa = WET 

with some dimensionless numerical coefficient of the order of unity. This shows 
that the characteristic time over which the angular momentum changes is of the 
order of 1/(w@7)u). This time is very long compared to the orbital period 27/a, 
provided w 7 << 1. Similar arguments can be made with the energy equations. 

These equations including radiative effects can be used to discuss practical 
problems such as the moderation time of a mu or pi meson in cascading from an 
orbit of very large quantum number around a nucleus down to the low-lying 

orbits. Over most of the time interval the quantum numbers are sufficiently large 
that the classical description of continuous motion is an adequate approximation. 
Discussion of examples of this kind is left to the problems. 

16.3 Abraham—Lorentz Evaluation of the Self-Force 

The derivation of the radiation reaction force in Section 16.2, while plausible, is 
certainly not rigorous or fundamental. The problem is to give a satisfactory ac- 
count of the reaction back on the charged particle of its own radiation fields. 
Thus any systematic discussion must consider the charge structure of the particle 
and its self-fields. Abraham (1903) and Lorentz (1904) made the first attempt at 
such a treatment by trying to make a purely clectromagnetic model of a charged 

particle. In the beginning, our discussion is patterned after that given by Lorentz 
in his book, Theory of Electrons (note 18, p. 252). 
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Let us consider a single charged particle of total charge e with a sharply 
localized charge density p(x) in the particle’s rest frame. The particle is in external 
electromagnetic fields, E...(x. 1), Bu. (x, ). We have scen in Sections 6.7 and 12.10 

thal the rate of change of mechanical momentum plus electromagnetic momen- 

tum in a given volume vanishes, provided there is no flow of momentum out 

of or into the volume. Abraham and Lorentz proposed that the apparently 

mechanical momentum of a charged particle is totally electromagnetic in 

origin. Here we take the more conservative position that the particle's momen- 

tum is partly mechanical, but with an electromagnetic contribution. Then, if Gis 

the tolal clectromagnetic momentum, the conservation of momentum reads, 

dp dG 

ah. a 
or equivalently in terms of the Lorentz force density (12.121), 

(2) = { (0 + ty x 8) dx (16.17) 

In this equation the ficlds are the somal ficlds, and the integration is over the 

volume of the particle. 
In order that (16.17) take on the form of the Newton equation of motion 

dp. (2 ap) _ 
a cm (* J, Fes (16.18) 

we decompose the total fields into the external fields and the self-fields E,. B, 

due to the particle's own charge and current densities, p and J: 

E = Ex + E, 
B= By. + B, 

Then (16.17) can be written as the Newton equations of motion, with the external 

force as 

Pog = i (ob. + ‘s x Bw} a’x (16.19) 

and the electromagnetic contribution to the rate of change of momentum of the 

particle as 

() = -f (or, oh ty x B,) ax (16.20) 
at dom 

Provided the external fields vary only slightly over the extent of the particle, the 
external force (16.19) becomes just the ordinary Lorentz force on a particle of 

charge ¢ and velocily v. 
To calculate the sell-force [the integral on the right-hand side of (16.20)] it 

is necessary to have a model of the charged particle. We will assume for simplicity 

that: 

the particle is instantancously at rest; 

the charge distribution is rigid and spherically symmetric. 

Our results will then necessarily be restricted to nonrelativistic motions and will 
lack some Lorentz transformation propertics. 
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For a particle instantaneously at rest (16.20) becomes 

(2). = =f p(x. NECx, ) dx (16.21) 

The self-field can be expressed in terms of the self-potentials. A and &, so that 

(2). = | plx. o| v6. j+ iia (x, o| Bx (16.22) 

The potentials are given by A* = (®, A): 

7 < Lf ies te) arene 
AMX. = 5 R ax (16.23) 

with J* = (cp, J) and R =x — x’. 

In (16.23) the 4-current must be evaluated at the retarded time 2’. This differs 
from the time ¢ by a time of the order of At ~ (a/c), where a is the dimension of 
the particle. For a highly localized charge distribution this time interval is ex- 
tremely short. During such a short time the motion of the particle can be assumed 
to change only slightly. Consequently it is natural to make a Taylor series 
expansion in (16.23) around the time ¢’ = 2, Since [++ -],.. means evaluated at 
t= 1 (Ric). any retarded quantity has the expansion 

Jn = rays wtb (16.24) 
neo ar 

With this expansion for the retarded 4-current in (16.23), expression (16.22) 
becomes 

dp\ _ cy ey nar, RY Asx’, 0) 
(2). 7 yo ale rf a x fa x p(x. Or [ow VR + ar rial 

Consider the n = 0 and n = 1 terms in the scalar potential part (the first term in 
the square bracket) of the right-hand side. For n = 0 the term is proportional to 

i Bx J @x' plx. Dp(x', t) +(z) 

This is just the electrostatic self-force. For spherically symmetric charge distri- 

butions it vanishes. The n = 1 term is identically zero, since it involves VR"'. 
Thus the first nonvanishing contribution from the scalar potential part comes 
from » = 2, This means that we can change the summation indices so that the 
sum now reads 

a $ (-1)" grt 

(#) -5 = 5 OO fae fae oe or Spy 
where (16,25) 

(op = daa + “ (xD a 
(2+ Din + ZR! 

With the continuity equation for charge and current densities, the curly 
bracket in (16.25) can be written 

b} =36.9 - Bow sey 



Sect. 16.3 Abraham-Lorentz Evaluation of the Self-Force 753 

In the integral over d*x’ we can integrate the second term by parts. We then 
have 

R af gape eee 
| * n+2 n+2 

J-R _ do pan eI =o fox R (s+0 ir n) 

This means that the curly brackct in (16.25) is effectively equal to 

= *RR tea = (SEE). - G5) (1626) 
For a rigid charge distribution the current is 

I(x’, 2) = p(x’, Ov(t) 

If the charge distribution is spherically symmetric, the only relevant direction in 
the problem is that of v(t). Consequently in the integration over d*x and dx" 
only the component of (16.26) along the direction of v(1) survives. Hence (16.26) 
is equivalent to 

fava -VORIR “~ 1 

1 a-1l 

i 1 = ote. omo 2 Hee 

Furthermore all directions of R are equally probable. This means that the second 
term above can be replaced by ils average value of 4. This leads to the final 
simple form of our curly bracket in (16.25): 

b= 30% Ov) (16.27) 
With (16.27) in (16.25) the self-force becomes, apart from neglected nonlinear 
terms in time derivatives of v (which appear for n = 4), 

dp\ $ pre 2 aly 

At Joy my €"** 3! at"! 

To proceed further it is convenient to introduce Fourier transforms in time 
for the external force, the velocity, and the self-force.* The Fourier transform of 
the velocity v(w) is defined by 

ax “'p(x) (16.28) 

v(t) = we 

and its inverse, and similarly for the others. If (dp/dt) cn = Mo(dv/dt), the Fourier 

transform of the force equation (16.18) is 

—iwM(a)v(o) = ¥F,.(@) (16.29) 

where the ‘effective mass" oe is 

M(a) = tg + 55 23% Gos" x fa Ay / @x' p(x)R" 'plx’) 
mon 

v(we "dw 

*Here we parallel quantum-mechanical discussions of radiation reaction in the correspondence limit: 
Nonrelativistie theory, E. J. Moniz and D. E. Sharp. Phys. Rev. 2 10, 1133-1136 (1974): fully rela- 
tivistic quantum theory (QED) of electrons and positrons. F. E. Low. Ani Phy. (N.Y.). 265, No. 2 
(1998) 
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The sum over 7 can be recognized as e“**/R, the outgoing wave Green function. 
Hence M(w) can be written 

M(w) = mo + Af ax far px) 2 So p(x’) (16.30) 

The spherically symmetric average of e*°*“/R is 

eleRie! _o. far. 7. 

(S) = 24(2)ao() 
For some specific spherically symmetric charge distributions, the spatial integrals 
in (16.30) may be performed to give an explicit closed form for M(w). [See Prob- 
lem 16.4.] 

Alternatively, we can introduce the spatial Fourier transform (form factor) 
of the charge density to obtain a different expression for M(w), a “spectral rep- 
resentation” familiar in quantum mechanics. We define the form factor f(k) 
through the three-dimensional transform 

p(x) = al ak fikje™* (16.31) 
Gn ay 

where ¢ is the total charge. For a point charge, f(k) = 1. By straightforward 
substitution and integration, (16.30) is transformed to 

|f00P 3 
KE (wiley? = (whe)? 

M(w) = mo + et (16.32) 

where w has a small positive imaginary part. 
Equations (16.29) and (16.32) are an almost complete solution for the clas- 

sical nonrelativistic motion of an extended charged particle. including radiation 
reaction. [“ Almost.” because we neglected small nonlinear terms in higher pow- 
ers of the velocity and we assumed spherical symmetry.] In the limit @ > 0, 
(16.32) is M(0) = m, the physical mass of the particle, including the contribution 
of the self-fields: 

é Lf)? m= ny + 55 i aK (16.33) 

In terms of m, the effective mass pie can be written 

e 3 1 f(g)? 
= 6.34 M(w) = m + ca ca] Vk ae — wal (16.34) 

We now comment on the solution we have obtained for the motion of an 
extended charged particle. including radiation reaction: 

1. The self-field contribution to the mass in (16.33) diverges linearly at large k 
without the form factor. reflecting the fact that the self-fields have an elec- 
trostatic energy of the order of e*/a, where a is a scale parameter determining 
the size of the charge distribution. 

2. The frequency-dependent integral in (16.34) is more convergent by a [actor 
of k? than the integral in (16.33) and converges at large k. even if f(k) = 1 
(point charge). 
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3. Fora point charge, the integral in (16.34) can be performed casily by contour 
integration to yield 

[M(e) poi = MC + tor) (16.35) 

Insertion of this expression into (16.29), followed by an inverse Fourier trans- 
form, leads back to the Abraham—Lorentz equation, (16.9). The zero in the 

upper half-complex-w plane at wr = / in (16.35) signals the runaway solutions 
of that equation. 

4. Fora sulficiently convergent form factor, the integrals in (16.33) and (16.34) 

are well behaved, with zeros of M(w), if any, only in the lower half-w-plane. 

{See Problem 16.4.] The particle’s response to external forces is causal and 
without peculiar behavior such as runaway solutions. The particle's extent 
must be of the order of cr or greater, corresponding roughly to the classical 
charged particle (electron) radius, ro = ¢7/mc’. 

bal While the nonrelativistic approximation causes conceptual difficulties—the 

self-force contribution in (16.33) is actually 4/3c? times the electrostatic 
self-energy, rather than 1/c? times it—these are removable by more careful 
arguments. [An carly relativistic treatment was given by Fermi*; a covariant 
description of the electromagnetic parts of the self-energy and momentum is 
presented in Section 16.5.] 

6. A quantum-mechanical treatment of a nonrelativistic extended charged par- 
ticle in interaction with electromagnetic ficlds gives essentially the same re- 
sults, (16.29) and (16,32), for the expectation value of the appropriate op- 
erator (Moniz. and Sharp, op. cit.). The particle’s Compton wavelength, 
hime ~ 137rg plays the format role of the scale parameter a. ‘The self-field 
contribution to the mass is then small (or zero, depending on how limits are 
taken); the particle's motion is causal; no preacceleration or runaway solu- 
tions occur. Moniz and Sharp endorse (16.10) as the most sensible form of a 
classical equation of motion with radiation reaction, to be considered ap- 
proximately valid when the reactive effects are small. 

16.4 Relativistic Covariance; Stability and Poincaré Stresses 

So far our discussion of the Abraham—Lorcntz model of a classical charged par- 
ticle has been nonrelativistic, with apologies for the paradox of different electro- 

magnetic “masses” from electrostatic and Lorentz. force (dynamic) consider- 
ations—the infamous 4/3 problem, first noted by J. J. Thomson (1881). The root 
of the difficully lies in the nonvanishing of the 4-divergence of the electromag- 
netic stress tensor (12.113). In contrast lo source-free ficlds, the stress tensor O° 

of any charged particle model has the divergence (12.118), 

d,0° = —FPI,le = —fF (16.36) 

where f* is the Lorentz force density (12.121). As stated in Problem 12.18, only 
if the 4-divergence of a stress tensor vanishes everywhere do the spatial integrals 

*E. Fermi, Z. Phy. 24, 340 (1922), or Ani. Accad. Nazi. Lincei Rend. 31, 184, 306 (1922). 
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of ©” transform as a 4-vector. Thus the usual spatial integrals at a fixed time of 
the energy and momentum densities, 

1 i 
=— (FE + B =— (Ex 3) w= +B) g= 7 (Ex B) (16.37) 

may be used to discuss conservation of electromagnetic energy or momentum in 
a given inertial frame. but they do not transform as components of a 4-vector 
unless the fields are source-free. 

As Poincaré observed in 1905—-1906,* a deficiency of the purely clectromag- 
netic classical models is their lack of stability. Nonelectromagnetic forces are 
necessary to hold the electric charge in place. Poincaré therefore proposed such 
forces, described by a stress tensor P"® to be added to the electromagnetic O° 
to give a total stress tensor S°*, 

5% = OF + Poe 
The particle's total 4-momentum is then defined to be 

cP" = [se d*x (16.38) 

where the integral is over all 3-space at a fixed time. The right-hand side of (16.38) 
transforms as a 4-vector provided 

a5 = 0 (16.39) 
or equivalently, provided 

| so Bx =0 (16.40) 

with i, j = 1, 2, 3, and the superscript (0) denoting the rest frame (P = 0). 
Condition (16.40) is just the statement that the total self-stress (in the three- 
dimensional sense) must vanish—the condition for mechanical stability. 

Poincaré’s solution provides stability and also, because of the generality of 
the postulates of special relativity, guarantees the proper Lorentz transformation 
properties for the now stable charged particle. A criticism might be that Poincaré 
stresses are not known a priori in the way that O° is known for the fields. If we 
think, however. of macroscopic charged objects, for example a dielectric sphere 
with charge on its surface, we know that there are “nonelectromagnetic’ 
forces—polarization and quantum-mechanical exchange forces (actually clectro- 
magnetic at the fundamental level)—that bind the charge and give the whole 
system stability. It is not unreasonable then to include Poincaré stresses in our 
classical models of charged particles, or at least to remember that care must be 
taken in discussion of the purely electromagnetic aspects of such models. 

It is of interest to note that for strongly interacting elementary particles one 
has a concrete realization of the Poincaré stresses through the gluon field. Con- 

*H, Poincaré, Comptes Rendue 140, 1504 (1905); Rendiconti det Circolo Matematico di Patermo 21, 
129 (1906). The second reference is translated, with modern notation, in H. M. Schwartz, Am. J 
Phys. 39. 1287 (1971), 40, 862, 1282 (1972). 
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sider the proton, for example. Its three charged quarks are bound together by 

the gluon field in a stable entity with an extended charge distribution. Setting 

aside the internal structure and stability of the quarks themselves, the electro- 

magnetic stress tensor 0°? must be combined with the “Poincaré stress” tensor 

03? of the gluon field to give a divergence-Irce total stress tensor. The main part 

of the mass of the proton comes from the strong interactions, not from the elec- 

tromagnetic contribution to the self-energy—the neutron and proton have the 

same internal strong interactions. but different electromagnetic; their masses dif- 

fer by only 0.14% (and in the opposite from expected sense). 

In the next section we examine covariant definitions of the total energy and 

momentum of electromagnetic fields, even in the presence of sources. These 

definitions have some advantages when purely electromagnetic issues are con- 

sidered, but in general the nonelectromagnetic forces or stresses must not be 

forgotten. 

16.5 Covariant Definitions of Electromagnetic Energy 

and Momentum 

As emphasized by Rohrlich, even if the electromagnetic stress tensor °F? is not 

divergenceless, it is possible to give covariant definitions of the total electromag- 

netic energy and momentum of a system of fields. The expressions 

Seedil 2 12 gay! 
EL = = | (E” + BY) dx 

8a 
1 (16.41) 

p= fe x Bi dy’ 
4a 

can be considered to define the energy and momentum at a fixed time ¢’ in some 

particular inertial frame K’, to be specified shortly. The integrands in (16.41) are 

elements of the second-rank tensor @°*. Evidently we must contract one of the 

tensor indices with a 4-vector, and the 4-vector must be such as to reduce to d*x’ 

in the inertial frame K'. We define the timelike 4-vector, 

do® = 1 Bo 

where d*u is an invariant element of three-dimensional “area” on a spacelike 

hyperplane in four dimensions. The normal to the hyperplane n® has components 

(1, 0, 0, 0) in K’. The invariant d*o is evidently d*a = ng do® = d*x'. Tf the 

inertial frame K’ moves with velocity cB with respect to an inertial frame K, then 

in K the 4-vector n¥ is 

n® = (y. yB) (16.42) 

A general definition of the electromagnetic 4-momentum in any frame is 

therefore 

Py = ij 0" dag = iF OF ng Bo (16.43) 
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Tn K’, ag has only a time component. With d*o = d*x', this covariant expression 
reduces to (16.41). But in the frame K, 2 = (y. — yB) and the covariant definition 
has time and space components, 

cPY = yf w- vig do 
(16.44) 

cP. = rf (eg + TSB) Bo 

where T{/” is the 3 X 3 Maxwell stress tcnsor (6.120). If desired, the invariant 
volume element d*o = d*x' can be suppressed in favor of the volume clement 
d*x in the frame K by means of d*x' = y d*x (integration at fixed time 1). 

The definitions (16.43) or (16.44) of the electromagnetic 4-momentum afford 
a covariant definition starting from the naive expressions (16.41) in any frame 
K’. Different choices of the frame K’ lead to different 4-vectors, of course, but 
that is no cause for alarm.* There is a natural choice of the frame K’ if the 
electromagnetic mass of the fields is nonvanishing, namely, the rest frame in 
which 

zx! EO x BO ay = 9 
dnc 

We denote this frame where the total electromagnetic momentum P;, is zero as 
K© and attach superscripts zero on quantities in that frame to make it clear that 
it is a special choice of the frame K'. According to (16.41) the clectromagnetic 
rest energy is then 

E® = me = Pal (EO? + BO] Bx (16.45) 

In the frame K the electromagnetic energy and momentum are given by (16.44) 
where now vy is the velocity of the rest frame K“ in K. 

For electromagnetic configurations in which all the charges are at rest in some 
frame (the Abraham-Lorentz model of a charged particle is one example), the 
general formulas can be reduced to more attractive and transparent forms. 
Clearly the frame where all the charges are at rest is K, since there all is 
electrostatic and the magnetic field vanishes everywhere in 3-space. For such 
electrostatic configurations. the magnetic field is given without approximation in 
the frame K by (11.150); 

B=BXxE 

‘The integrand in the first equation of (16.44) is thus 

4] 1 -v pg) =— (E+ B)-—B-(EXB ~ veg) = + BY - FB Ex B) 

2/8 (E? + B’) at (B xX E)-B 
8a 4a 

-toe_ Re 
84 «e B) 

*One possibie choice for K’ is the “laboratory” where the observer is at rest. The discussion of the 
conservation laws in Chapter 6 may be interpreted in this way. 
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a Lorentz invariant. Thus the energy in K is given by 

(e? - BY) (es on ers i cP! vf in @Po= ¥ on dy (16.46) 

Similarly, the second equation in (16.44) becomes 

2_ BR : 2_ By. 
cP. = yB i Leal) da= 7B | (Ee — BY) ax (16.47) 

8a Sar 

With the invariant integrand (E? - B?) it is clear that we have a 4-vector 
PS = (yni.c, ym,v), where the electromagnetic mass is 

I 

8a 
m= 2 Bey gi -f (2 gry 3 [ (BE? — BY) d'o = | EM? dix (16.48) 

in agreement with (16.45). 
The equation (16.46) for the energy has been used by Butler* to discuss the 

Trouton-Noble experiment, a test of special relativity involving the question of 

a torque on a charged suspended capacitor moving with respect to the ether. 

Pauli (Section 44) gives a clear discussion of the Trouton-Noble paradox with 

emphasis on the early analyses of Lorentz (1904) and von Laue (1911). Ina paper 

that includes as a preamble the proof of the assertion of Problem 12.18, 
Teukolsky* has revisited the explanation of the Trouton-Noble experiment. He 

stresses that the removal of the paradox requires consideration of the nonelec- 

tromagnetic forces for stability, but that it is a matter of choice whether the 

balancing of electromagnetic and nonelectromagnetic forces is donc in a mani- 

festly covariant way or not. All that matters is that the total stress tensor $“* be 

divergenceless. 

16.6 Covariant Stable Charged Particle 

A, The Model 

An illuminating example of the considerations of Sections 16.4 and 16.5 is 

provided by a model of Schwinger! for a classical stable spinless charged particle. 

With its consideration of the Poincaré stresses needed for stability, it may also 

be viewed as a prototype for the discussion of macroscopic charged mechanical 

systems. The model is, in fact. a modern generalization of Poincaré’s work 77 

years earlier [see the middle paper of Schwartz's translation (op. cit.)]. In the rest 

frame K’ of the particle, the 4-vector potential is defined as 

®' = cf(F), A’ =0 

with f(r?) an arbitrary well-behaved function but with the limiting form f(r?) > 
l/r to define the total charge of the particle as ¢. We now consider a laboratory 
frame K in which the particle moves with velocity v and define the 4-velocity 

“J. W. Butler, Anz. J. Phys. 36, 936 (1968). 
'S. A. Teukolsky, Am. J. Phys. 64, 1104 (1996). 
43. Schwinger, Found. Phys. 13. 373 (1983). 
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(divided by ¢). v* = (y. yB) = U'/c (11.36), with v“v, = 1. We introduce a 
4-vector coordinate é* perpendicular to v*, 

& =x" — (vex,v, uv - € = ves = 0 (16.49) 

Then we define the invariant coordinate variable z by 

-€@ = -€-€= -x-x t+ (v-xp (16.50) 

In the rest frame K’, €° = 0, € = x. and z becomes z = r?. 
The covariant generalization of the rest-frame potentials is 

Av = ev"f(z) (16.51) 
To evaluate the fields we need 

OZ) OE 3g) S = 2 EF 

Then we have d°A® = —2eé*v*f', where f' = df(z)/dz. [Parenthetically, we note 
that with @ = 8 (and summed) we obtain the Lorenz condition on the potentials 
because €-v = 0,] The field-strength tensor is 

Fe® = —2e( Ey" — gHyryf" (16.52) 

The current density is obtained from the Maxwell equations, 

jee are 2 Sar + QzftF (16.53) 

B. The Electromagnetic and Poincaré Stress Tensors; Arbitrariness 

The symmetric stress-cnergy-momentum tensor (12.113) is casily found to 
be 

pee = © perry pepe “ys — © yop] 9 @ PYLE + zo Beal (16.54) 

and its divergence (16.36) is 

a,0°° = -t PPT, = -< PUFF + 2zf")| (16.55) 

‘The Lorentz force density [negative of the right-hand side of (16.95)] must 
be balanced by Poincaré stresses for stability. Schwinger, noting the derivative 
relation a°G(z) = —2&°G’, defines a function #(z) whose derivative is 

dt(z) e A 7) = HO _ _& 2 £ 2eftf" 165 
(2) dz 3, BUY zf'f'] (16.56) 

He then defines the Poincaré stress tensor to be 

Pe = gB 2) (16.57) 

with its divergence, 8,P°? = 4,g*"t(z) = —2€*r’. But this is just the negative of 
the right-hand side of (16.55)! We thus have 

a(O% + P*)\= 0 
The total stress tensor S° = @* + P*# is divergenceless; the spatial integrals of 
S* transform as a 4-vector. The model is covariant and stable. 
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Before proceeding, we note an arbitrariness in the Poincaré stresses. Any 
nonelectromagnetic stress tensor with a vanishing divergence may be added to 

P*®, Because vu - € = 0. it follows that 4,[v‘v® s(z)] = 0. This means that we may 

add AP? = v?v® s(z), with s(z) arbitrary, without changing the stability or co- 
variance of the model. We will, of course, change the energy and momentum of 
the particle, as is illustrated below for our special choice of the additional term, 

Pe + T8 = (g% + hyv®) i(z) (16.58) 

with A constant. Schwinger discusses the two cases, h = 0 and hk = —1. The 

components of the total stress tensor S*’ are explicitly 

sw = OM + (Lt hy} 
S$” = 8" + Ay pt 

showing that when A = 0, S° = (@"" + 2 and S® = 0" in all frames. When 

h = -1, 8° = ©" jn the particle’s rest frame. Schwinger’s original choice of 

Poincaré stresses (16.57) is in some sense the minimal and natural choice, tied 

directly to the electromagnegic field configuration. Note that the terms propor- 

tional to vv? contribute to the energy in the rest frame, but not to the stabilizing 
forces (from the space parts of T1”*). Poincaré had a spherical shell of charge 
with an arbitrary “pressure” inside, equivalent to our arbitrary s(z) above. 

C. The Poincaré Function t(z) and Contributions to the Mass 

From the first-order differential equation (16.56) and the physical require- 
ment that #(z) vanish at infinity, an integration by parts leads to 

ae 2 
t(z) = <f (f'? dz! ~ eee (16.59) 

For specific forms of the potential function f(z) it is a straightforward matter of 
integration to find #(z). It is left as an exercise to show for a spherical shell of 
charge of radius @ and a uniform volume distribution of charge of the same radius 
that 

(2) = eee. { Qa ~ z) } for ee of rece 
8aa* |3O(a? — z)(1 — za’) uniform density 

The shell of charge provides the most dramatic illustration of the stabilizing effect 
of the Poincaré stresses. They exist only inside the sphere. Because there are no 
ficlds inside the sphere, the electromagnetic stress exists only outside the sphere 
and gives a destabilizing outward force per unit area at r = a* equal to e*/8aa" 
in the rest frame. At r = a”, the Pioncaré stress provides the stabilizing inward 
foree—the surface layer of charge feels no net force. Continuity across an inter- 
face of the total stress tensor contracted with the unit normal is the more general 
criterion for no net force at the interface. 

The clectromagnetic contribution to the mass of the particle can be found 
from (16.48) directly or from either the rest-frame integral of 0" or J°A%/2c. In 
the first way, we need E“? = 4e*- z(f’)?. Then we find 

mc = e| Oepy dz (16.60) 
fo 
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The contribution to the rest mass from the Poincaré stresses is 

myc? = (1 + h) ! t(z) 2x" 

Integration over angles, then substitution of (16.59) for ¢(z) and an integration 
by parts leads to the result. 

myc? = 1 + Amy (16.61) 

The total mass is therefore 

M =m. +m, = 14+ hymn (16.62) 
Note that when A = 0 the mass is 4m,/3, the “dynamic” result, while if kh = —1, 
M = m,, the electrostatic result. On the other hand. if # >> 1, most of the mass 
is of nonelectromagnetic origin. Neither the 4/3 nor the unity proves anything 
about the covariance of the energy and momentum of the particle. This property 
is guaranteed by the divergence-free °°, as we now demonstrate. 

D. Demonstration of the Covariance of the Particle’s Energy 
and Momentum 

The evaluation of the spatial integrals of 0". © and [1° [1° and their sums 
at fixed time x° in the laboratory frame illustrates the conspiracy between the 
electromagnetic and Poincaré stresses to assure the proper Lorentz transforma- 
tion properties. We begin with @°°: 

10 e Ay? (2. 1 4y2 
Oe ey tye — self) 

Since we are to integrate © over 3-space at fixed time in K, we need (é°)? and 
z evaluated explicitly in K. f we take the 3-axis parallel to B, from the definition 
(16.49) and v- 0. we find €° = Bé* and & = y*(x* — Bx"). With (é')? + (227 
= (x! + OF . we have 

Za pt P(e — Bry 
If we define x4 = y(x* — Bx°), which is just the 3-coordinate in K’, the volume 
clement dx can be written d*x = d*x'/y. Pulling the pieces together, we have 
the electromagnetic part of the energy as 

F 
£= SJ ae ie vP lor +r] 

Averaging over angles introduces a factor of [(3)7°8? + 4]? instead of the square 
bracket. With the definition of m, through (16.60), we obtain 

4 1 
Eo= {5 4¥-=—}mec? 63 i G y imac (16.63) 

A corresponding computation of the integral of 0“ gives the electromagnetic 
momentum 

4 
cP. = [ OP By = 7 yom (16.64) 

Clearly the electromagnetic contributions alone do not transform properly. 
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‘The nonelectromagnetic contributions to the encrgy and momentum are 

@x' ft 
es (t + oh)? 
y 3\y (16.65) te ; 

cP, = | 1 dx = hyp | 2) = 3 heypmee® y 3 

Fy = | TW ax = (1 + Ay) | 12) 

Neither do the Poincaré contributions transform properly. The total stress tensor 

contributions, the sums of the separate contributions, do, however, yicld a proper 

relativistic energy and momentum: 

E=yMc?, cP = yBMc?_— with M = 4(4 + A). (16.66) 

the same rest mass as found above. Schwinger’s choices of h = 0 and h = —1 

were made to illustrate that either the electrostatic mass or the “dynamic” mass 

can serve as “the mass” when the charge is stabilized by the Poincaré stresses. 

Other choices of A are possible and, as noted, above, other totally arbitrary con- 

tributions to the mass can be introduced without affecting the question of the 

covariance of the model. 
Although we established the 4-vector nature of energy and momentum using 

the conventional definitions of the total energy and momentum by taking 3-space 

integrals at fixed time x° in the laboratory frame KX, it is of interest to see how 

the derivation changes if we use the definitions of Section 16.5, which yicld co- 

variant expressions for the separate contributions. The appropriate quantitics, 

according to (16.43), 16.54) and (16.58), are 

cP = i 0%, da = 0" | fy eo (16.67) 

cPg = | m, do = (1 + hjv* [ uz) Bo (16.68) 

Since the integrands and integration are Lorentz invariants, we may cvaluate the 

integrals in the rest frame. From (16.60) and below, we see that 

cP& = (m.c?)v" and cPS = HL + h)(m.c?)v* 

are separately 4-vectors by construction, with a sum equal to (16.66). The sim- 
plicity and clegance of the use of the manifestly covariant (16.43) is apparent. 

The results are, of course, the same cither way. 
The Poincaré-Schwinger model of a stable charged particle addresses the 

issue of the Lorentz transformation properties of the particle's energy and mo- 

mentum, but does not attack the question of radiation reaction. For the spherical 

shell model, this problem has been treated in detail by Yaghjian* who also treats 

the Poincaré stresses and stability. Sce also Robrlich.* 

16.7 Line Breadth and Level Shift of a Radiating Oscillator 

‘The effects of radiative reaction are of great importance in the detailed behavior 

of atomic systems. Although a complete discussion involves the rather claborate 

*A_D. Yaghjian, Relativistic Dynamics of a Charged Sphere, Lecture Notes in Physies m1, Springer- 
Verlag, Berlin, New York (1992) 
*F, Rohrlich, Ara. 4. Phys. 65, 1051-1057 (1997). 
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formalism of quantum electrodynamics, the qualitative features are apparent 
from a classical treatment. As a typical example we consider a charged particle 
bound by a one-dimensional lincar restoring force with force constant k = mw3, 
In the absence of radiation damping. the particle oscillates with constant ampli- 
tude at the characteristic frequency w.. When the reactive effects are included, 
the amplitude of oscillation gradually decreases, since energy of motion is being 
converted into radiant energy. This is the classical analog of spontancous emis- 
sion in which an atom makes a transition from an excited stale to a state of lower 
energy by emission of a photon. 

if the displacement of the charged particle from equilibrium is x{z) and 
F.¢ = mex, (16.10) becomes 

mk = —mwax — mujrt (16.69) 

Because of the expected decay of the amplitude, we assume a solution of the 
form 

X(t) = xye7" (16.70) 

where a should have a positive real part and an imaginary part close to wy if the 
radiative damping effects are small. ‘The ansatz leads to a quadratic equation 
for a, 

& — twa + wo, = 0 

with roots 

a= bude * tay VT = (earl! ~ hair © ile) ~ bode’) 
In the last form we have expanded to order 7* in the real part. The real part of 
@ is 1/2, where I is known as the decay constant and the change Aq in the 
imaginary part Irom @» is known as the level shift*: 

T= @j7, Aw = —fay7 (16.71a) 

The alert reader will rightly question the legitimacy of keeping terms of order 7° 
in the solution of an equation that is an approximation valid only for small 7 (see 
Problem 16.10b). In fact, if the Abraham—Lorentz equation (16.9) is uscd instead 
of (16.10), the resulting cubic equation in @ yields, to order 7”, the same I’, but 

[Ao]as. = Rez? (16.71b) 
‘The important message here is that the classical level shift Aw is onc power higher 
order in @)7 than the decay constant I. 

‘The energy of the oscillator decays exponcatially as e” " because of radiation 
damping. This means that the emitted radiation appears as a wave train with 
effective length of the order of ¢/T’. Such a finite pulse of radiation is not exactly 
monochromatic but has a frequency spectrum covering an interval of order I’. 
‘The exact shape of the frequency spectrum is given by the square of the Fourier 

*The reader is invited to pause at this point and consider the decay constant I from various points 
of view. One is to use the Larmor power formula (16.6) and conservation of energy directly to relate 
the time-averaged radiated power P(2) to the total energy of the oscillator £(7). Another is to ask for 
the initial energy and amplitude xy of the oscillator such that T = P/ha, corresponding to the emission 
of a single photon of energy fay. These can then be compared to the values for a quantum-mechanical 
oscillator in its zth quantum state. 
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transform of the electric field or the acceleration. Neglecting an initial transient 

(of duration 7), the amplitude of the spectrum is thus proportional to 

1 

a ~ iw 
E(w) « r ete dt = 

The energy radiated per unit frequency interval is therefore 

dw) ov 1 
dw ° 2a (w — wy ~ Aw) + (P/2P 

(16.72) 

where /, is the total energy radiated. This spectral distribution is called a resonant 
fine shape. The width of the distribution at half-maximum intensity is called the 
half-width ot line breadth and is equal to T. Shown in Fig. 16.1 is such a spectral 

line. Because of the reactive effects of radiation the line is broadened and shifted 
in frequency. 

The classical line breadth for electronic oscillators is a universal constant 
when expressed in terms of wavelength: 

MA = 20-50 =2mer=12x WA 
wo 

Quantum mechanically the natural widths of spectral lines vary. ‘Io establish a 
connection with the classical treatment. the quantum-mechanical line width is 
sometimes written as 

t= fi 
where f;; is the “oscillator strength” of the transition (/ — /). Oscillator strengths 
vary considerably, sometimes being nearly unity for strong single-clectron tran- 
sitions and sometimes much smaller. For optical transitions, A ~ 4-8 x 10° A. 
‘Thus AM/A = 3.5-1.5 x 10 ® and az = O10"). 

The classical level shift Aw is smailer than the line width T by a factor 
@yt << 1, Quantum mechanically (and experimentally) this is not so. The reason 

is that in the quantum thcory there is a different mechanism for the level shilt, 
although still involving the clectromagactic field. Even in the absence of photons, 
the quantized radiation ficld has nonvanishing expectation values of the squares 
of the electromagnetic ficld strengths (vacuum fluctuations). These fluctuating 

(0)-——> 
c§ de 

Figure 16.1 Broadening and shifting of spectral line because of radiative reaction. The 
resonant line shape has width I. The level shift is Aw. 
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fields (along with vacuum fluctuations in the electron-positron field) act on the 
charged particle to cause a shift in its energy. The quantum-mechanical level shift 
for an oscillator is of the order of 

Aw, me 
—— ~ wt log 
@ hoy 

as compared to the classical shift due to emission of radiation, 

[Awl 
wy 

~ (wy? 

‘The quantum-mechanical level shift is secn to be comparable to, or greater than, 
the line width. The small radiative shift of cnergy levels of atoms was first ob- 
served by Lamb in 1947* and is called the Lamb shift in his honor. 

16.8 Scattering and Absorption of Radiation by an Oscillator 

The scattering of radiation by free charged particles is discussed in Section 14.8. 
We now consider the scattering and absorption of radiation by bound charges, 
in particular the scattering of radiation of frequency w by a single nonrelativistic 
particle of mass m and charge ¢ bound by a spherically symmetric linear restoring 
free mux. The total force acting on the particle is (neglecting the magnetic field 
term because of the assumption of nonrelativistic motion) 

F —mokx + ceEye™ 

where £, is the magnitude and € the polarization vector of the incident electric 
field. We introduce a resistive term mI'y in the equation of motion to allow for 
other dissipative processes, corresponding quantum mechanically to other modes 
of decay besides photon re-emission. With this addition, substitution into (16.10) 
leads in the clectric dipole approximation to the equation of motion. 

+ (0+ PK + o2x = Sort ~ iwrye i (16.73) 

Here we have neglected the (v- V) term for the incident field because it leads to 
a u/e correction. The steady-state solution is 

eo 

ar 

iat iw7)e" 
(16.74) 

where [P, = f + I’ is the total decay constant or total width at resonance. 
The accelerated motion gives rise to radiation fields given by (14.18). 

el 
Ena = 37 [nx x Rhee me = 37 IN X (x Fy 

*W.E. Lamb and R. C. Retherford. Pitys. Rev. 72,241 (1947). 
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The scalicring amplitude for scattcred radiation of polarization e’ is 

r , = (e®E)*  Eyag 

0 
f 

or 

Tete (16.75) 

‘The differential scattering cross section is the absolute square of f: 

do e\ ” 2) 
= ss | le* + €P 16.76 

dO (5) l= -wfS toe =| | | ( y 

We have omitted the factor of (1 + #77) ~ 1 in the numerator because the cross 
section is already proportional to (cr)*. The total scattering cross section can be 
written 

(16.77) 

Here X = c/w is the wavelength divided by 27 at resonance and I = wor is the 
resonant scattering width or radiative decay constant. 

The scattering cross section exhibits a resonance at @ = @, with a peak value 
of o@* = 6wkA(V/T,”. It is proportional to w* at very low frequencies—Ray- 
leigh's law of scattering. discussed in Chapter 10. At very high frequencies 
(@ >> wp, F,), it approaches the Thomson scattering cross section for a free 

particle. Figure 16.2 shows the scattering cross section over the whole classical 
range of frequencie 

The sharply resonant scattering at w = qy is called resonance fluorescence. 
Quantum mechanically it corresponds to the absorption of radiation by an atom. 
molecule, or nucleus in a transition from its ground state to an excited state with 
the subsequent re-cmission of the radiation in other directions in the process of 
de-excitation. The factor 67Xj in the peak cross section is replaced quantum 
mechanically by the statistical factor, 

Que t 1 2 2 6mKG > 4arki, 20/,4+ D 

0 oo wo ~ 

Figure (6.2 Total cross section for the scattering of radiation by an oscillator as a 
function of frequency. oy is the Thomson free-purticle scattering cross section. 
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where J, and J,, are the angular momenta of the ground and excited states, and 
4k; is the maximum allowable scattering for any single quantum state. The 
remaining factors represent a sum over ail final magnetic substates and an ay- 
erage over initial ones, the factor 2 being the statistical weight associated with 
the incident radiation’s polarizations. The classical result corresponds to J, = 0) 
andJ,, = 1. 

The total cross section, scattering plus absorption, is obtained from the scat- 
tering amplitude (16.75), including the numerator factor (1 — iw7) neglected in 
(16.76), by means of the optical theorem (10.139): 

dn wl’ + wl /ae 
o> Im[f(e’ = €. k’ = k)] = om ore | (16.78) 

The structure of the numerators in the scattering and total cross sections has a 
simple interpretation. In (16.78) there is one factor of T corresponding to the 
incident radiation being absorbed. This is multiplied by the sum of widths for all 
possibilities in the final state—the elastic scattering and the absorptive pro- 
cesses—because it is the total cross section. For the elastic scattering cross section 
(16.77) there are two factors of T. one for the initial and one for the final state, 
Note that, while the elastic scattering and total cross sections approach the Thom- 
son limiting form at high energies, the inelastic or absorptive cross section has 
only the resonant shape, vanishing as 1/w” at high energies provided I” is cnergy 
independent. 

Just as was done in Section 7.5 in the discussion of the atomic contributions 
to the polarization and dielectric constant, we can generalize the one-oscillator 
model to something closer to reality by assuming that there are a number of 
oscillators with resonant frequencies @,, radiative decay constants P; = fj} 7 and 
absorptive widths T’;. Then the total cross section, for example, becomes 

Fe + ee] 
> 22 eros} (aj > wf + wT, 

Ciena = OD, KP 
i 

With the appropriate definitions of f,, I';. and w,, this result is almost the correct 
quantum-mcchanical expression. Lacking are the interference terms from over- 
lapping resonances. The quantum-mechanical scattering amplitude is a coherent 
superposition of the contributions of all the intermediate states allowed by the 
selection rules. Usually the states are narrow and separated by energy differences 
large compared to their widths. Then the interference terms can be ignored. In 
special situations they must be included, however. 
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Problems 

16.1 A nonrelativistic particle of charge e and mass m is bound by a linear, isotropic, 
restoring force with force constant mw. 

Using (16.13) and (16.16) of Section 16.2, show that the encrgy and angular 
momentum of the particle both decrease exponentially from their initial values as 
e~", where P= wjz. Quantum mechanically, the mean excitation cnergy of an 
oscillator decays in exactly the same way because the total radiative transition 
probability for a state with quantum numbers fg, fy is P(ny, fy) = moP. The decay 

of the angular momentum approaches the classical law only for fy >> 1. 

16.2 A nonrelativistic electron of charge -¢ and mass m bound in an attractive 
Coulomb potential (—Ze?/r) moves in a circular orbit in the absence of radiation 
reaction. 

(a) Show that both the cnergy and angular-momentum equations (16.13) and 

(16.16) lead to the solution for the slowly changing orbit radius, 

PQ = = 9Z(er? 7 

where fy is the value of r(f) at ¢ = 0. 

{b) For circular orbits in a Bohr atom the orbit radius and the principal quantum 
number # are related by r = n7ao/Z. If the transition probability for transi- 
tions from x > {n — 1) is defined as —dn/dt, show that the result of part a 
agrees with that found in Problem 14.21. 

{c) From part a calculate the numerical value of the times taken for a mu meson 
of mass m = 207m, to fall from a circular orbit with principal quantum num- 
ber n, = 10 to one with 2) = 4, and nz = I. These are reasonable estimates 
of the time taken for a mu meson to cascade down to its lowest orbit after 
capture by an isolated atom. 
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16.3 

16.4 

16.5 

An electron moving in an attractive Coulomb field (—Ze*/r) with binding energy 
eand angular momentum L has an clliptic orbit, 

1_Zeml, i 2 yay 
r oP yo Zetm ON % 

The eccentricity of the cllipse is given by the square root multiplying the cosine 
{a} By performing the appropriate time averages over the orbit, show that the 

secular changes in cnergy and angular momentum are 

de Beim'? 3 
a3) oe 
db | Ze! 
a 3 mee 

(b) If the initial values of € and L are e and /., show that 
3 

Lem L & 
L) = b= oie ll) = “ST [ () | Ts 

Calculate the eccentricity of the ellipse, and show that it decrcascs trom its 
initial valuc as (./L))°?, showing that the orbit tends to become circular as 
time goes on. 

{c) Compare your results here to the special case of a circular orbit of Problem 
16.2. 

Hint: In performing the time averages make use of Kepler's law of cqual areas 
(dt = mr? dO/L) to convert time integrals to angular integrals. 

A classical model of an electron is a spherical shell of charge of radius a and total 
charge e. 

(a) Using (16.30) for the “mass” M{) and the angular average of e"”*"/R, show 
that 

_  2e fet-1-#€ 
Mea) =m + 25. i ) 

where & = 2wa/c, and nt = my + 2¢7/3ac? is the physical mass of the electron. 

(b) Expand in powers of the frequency (€) and show that. to lowest nontrivial 
order, M() bas a zero in the upper half-plane at w7 = i, where 7 = 2e’/3mc’, 
What is the physical significance of such a zero? 

(c) For the exact result of part a, show that the zeros of wM(w), if any, are defined 
by the two simultancous equations, proportional to the real and imaginary 
parts of iwM(w), 

e* cosy 1 + yl - aler) = 0 
e *sinx — x(1 — aler) =0 

where x = Re €and y = Im & Find the condition on the radius @ such that 
@M(e) has no zeros in the upper half-w-plane. Express the condition also in 
terms of the mechanical mass mt, for fixed physical mass. What about zeros 
and/or singularities in the lower half-plane? 

The particle of Problem 16.4 is initially at rest in a spatially uniform, but time- 
varying electric field E() = E,0(#). 



16.6 

16.7 

16.8 

16.9 
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{a) Show that its speed in the direction of the field is given by the integral 
_ bate 

oy = SE aera 
where 7 = et/2a. 

(b) From the analytic properties of M(é) established in part ¢ of Problem 16,4, 
show that uff) = 0 for ¢ = 0 (no preacceleration). 

A particle of bare mass m, and charge ¢ has a charge density, p(x) = ¢ ¢"/4za"r. 
(a) Show that the charge form factor is f(k) = (1 + k’a’)'. 
(b) Show that the mass, (16.33). is 

met 
m = my + 

(c) Show that the zeros of M(w), (16.34). in the complex @ plane, are given by 

wr = —i(er/a)[t + (1 - 2aler) '?] 

(4) Find the trajectories of the roots in the complex w plane for m, > 0 and 
mp <0. Find the limiting form for the roots when ales << | and a/er >> 1. 

Discuss 

The Dirac (1938) relativistic theory of classical point electrons has as its cquation 

of motion, 

dp, Be @ pon 4 pra 
dr “ r 

where p,, is the particle’s 4-momentum, 7 is the particle's proper time, and Fi" is 
the covariant generalization of the radiative reaction force (16.8). 

Using the requirement that any force must satisfy Fp" = 0, show that 

pe = 2e [ee Pa deed" 
e 3m | dr me? \ dr dr) 

(a) Show that for relativistic motion in one dimension the equation of motion of 
Problem 16.7 can be written in the form, 

na 2¢ - Pi ji = 

PY ame \P P+ mee 
i i i+—35 lt eel 

where p is the momentum in the direction of motion, a dot means differen- 
tiation with respect to proper time, and f(z) is the ordinary Newtonian force 

as a function of proper time, 

(b) Show that the substitution of p = me sinh y reduces the relativistic equation 

to the Abraham-—Lorentz form (16.9) in y and +. Write down the general 
solution for p(z), with the initial condition that 

P(t)= Py at T= 

(a) Show that the radiation reaction force in the Lorentz—Dirac equation of 

Problem 16,7 can be expressed alternatively as 
ete pial ae abs) rot = 25 (c,.- 22s) 8 
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16.10 

16.11 

16.12 

(b) The relativistic generalization of (16.10) can be obtained by replacing 
@p'ldr? by gdP sd in the expression for Fis. Show that the spatial 
part of the generalization of (16.10) becomes 

ary {#2 eu xn 

where F is the spatial part of Fe,/y. For a charged particle in external electric 

and magnetic fields F is the Lorentz force. 

Reference: G. W. Ford and R. F. O'Connell, Phys. Lett. A 174, 182 (1993). 

The Abraham-Lorentz equation of motion (16.9) can be replaced by an integro- 
differential equation if the external force is considered a function of time. 

(a) Show that a first integral of (16.9) that eliminates the possibility of “runawa 
solutions is 

mvt) = { eCF(t + ty) dy 
lo 

(b) Show that a Taylor series expansion of the force for small 7 leads to 

2, ak 
mi = Be 

The approximate equation (16.10) contains the first two terms of the infinite 
series. 

(c) For a step-function force in one dimension, F(t) = F,@(1). solve the 
integro-differential cquation of part a for the acceleration and velocity for 
<0 and ¢ > 0 for a particle at rest at t= —%. Plot ma/Fy and mv/Fyr in 
units of 1/7. Compare with the solution from (16.10). Comment. 

A nonrelativistic particle of charge e and mass mt is accelerated in one-dimensional 
motion across a gap of width d by a constant electric field. The mathematical 
idealization is that the particle has applied to it an external force ma while its 
coordinate lies in the interval (0, d). Without radiation damping the particle, hav- 
ing_initial velocity vp, is accelerated uniformly for a time T = (vole) + 
Vivila?) + (2d/a), emerging at x = d with a final velocity 0, = Von + 2ad. 

With radiation damping the motion is altered so that the particle takes a time 
T’ to cross the gap and emerges with a velocity vj. 

(a) Solve the integro-differential equation of motion. including damping, assum- 
ing 7 and 7 large compared to 7. Sketch a velocity-versus-time diagram for 
the motion with and without damping. 

(b) Show that to lowest order in 7, 

rered 
uy =u, - —T 

(c) Verify that the sum of the energy radiated and the change in the particle’s 
kinetic energy is equal to the work done by the applied field. 

A classical model for the description of collision broadening of spectral lines is 
that the oscillator is interrupted by a collision after oscillating for a time 7 so that 
the coherence of the wave train is lost. 

(a) Taking the oscillator used in Section 16.7 and assuming that the probability 
that a collision will occur between time T and (7 + d7) is (ve~*7 dT), where 
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{b) 
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vis the mean collision frequency, show that the averaged spectral distribution 
is 

do) _ fy T+ 
dw 2m r 2 

(omy + (5+ 

so that the breadth of the line is (2v + T). 

For the sodium doublet at 5893 A the oscillator strength is f = 0.975, so that 

the natural width is essentially the classical value, AA = 1.2 x 107 A. Esti- 
mate the Doppler width of the line, assuming the sodium atoms are in ther- 
mal equilibrium at a temperature of 500K. and compare it with the natural 
width. Assuming a collision cross section of 1076 cm?, determine the collision 
breadth of the sodium doublet as a function of the pressure of the sodium 
vapor. For what pressure is the collision breadth equal to the natural 

breadth? The Doppler breadth? 

A single particle oscillator under the action of an applied electric field Eye" has 
a dipole moment given by 

(a) 

(b) 

P= a(w)Eye 

Show that the Lotal dipole cross section can be written as 

Using only the facts that all the normal modes of oscillation must have some 
damping and that the polarizability @(w) must approach the [ree-particle 
value (—¢?/mo*) at high frequencies, show that the cross section satisfies the 
dipole sum rule, 

we 
f aw) do = 2 
a me 

{The discussion of Kramers-Kronig dispersion relations in Chapter 7 is 

clearly relevant.) 





Appendix on Units and Dimensions 

‘The question of units and dimensions in electricity and magnetism has exercised 
a great number of physicists and engineers over the years. This situation is in 
marked contrast with the almost universal agreement on the basic units of length 
(centimeter or meter), mass (gram or kilogram), and time {mean solar second). 
The reason perhaps is that the mechanical units were defined when the idea of 
“absolute” standards was a novel concept (just before 1800), and they were urged 

on the professional and commercial world by a group of scientific giants (Borda, 

Laplace, and others), By the time the problem of electromagnetic units arose 
there were (and still are) many experts. The purpose of this appendix is to add 
as little heat and as much light as possible without belaboring the issuc. 

1 Units and Dimensions; Basic Units and Derived Units 

The arbitrariness in the number of fundamental units and in the dimensions of 
any physical quantity in terms of those units has been emphasized by Abraham, 
Planck, Bridgman,* Birge," and others. The reader interested in units as such will 
do well to become familiar with the excellent series of articles by Birge. 

The desirable features of a system of units in any field are convenience and 
clarity. For example, theoretical physicists active in relativistic quantum field 
theory and the theory of elementary particles find it convenient to choose the 
universal constants such as Planck’s quantum of action and the velocity of light 
in vacuum to be dimensioniess and of unit magnitude. The resulting system of 
units (called “natural” units) has only ove basic unit, customarily chosen to be 

mass. All quantities, whether length or time or force or energy, etc., are expressed 
in terms of this one unit and have dimensions that are powers of its dimension. 
There is nothing contrived or less fundamental about such a system than one 
involving the meter, the kilogram, and the second as basic units. It is merely a 
matter of convenience.* 

A word needs to be said about basic units or standards, considered as inde- 
pendent quantities. and derived units or standards, which are defined in both 
magnitude and dimension through theory and experiment in terms of the basic 
units. Tradition requires that mass (nz). length (/). and time (4) be treated as 
basic. But for electrical quantities there has been no compelling tradition. Con- 
sider, for example, the unit of current. The “international” ampere (for a long 

*P. W. Bridgman. Dimensional Analysis. Yale University Press, New Haven. CT (1931). 
°R. T. Birge, Am. Phys. Teacher (now Am. J. Phys.), 2.41 (1934): 3, 102. U71 (1935). 
In quantum field theory, powers of the coupling constant play the role of other basic units in doing 
dimensional analysis 
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period the accepted practical unit of current) is defined in terms of the mass of 
silver deposited per unit time by electrolysis in a standard silver voltameter. Such 
a unit of current is properly considered a basic unit, independent of the mass, 
length, and time units, since the amount of current serving as the unit is found 

from a supposedly reproducible experiment in electrolysis. 
On the other hand, the presently accepted standard of current, the “abso- 

ute” ampere “is that constant current which, if maintained in two straight par- 
allel conductors of infinite length, of negligible circular cross section, and placed 
one metre apart in vacuum, would produce between these conductors a force 
equal to 2-10 ’ newton per metre of length.” This means that the “absolute” 
ampere is a derived unit, since its definition is in terms of the mechanical force 
between two wires through equation (A.4) below.* The “absolute ampere is, 

by this definition, exactly one-tenth of the em unit of current, the abampere. 

Since 1948 the iniernationally accepted system of electromagnetic standards 
has been based on the meter, the kilogram, the second, and the above definition 
of the absolute ampere plus other derived units for resistance, voltage, etc. This 
seems to be a desirable state of affairs. It avoids such difficulties as arose when, 

in 1894, by act of Congress (based on recommendations of an international com- 
mission of engineers and scientists), independent basic units of current, voltage, 
and resistance were defined in terms of three independent experiments (silver 
voltameter, Clark standard cell, specified column of mercury).' Soon afterward, 
because of systematic errors in the experiments outside the claimed accuracy, 
Ohm’s law was no longer valid, by act of Congress! 

The Systeme International d°Unités (SE) has the unit of mass defined since 

1889 by a platinum-iridium kilogram prototype kept in Sevres, France. In 1967 
the SI second was defined to be “the duration of 9 192 631 770 periods of the 
radiation corresponding to the transition between the two hyperfine levels of the 
ground state of the cesium-133 atom.” The General Conference on Weights and 
Measures in 1983 adopted a definition of the merer based on the speed of light, 
namely, the merer is “the length of the distance traveled in vacuum by light during 
a time 1/299 792 458 of a second.” The speed of light is therefore no longer an. 
experimental number; it is, by definition of the meter, exactly c = 299 792 458 
nvs. For electricity and magnetism, the Systeme International adds the absolute 
ampere as an additional unit, as already noted. In practice, metrology laborato- 

ries around the world define the ampere through the units of electromotive force, 
the volt, and resistance, the ohm, as determined experimentally from the 

Josephson effect (2e/h) and the quantum Hall effect (A/e*), respectively.' 

*The proportionality constant k, in (A.4) is thereby given the magnitude 10 7 in the SI system, 
The dimensions of the “absolute” ampere, as distinct from its magnitude, depend on the dimensions 
assigned kz, In the conventional SI system of electromagnetic units, clectric current (/) is arbitrarily 
chosen as a fourth basic dimension, Consequently charge has dimensions /, and k2 has dimensions 
of mil 71 7 If kz is taken to be dimensionless, then current has the dimensions '/!"1_ |. The ques- 

tion of whether a fourth basic dimension like current is introduced or whether electromagnetic quan- 
tities have dimensions given by powers (sometimes fractional) of the three basic mechanical dimen- 
sions is a purely subjective matter and has no fundamental significance. 
*See. for example. F. A. Laws, Electrical Measurements, McGraw-Hill, New York (1917), pp. 705-706. 
*For a general discussion of SI units in clectricity and magnetism and the use of quantum phenomena 
to define standards, see B. W. Pedoy, in Metrology at the Frontiers of Physics and Technology. eds 
L. Corvini and T. J. Quinn, Proceedings of the International School of Physics “Enrico Fermi,” Course 
€X, 27 June~7 July 1989, North-Holland, Amsterdam (1992), pp. 33-61. 
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2 Electromagnetic Units and Equations 

In discussing the units and dimensions of electromagnetism we take as our start- 
ing point the traditional choice of length (/), mass (m), and time (¢) as indepen- 
dent, basic dimensions. Furthermore, we make the commonly accepted definition 

of current as the time rate of change of charge (/ = dg/dt). This means that the 
dimension of the ratio of charge and current is that of time.* The continuity 
equation for charge and current densities then takes the form: 

vis+ Ba0 (Al) 
at 

To simplify matters we initially consider only electromagnetic phenomena in free 
space, apart [rom the presence of charges and currents. 

The basic physical law governing electrostatics is Coulomb’s law on the force 
between two point charges ¢ and g', separated by a distance r. In symbols this 
law is 

Fo=k, e (A2) 

The constant k, is a proportionality constant whose magnitude and dimensions 
either are determined by the equation (if the magnitude and dimensions of the 
unit of charge have been specified independently) or are chosen arbitrarily in 
order to define the unit of charge. Within our present [ramework all that is de- 
termined at the moment is that the product (k,qq') has the dimensions (ml"t ?). 

The electric field E is a derived quantity, customarily defined to be the force 
per unit charge. A more general definition would be that the electric field be 
numicrically proportional to the force per unit charge, with a proportionality con- 
stant that is a universal constant perhaps having dimensions such that the electric 
field is dimensionally different from force per unit charge. There is, however, 
nothing to be gained by this extra freedom in the definition of E, since E is the 
first derived field quantity to be defined. Only when we define other field quan- 
tilies may it be convenient to insert dimensional proportionality constants in the 
definitions in order to adjust the dimensions and magnitude of these fields relative 
to the electric field. Consequently, with no significant loss of generality the elec- 
tric field of a point charge q may be defined from (A.2) as the force per unit 

charge, 

E=K%,4 (A3) F 
All systems of units known to the author use this definition of electric field. 

For steady-state magnetic phenomena Ampére’s observations form a basis 
for specifying the interaction and defining the magnetic induction. According to 
Ampére, the force per unit length between two infinitely long, parallel wires 
separated by a distance d and carrying currents / and J' is 

dF 
al arr 

(Ad) 

*From the point of view of special relativity it would be more natural to give current the dimensions 
of charge divided by length. Then current density J and charge density p would have the same di- 
mensions and would form a “natural” 4-vector. This is the choice made in a modified Gaussian system 
(sce the footnote to Table 4, below). 
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The constant k2 is a proportionality constant akin to k, in (A.2). The dimension- 
less number 2 is inserted in (A.4) for later convenience in specifying k». Because 
of our choice of the dimensions of current and charge embodied in (A. 1). the 
dimensions of k, relative to k, are determined, From (A.2) and (A.4) it sily 
found that the ratio k,/k, has the dimension of a velocity squared (/°¢ *), Fur- 
thermore, by comparison of the magnitude of the two mechanical forces (A.2) 
and (A.4) for known charges and currents, the magnitude of the ratio ky/k> in 
free space can be found. The numerical value is closely given by the square of 
the velocity of light in vacuum. Therefore in symbols we can write 

= =< (A.3) 

where c stands for the velocity of light in magnitude and dimension. 
The magnetic induction B is derived from the force laws of Ampere as being 

numerically proportional to the force per unit current with a proportionality 
constant @ that may have certain dimensions chosen for convenience. Thus for a 
long straight wire carrying a current /, the magnetic induction B at a distance d 
has the magnitude (and dimensions) 

B= 2a! 7 (A6) 

The dimensions of the ratio of clectric field to magnetic induction can be found 
from (A.1), (A.3), (A.5), and (A.6). The result is that (E/B) has the dimensions 
(lita). 

The third and final relation in the specification of electromagnetic units and 
dimensions is Faraday's law of induction, which connects clectric and magnetic 
phenomena. The observed law that the electromotive force induced around a 
circuit is proportional to the rate of change of magnetic flux through it takes on 
the differential form 

VxE+k Bao (A7) 

where k; is a constant of proportionality. Since the dimensions of E relative to 
B are established, the dimensions of k, can be expressed in terms of previously 
defined quantitics merely by demanding that both terms in (A.7) have the same 
dimensions. Then it is found that ks has the dimensions of a” '. Actually, k; is 
equal tow". This is established on the basis of Galilean invariance in Section 
5.15. But the easiest way to prove the equality is to write all the Maxwell equa- 
tions in terms of the fields defined here: 

V-E = 4nkp 

Vx B= 4Ankad + ee 
a ne {A8) 

VxE+h— = 
aH 
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Then for source-free regions the two curl equations can be combined into the 
wave equation. 

a 
ka 7B _ og (A9) 

The velocity of propagation of the waves described by (A.9) is related to the 
combination of constants appearing there. Since this velocity is known to be that 

of light. we may write 

Led koa c (A.10) 

Combining (A.5) with (A.10), we find 

moe (A.l1) 
a 

an equality holding for both magnitude and dimensions. 

3 Various Systems of Electromagnetic Units 

The various systems of electromagnetic units differ in their choices of the mag- 
nitudes and dimensions of the various constants above. Because of relations (A.5) 
and (A.11) there are only two constants (¢.g., kz, ks) that can (and must) be 
chosen arbitrarily. It is convenient, however, to tabulate all four constants 
(ky, ka, ee, ky) for the commoner systems of units. These are given in Table 1. We 

note that, apart from dimensions, the em units and SI units are very similar, 
differing only in various powers of 10 in their mechanical and electromagnetic 
units. The Gaussian and Heaviside—Lorentz systems differ only by factors of 477. 

Table 1 Magnitudes and Dimensions of the Electromagnetic Constants 
for Various Systems of Units 

The dimensions ate given after the numerical values. The symbol c stands for the 
velocity of light in vacuum (c = 2.998 X 10" emis = 2.998 x 10* mis). The first four 
systems of units use the centimeter, gram. and second as their fundamental units of 
length, mass, and time (/, m1. 1). The SI system uses the meter, kilogram, and second, 
plus current (7) as a fourth dimension, with the ampere as unit 

System ky ky a ky 

Electrostatic (esv) 1 ery 1 1 

Electromagnetic (emu) (Pr?) 1 1! 1 
Gaussian 1 re Cis fi (tet) clue’) 

isi ate 2 2 -1 lye! Heaviside-Lorentz Te Ina (71 *) ei) clan) 

| 2 Ba — = 107 e107 1 Ss] dae Oe Ge. 0 I 

QnPrr 2) (mtr27-2) 
ee 
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Only in the Gaussian (and Heaviside—Lorentz} system does &; have dimensions. 

It is evident from (A.7) that. with k, having dimensions of a reciprocal velocity, 
E and B have the same dimensions. Furthermore, with k; = ¢ ', (A.7} shows 
that for electromagnetic waves in free space E and B are cqual in magnitude as 
well, 

For SI units. (A.10) reads 1/(2,€)) = c*. With c now defined as a nine-digit 
number and ky = jo/4a = 1077 Him, also by definition, 10” times the constant 

k, in Coulomb's law is 

= c° = 89 875 517 873 681 764 

an exact 17-digit number (approximately 8.9876 X 10"°). Use of the speed of light 
without error to define the meter in terms of the second removes the anomaly 
in SI units of having one of the fundamental proportionality constants €y with 
experimental errors. Note that, although the right-hand side above is the square 
of the speed of light. the dimensions of e, (as distinct from its magnitude) are not 
seconds squared per meter squared because the numcrical factor on the left has 
the dimensions of zo’. The dimensions of L/ey and Ho are given in Table t. It is 
conventional to express the dimensions of €, as farads per meter and those of jay 
as henrys per meter. With k; = 1 and dimensionless, E and cB have the same 
dimensions in SI units; for a plane wave in vacuum they are equal in magnitude. 

Only clectromagnetic fields in free space have been discussed so far. Con- 
sequently only the two fundamental fields E and B have appeared. There remains 
the task of defining the macroscopic field variables D and H. If the averaged 
electromagnetic properties of a material medium are described by a macroscopic 
polarization P and a magnetization M, the general form of the definitions of D 
and H are 

E+ AP 
1 (A.12) 

- B- AM 
Ho 

where €p, #4), A, A’ are proportionality constants. Nothing is gained by making D 
and P or H and M have different dimensions, Consequently A and 4’ are chosen 
as pure numbers (A = A’ = 1 in rationalized systems, A = A’ = 477 in unration- 
alized systems). But there is the choice as to whether D and P will differ in 
dimensions from E, and H and M differ from B. This choice is made for conve- 
nience and simplicity, usually to make the macroscopic Maxwell cquations have 
a relatively simple, neat form. Before tabulating the choices made for different 
systems, we note that for linear, isotropic media the constitutive relations are 

always written 

D=& 
. (A.13) B= .H 

Thus in (A.12) the constants €, and j, are the vacuum values of € and y. The 

relative permittivity of a substance (often called the dielectric constant) is defined 
as the dimensionless ratio (€/e,). while the relative permeability (often called the 
permeability) is defined as {je/jz,). 

Table 2 displays the values of €, and zo, the defining equations for D and H, 
the macroscopic forms of the Maxwell equations, and the Lorentz force equation 



Table 2 Detinitions of €), 40, D, H. Macroscopic Maxwell Equations, and Lorentz Force Equation in Various Systems of Units 

Where necessary the dimensions of quantities are given in parentheses. The symbol c stands for the velocity of light in vacuum with dimensions (i 

Lorentz 
Force per 

System € Be D,H Macroscopic Maxwell Equations Unit Charge 

IB 
Electrostatic 1 e? V-D=4zp Vx H= dry +2 VxE+S-=0 V-B=0\/E+vxB 

(esu) (Pr?) u a 

y z aD oB 
Electromagnetic died | V-D=4xp VxH = 43 +—- VxE+ 7 =0 VeB=O0/E+vxB 

(emu) (PL?) at F 

aD i 7 Gaussian 1 1 vep=4ap Vx d= s25412 yxy Beg vepeole+txs 
€ © Ot Cc ot ca 

1 4 7) Heaviside- I 1 D=E+P V-D=p vxn-i(s+2) vxe+ Big v.B=0/e4+"xB 
Lorentz H=B-M § oe eet c 

7 a 
sl uu 4nX107|D=@E+P Vv. p vxH=s+2 vxE+ Bio V-B=0/E+vxB 

4a 1 au a 

(Pem |) | (mil 207) |H=—B-M 
Mo 

SHUC] ANAUseUIONDa7q JO Suayshg SROLTEA ¢ "HIG 

18Z 
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in the five common systems of units of Table 1. For each system of units the 
continuity equation for charge and current is given by (A.1), as can be verified 
from the first pair of the Maxwell equations in the table in each case.* Similarly, 
in all systems the statement of Ohm’s law is J = vE, where ois the conductivity. 

4 Conversion of Equations and Amounts Between SI Units 
and Gaussian Units 

The two systems of electromagnetic units in most common use today are the SI 

and Gaussian systems. The SI system has the virtue of overall convenience in 

Table 3) Conversion Table for Symbols and Formulas 

The symbols for mass, length, time, force, and other not specifically clectromagnetic 
quantities are unchanged. To convert any equation in SI variables to the corresponding 
equation in Gaussian quanti on both sides of the equation replace the relevant 
symbols listed below under “SI” by the corresponding “Gaussian” symbols listed on 
the left. The reverse transformation is also allowed. Residual powers of jty€y should be 
eliminated in favor of the speed of light (c?j49¢) = 1). Since the length and time symbols 
are unchanged, quantities that differ dimensionally from one another only by powers of 
length and/or time are grouped together where possible. 

Quantity Gaussian SI 

Velocity of light c (40€0) 1? 

Electric field (potential. voltage) E(®, VV 477 E(, V) 

Displacement Vea D D 

Charge density (charge, current density, Var p(q, J. 1, P) eq. 5,1, PY 
current, polarization) 

Magnetic induction Vin/4a B B 

Magnetic field HIV47, H 

Magnetization V4 rity M M 
Conductivity Amey o 
Dielectric constant €€ € 

Magnetic permeability Hope wb 

Resistance (impedance) R(Z)lAre R(Z) 
Inductance Lidaey L 

Capacitance Amey c 

¢ 7 924 58 X 10* mis 
& = 8.854 1878... x 10? Fim 

256 6370... x 10° Him 

FY 2 376.7303...2 
Ve 

*Some workers employ a modified Gaussian system of units in which current is defined by 1 = 
(Ive{dgid#). Then the current density J in Table 2 must be replaced by cJ, and the continuity equation 
is V-5 + (LicApiae) = 0. See also the footnote to Table 4. 
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Table 4 Conversion Table for Given Amounts of a Physical Quantity 

The table is arranged so that a given amount of some physical quantity, expressed as so 
many SI or Gaussian units of that quantity, can be expressed as an equivalent number 
of units in the other system. Thus the entries in each row stand for the same amount, 
expressed in different units. All factors of 3 (apart from exponents) should, for accurate 
work, be replaced by (2.997 924 58). arising from the numerical value of the velocity of 
light. For example, in the row for displacement (D), the entry (12 X 10°) is actually 
(2.997 924 58 x 4a X 10°) and “9 is actually 107'* c? = 8.98755.... Where a name 

for a unit has been agreed on or is in common usage, that name is given. Otherwise, 
one merely reads so many Gaussian units, or SI units. 

Physical Quantity Symbol SI Gaussian 

Length t | meter (m) 10 centimeters (cm) 
Mass m I kilogram (kg) 10" grams (g) 
Time t {second (s) I second (s) 
Frequency vy Lhertz (Hz) 1 hertz (Hz) 
Force F I newton (N) 10° dynes 

os Mt 1 joule (2) 10? ergs 

Power P 1 watt (W) 107 ergs s"! 
Charge q 1 coulomb (C) 3x 1’ statcoulombs 
Charge density e 1Cm* 3x 10" stateoul em * 
Current I | ampere (A) 3x 10° statamperes 
Current density J 1Am? 3x 108 statamp cm~? 
Electric field E }voltm }(Vm7') 4x 107 statvolt em ! 
Potential ,V volt (V) te statvolt 
Polarization P 1Cm 3x 10° dipole moment cem™> 
Displacement D 1Cm™? 12m X 10° statvolt cm ! 

(statcoul em +) 
Conductivity o l siemens m | 9x 10” s! 
Resistance R 1 ohm (2) $x 107" sem? 
Capacitance Cc 1 farad (F) 9x 9! cm 
Magnetic flux oF 1 weber (Wb) 10% gauss cm’ or maxwells 
Magnetic induction 8B | tesla (T) 10 gauss (G) 
Magnetic field Ho iAm! 4a X 1073 oersted (Oc) 
Magnetization M  tAm'! lo? magnetic moment cm=* 
Inductance* L 1 henry (H) 4x 10-0 

“There is some confusion about the unit of inductance in Gaussian units. This stems from the use 
by some authors of a modified system of Gaussian units in which current is measured in 
electromagnetic units. so that the connection between charge and current is J,, = (Ie)(dqldt) 
Since inductance is defined through the induced voltage V = L(dIidt) or the energy U = LP, the 
choice of current defined in Section 2 means that our Gaussian unit of inductance is equal in 
magnitude and dimensions (/"') to the electrostatic unit of inductance. The electromagnetic 
current /,, is related to our Gaussian current f by the relation £,, = (I/c)/. From the energy 
definition of inductance, we see that the electromagnetic inductance /.,, is related to our Gaussian 
inductance L through L.,, = c°L. Thus L,, has the dimensions of length. The modified Gaussian 
system generally uses the electromagnetic unit of inductance, as well as current. Then the vol 
relation reads V = (4.,,(c)(d/,,/dt). The numerical connection between units of inductance is 

L henry = § x 10 " Gaussian (es) unit = 10” emu 
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practical, large-scale phenomena. especially in engineering applications. The 
Gaussian system is more suitable for microscopic problems involving the elec- 
trodynamics of individual charged particles, ctc. Previous editions have used 

Gaussian units throughout, apart from Chapter 8, where factors in square brack- 
ets could be omitted for the reader wishing SI units. In this edition, SI units are 
employed exclusively in the first 10 chapters. For the relativistic electrodynamics 
of the latter part of the book, we retain Gaussian units as a matter of convenience. 
A reminder of the units being used appears at the top of every left-hand page, 
with the designation, Chapter Heading—SI or Chapter Heading—G. Some may 
fecl it awkward to have two systems of units in use, but the reality is that scientists 
must be conversant in many languages—S] units are rarcly used for electromag- 
netic interactions in quantum mechanics, but atomic or Hartree units are, and 
similarly in other fields. 

Tables 3 and 4 are designed for general use in conversion from one system 
to the other. Table 3 is a conversion scheme for symtbols and equations that allows 
the reader to convert any equation from the Gaussian system to the SI system 

and vice versa. Simpler schemes are available for conversion only from the SI 
system fo the Gaussian system, and other general schemes are possible. But by 
keeping all mechanical quantities unchanged, the recipe in Table 3 allows the 
straightforward conversion of quantities that arise from an interplay of electro- 
magnetic and mechanical forces {¢.g., the fine structure constant e’/ic and the 
plasma frequency w; = 47ne?/m) without additional considerations. Table 4 is a 
conversion table for units to allow the reader to express a given amount of any 
physical entity as a certain number of SI units or cgs-Gaussian units. 
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Abraham-Lorentz equation of motion, 748 
Dirac’s relativistic generalization of. 771 
workable approximation to, 749, 772 

Abraham-Lorentz model of electron, 750f 
difficulties with, 754-5 
form factor in, 754 
see also Classical charged particle 

Absorption, resonant, 310 
of radiation, by carth's atmosphere, 467 
by oscillator, 655, 768 

Absorption coefficient, definition, 310 
of ideal gas, 466 
of liquid water as a function of frequency, 

315 
of sea water at low frequencies, 315 

Acceleration, relativistic transformation of, 
569 

Acceleration ficlds of charge in arbitrary mo- 
tion, 664 

Action, Lorentz, invariance of, 580 
Addition of velocities, relativistic, S30f 
Addition theorem for spherical harmonics, 

10-1 
Adiabatic invariance, of flux through particle’s 

orbit, 592f 
of magnetic moment of particle, 593 

Admittance, field definition of, 288 
Advanced Green function for wave equation, 

245 
invariant expression for, 613-4 

Airy integrals, in terms of Bessel functions, 
678 

Alfvén velocity, 321 
Alfvén waves, 319f 
Ampiére's law, 179 
Angles of incidence, reflection and refraction, 

Angular distribution of radiation, from oscillat- 
ing dipole, 411. 438 

from oscillating quadrupole, 415-6, 438 
from relativistic accelerated charge, 668f, 678. 
see also Bremsstrahlung: Multipole radiation; 

and Radiation 
Angular momentum, electromagnetic, in cireu- 

larly polarized plane wave, 350 
electromagnetic, expansion of, in plane waves, 

350 

electromagnetic, of electric charge and mag- 
netic monopole, 277 

of bound particle, slow change caused by radi- 
ation damping. 750 

of multipole fields, 432f 
rate of radiation of, by oscillating clectric di- 

pole, 451-2 
Angular momentum density of the clectromag- 

netic field, covariant form of the conser- 
vation law for, 608, 610 

Angular momentum operator, L, 428 
commutation relations for, 429 
and other vector differential operators, identi- 

tics involving, 428, 432, 441, 472 
and vector spherical harmonics, 431 

Anomalous dispersion, 310 
Anomaly, of magnetic moment of electron and 

muon, 565 
Antenna, as a boundary-value problem, 418 

center-fed, linear, 416f 
linear, radiation from in terms of multipoles, 

444f 
radiation resistance of, 412 
short, linear, 412 
in wave guide, 392f, 404, 405 

Aperture in wave guide or cavity, effective di- 
pole moments of, 421f 

Arrival of a signal in a dispersive medium, 335f 
Associated Legendre functions. 108 
Attenuation. in optical fibers, 470-1 

Rayleigh scattering limit for, 470 
in resonant cavities, 371f 

treatment by perturbation of boundary condi- 
tions, 366f, 374, 401-2 

in wave guides, 363f 
Attenuation coefficient, see Absorption 

coefficient 
Attenuation length, for visible light in the atmo- 

sphere, 467 
Averaging procedure, to define macroscopic 

fields, 249. 253 
Axial vector, definition of, 270 
Azimuthal symmetry, potential problems with, 

101f 

Babinet’s principle. 488f 
Bessel equation, 112 

71 
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Bessel functions, 112f 
connection with Airy integrals, 678 
dual integral equations involving, 132. 205 
expansions involving, 115, 118. 119, 126, 138, 

140, 141, 702, 705 
of first kind, J,, 113 
Fourier-Bessel series, 115, 138 
Fouricr-spherical Bessel series, 119 
Fourier transforms of Ky and K,, 656 
integral relations involving, 118, 126, 132, 140, 

142, 205, 493 
integral representation of, 140 
Kapteyn series of, 116, 702, 705 
leading behavior for large and small argu- 

ments, 114, 116, 427 
modified, f,, K,, 116 
Neumann series of, 116 
orthogonality, on finite interval, 114-5, 138 

on infinite interval, 118, 140 
recursion formulas, 113, 427 
Schlomilch series of, 116 
of second kind, N,, 113 
series for J,, 113 
spherical, 426-7 

limiting forms, 427 
Wronskians, 427 

of third kind, HO), 1, 113 
zeros of Jn(x), 114 
zeros of Fix), 370 

Beta decay, emission of radiation during, 730f 
Bethe-Heitler formula for bremsstrahlung, 717, 

Bibliography, 785f 
Biot and Savart law, 175f 

Jefimenko generalization of, 247 
Birefringence of the ionosphere, 317 
Bistati¢ cross section, definition of, 457 
Blue sky, Rayleigh’s explanation of, 465f 
BMT equation for spin, 561f 
Boost parameter, relativistic, 526 
Born approximation, in scattering. 464-5 
Born-Infeld nonlinear electrodynamics, 10 
Bound states in wave guides, 405-6 
Boundary conditions, at interface between me- 

dia, 18, 7. 194 
Cauchy, Dirichlet, and Neumann, 37-8 
for diclectric wave guide, 388-9 
inconsistency in Kirchhoff’s approximation for 

diffraction, 480 
mixed, example of, 129f, 205 
perturbation of, 366f, 374, 401-2 
at surface of, good conductor. 
scatterer, in terms of surface impeda 
for TE and TM waves in wave guid 

Boundary-value problems, Green function 
method of solution, 38f 

in cylindrical coordinates, 117f 
in dielectrics, 154f 
image method of solution, 57f 

in magnctostatics, methods of solving, 194f 
in rectangular coordinates, 70f 
in spherical coordinates, 95f 
in two dimensions, 72f 
see also Diffraction: Resonant cavity; and 

Wave guide 
Breit interaction, 598 
Bremsstrahlung, 714f 

angular distribution of, 712 
as scattering of virtual quanta, 729-30 
Bethe-Heitler formula for, 717, 719 
classical, 716 
frequency spectrum, 716, 717, 719 

at low frequencies, 711 
in Coulomb collisions, 714f 
inner, 732 
maximum effective momentum transfer in, 

713, 715, 718 
nonrelativistic, 717-8 
polarization of, 712 
relativistic, 718f 
screening effects in, 72If 

Brewster's angle, 306-7 
Brillouin precursor, 338 

Canonical stress tensor, 605-6 
for clectromagnetic fields, 606 

Capacitance, definition of, 43 
of a circular disc, Cavendish’s value for, 19 
variational principles for, 53 

Cauchy boundary conditions, 38 
Causal connection between D and E, 332 
Causal Green function, 614 
Causality, 330f 

consequences in dispersion, 334 
in Coulomb gauge, 242, 291 
lack of, with radiation reaction, 748, 772 
in special relativity, 528 

Cavendish’s apparatus for inverse square law, 

Cavity. resonant, see Resonant cavity 
Center of mass, of clectromagnetic energy, 622 

relativistic kinematics of, 575 
Characteristic time, in radiation damping, 746 
Charge, discreteness of, 4-5 

electric, 25 
electronic and protonic, equality of magni- 

tudes, 554 
invariance of, 554 
quantization of, according to Dirac, 275f 
radiation emitted by sudden creation or disap- 

pearance of, in beta processes, 730f, 732f 
in uniform motion in vacuum, fields of, 559- 

60 
Charge conservation, 175, 238, 777 
Charge density. and current density as 4-vector, 

554 
and current density of charged particle, covar- 

iant expression for, 615 



effective magnetic, 196-7 
induced by point charge near conducting 

sphere, 59 
at sharp corners, edges, and points, 78, 106-7 
at surface of conductor, quantum-mechanical. 

21 
Charged particle, dynamics, 579f 

Lorentz force on, 3, 260, 579 
motion, in nonuniform magnetic ficlds, 588f 
in uniform static magnetic ficld, 585 
classical model of, 759f 

Poincaré stresses m, 755-7, 760f 
stability and covariance of energy and mo- 

mentum, 762-3 
different contributions to mass, 761-2 
See also Abraham-Lorentz. model of 

electron 
Cherenkov angle, 638 
Cherenkov radiation, 637f 
Circular current loop, ficlds of, 181f 
Classical electron radius. 604, 695, 755 
Classical limit, of angular momentum in multi- 

pole fields, 435 
of electromagnetic fields, 3-4 

Clausius-Mossotti relation, 162 
Closure, see Completeness 
Coherence, of scattering by collection of scatter- 

ing centers, 461-2 
Coherence volume in transition radiation, 649 
Collisions, Coulomb, energy loss in, 625f 

radiation emitted during, 709f 
Collision time, for fields of relativistic particle, 

560 
Commutation relations, for infinitesimal Lorentz. 

transformation generators, 548 
of angular momentum operator, L, 429 

Complementary screen, definition of, 488 

Completeness, of set of orthogonal functions, 
68 

Completeness relation, 68 
for Bessel functions on infinite interval, 119, 

140 
for complex exponentials, 70, 125 
for spherical harmonics, 108 

Compton effect, modification of Thomson scat- 
tering by, 696-7 

Conduction in a moving medium, 320, 572 
Conductivity, effect of, on quasistatic fields, 

218F 
relation lo complex dielectric constant, 312 

Conductor, attenuation in, 313 
boundary conditions at, 352f 
definition of, 50 
diffusion of fields in, 22if 
fields at surface of. 352f 
fields inside, 220, 354 
penctration or skin depth in, 220, 354 
surface impedance of, 356 

Conical hole or point. fields near, 104f 

793 Index 

Conservation, of angular momentum of particles 
and ficids. 288 

of charge and current, 3, 175, 238, 777 
of electromagnetic angular momentum, in co- 

variant form, 608 
of energy of particles and fields. 258f, 611 
of ficld energy and momentum, in covariant 

form, 607. 609 
of momentum of particles and fields, 260, 611 

Constitutive relations, 14 
Continuity, at interface, of tangential E and nor- 

mal B, 18 
Continuity equation, for charge and current, 3, 

17S, 238. 777 
in covariant form, 555, 610 
for electromagnetic energy flow, 259 

in dissipative media, 264 
Contraction of length, see FitzGerald-Lorentz, 

contraction 
Contravariant vector, definition of, 540 
Convective derivative, in Faraday’s law, 210 

in fluid flow, 320 
Conversion table, for equations in Gaussian and 

SI units, 782 
for given amounts in Gaussian and SI units, 783 

Correspondence principle of Bohr, 704 
Coulomb gauge, definition of, 241 

and causality, 242, 291 
Coulomb's law, 24 

Jefimenko’s gencralization of, 246f 
Coupling constant, running, 12 
Covariance, of electrodynamics under Lorentz. 

transformations, 553f 
of physical laws under Lorentz transforma- 

tions, 517, 540 
Covariant expressions, for clectromagnetic en- 

ergy and momentum, 757f 
for equation of motion for spin, S61f 
for Lorentz force equation, 557, 580 
for Maxwell equations, 557 
for radiative reaction force, 771 

Covariant vector, definition of, 541 
Critical frequency. as upper limit of frequency 

spectrum of radiation emitted by relativ- 
istic particle, 673, 679 

Critical opalescence, 469-70 
Cross section, Bethe-Heitler, for bremsstrah- 

lung, 717 
classical. for bremsstrahlung. 716 
classical particle scattering, relation to impact 

parameter, 655 
definition of, for scattering of electromagnetic 

waves, 457, 694 
Rutherford, 625. 714 
for scattering, and absorption of radiation by 

harmonically bound charge, 766f 
by large conducting sphere, 499-500 
by small conducting sphere, 460, 477 
by small dielectric sphere, 458-9 
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Energy (Continued) 
electrostatic, in diclectric media, 165f 
clectrostatic potential. 40f 
hyperfine interaction, 190-1 

212f 
cally permeable body, 214 

relativistic, of a particle, 537-8 
sclf-, 42, 754 

Rnergy conservation between particles and 
ficlds, 258f, 610-1 

Energy density, clectromagnetic, 259 
electromagnetic, as (0,0) clement of symmet- 

ric stress tensor, 609 
effective, in dissipative media, 263 
electrostatic, 40f 

Energy flow, 259 
velocity of, 323, 325 
in wave guide, 363f 

Energy-level shift due to radiative reaction, 
763 

Energy loss, Bethe’s quantum-mechanical for- 
mula for, 627 

Bohr's classical formula for, 627 
densily effect in, 631f 
in electronic plasma, 656-7 
fluctuations in, 631 
by magnetic monopole, 658 
radiative, in collisions, nonrelativistic, 718 

in collisions, relativistic, 723-4 
per revolution in circular orbit, 667 

Energy-momentum 4-vector, 538 
Energy radiated, by accelerated charge, angular 

and frequency distribution of, 673f 
by accelerated magnetic moment, angular and 

frequency distribution of, 704 
Energy transfer, in Coulomb collision, 625f 

to harmonically bound charge, 655 
reconciliation of classical and quantum, 630 

Equations of motion with radiative reaction, 
748-50, 771-2 

Ether, $15 
Be drift experiments, $19-22 

emt modes in wave guide, 360 
tion of waves in wave guide, by localized 
source, 392f, 419f 

Expansion, of arbitrary fields in wave guide in 
normal modes, 392 

of circularly polarized vector plane wave in 
multipole fields, 471f 

of Green function, e“*/R, in spherical waves, 
428 

of |x — x'] , in cylindrical coordinates, 126, 
140 

in plane waves, 128 
in spherical coordinates, 102, 111 

of scalar plane wave, in spherical harmonics, 
471 

Expansions, see Orthonormal expansions 
Extinction coefficient, see Absorption cocfficient 

Faltung theorem of Fourier integrals, 330 
Faraday effect. astrophysical, 346 
Faraday’s law of induction, 208f 

in differential form, 211 
for moving circuit, 209-10 

Ferromagnetism, definition of, 15-6 
Feynman-Heaviside expressions for fields, see 

Heaviside-Feynman expressions for fields 
Field, electric, see Electric field 

magnetic, see Magnetic field 
Ficlds, of charge in arbitrary motion, 664 

of charge moving uniformly, in dielectric, 
Fourier transforms of, 633-4 

in vacuum, 559 
in vacuum, Fourier transforms of, 650, 656. 

of relativistic charge, equivalence of, to pulse 
of radiation. 560, 724f 

Ficld-strength tensors, 556 
Finite difference method, 47f 
Finite clement analysis (FA), 79f 
FitzGerald-Lorentz contraction hypothesis, 517 
Fiveau’s experiment, 517, 570 
Fluctuations, in density of fluid, and scattering, 

468-9 
in energy loss, 631 

Force, between charge and image charge, 60, 61, 
62 

on charged surface of conductor, 42-3 
Coulomb’s law of, 24 
between current-carrying circuits, 178, 777 
on current distribution in magnetic field, [88f 
‘on dielectric body, 167, 169 
Lorentz, 3, 260, 579 

in covariant form, 557, 580 
on magaetically permeable body, 214 
on magnetic dipole in nonuniform field, 189 
on permanent magnets, 230 
between point charge and sphere, 60, 61, 62 
radiative reaction, 748-9, 771-2 
between two parallel wires, 178, 777 

Force density, and divergence of stress tensor, 
611 

on surface of good conductor. 396 
Force equation, Abraham-Lorentz, 748 

approximation to, 749 
with radiative reaction, Dirac’s relativistic, 711 

approximation to, 772 

integrodifferential, 772 
Forward scattcring amplitude, relation of, to the 

total cross section, 502 
relation to dielectric constant, 504 

4-current, 554 
4-divergenc 
4Laplacian, 543 
Atensors of rank k, 540-1 
4-vector, contravariant and covariant, definitions 

of, 540-1 
4-vector potential. 555 
4-velocity, of particle, 532 

43 
3 



Fourier integrals, 69, 243, 253, 330 
Fourier series, 68 
summation of, example, 74-5 

Fourier-Bessel series, 115, 138 
Fourier transform, of exponentially damped 

wave, 372, 765 
of fields of charge in uniform motion, in di- 

electric, 633-4 
in vacuum, 650, 656 
of wave packet, 323, 327, 336 

Fraunhofer diffraction, definition of, 491. See 
also Diffraction 

Frequency distribution of radiation, emitted by 
electron in classical equivalent of hydro- 
gen atom, 704-5 

emitted by extremely relativistic charge, quali- 
tative aspects of, 671-3 

emitted by relativistic charge in instanta- 
neously circular motion, 681-2 

explicit formulas for, 675-6 
from the sun, 467 
of transition radiation, 653 
from undulators and wigglers, 691, 693 

Frequency shift, Aw, in resonant cavity, 374 
of resonant line of oscillator with radiation 

damping, 763f 
Frequency spectrum, see Frequency distribution 

of radiation 
Fresnel diffraction, definition of, 491 

Diffraction 
Fresnel formula for speed of light in moving 

media, 570 
Fresnel formulas for reflection and refraction, 

305-6 
Fresnel’s rhombus, 308 

See also 

Galerkin’s method, in FEA, 79f 
Galilean invariance, 515 

and Faraday’s law, 209-10 
of phase of wave, 519 

Galilean relativity, 515-6 
Galilean transformation of time and space coor- 

dinates, 515 
Gauge, Coulomb, 241 

Coulomb and causality, 242, 291 
Lorentz, 241 
radiation or transverse, 241 

Gauge invariance, 240 
Gauge transformation, 181, 240 

and Dirac string, 279-80 
and particle Lagrangian, 583 
and Schrédinger equation, 280 

Gaussian pillbox. 17 
Gaussian units, basic clectrodynamic equations 

in, 781. See also Units 
Gauss’s law, 27-9 

differential form of, 29 
g-factor, of electron, 548 

and muon, numerical values of, 565 
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Goos-Hianchen effect. 308, 342 
Gradient, contravariant and covariant in special 

relativity, 543 
of electric field, and force on electric dipole, 

171 
and quadrupole interaction, 150-1 

of magnetic induction, and associated particle 
drift velocity, 588-9 

and force on magnetic dipole, 189 
in rectangular, cylindrical, and spherical coor- 

dinates, end papers 
in spherical form with L. 472 
Green function, definition of, in electrostatics, 

e*®/R, spherical wave expansion of, 428 
for Helmholtz, wave equation. 244 
invariant, for wave equation, 612f 
retarded and advanced, 244, 614 
for scalar diffraction by plane screen, 480 
symmetry of electrostatic, 40 
for time-dependent wave equation, 245 

Green function in electrostatics, 38-40 
for concentric spheres, 122 
for cylindrical box, 143 
examples of use of, 64-5, 122f, 141, 142 
expansion of, in cylindrical coordinates, 125f 

in Legendre polynomials, 102 
in cigenfunctions, 127f 
in spherical coordinates, 111, 119f 

for Neumann boundary conditions. example 
of, 144 

symmetry of, 40, 52 
for rectangular box, 128-9 
for sphere, 64, 119f 
for two-dimensional problems, 89-93, 127, 

142 
for two parallel grounded planes, 140-1 

Green's first identity, 36, end papers 
Green’s reciprocation theorem, 52 
Green’s theorem, 36, end papers 

use of. in diffraction, 479 
vector equivalent of, 482f 

Ground, concept of, 19-20 
Group velocity, 325 

and phase velocity, 325 
in wave guide, 364 

Guides, see Wave guide 
Gyration frequency, of particle in magnetic 

field, 317, 585, 
Gyration radius, 586 
Gyrotropic media, phenomenological expression 

for polarization in, 273 

Half-width, of resonant line shape. 765 
relation to Q value of resonant cavity, 372 

Hail effect, phenomenological expression for, 
289 

Hamiltonian, of charged particle in external 
fields, 582, 585 
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Hamiltonian density for ficlds, as (0,0) compo- 
nent of symmetric stress tensor, 609 

Hankel function of order v, 113. See afso Bessel 
function 

Hankel transform, 118 

Heaviside-Feynman expressions for fields, 248, 
284 

Helical path of particle in magnetic field. 586 
synchrotron radiation associated with, 703 

Helicity, connection to circular polarization, 300 
Hemispheres, at different potentials, 65f, 101 
Hertz vectors, 280f 
Hidden momentum, 189, 618 
High-frequency behavior of dielectric constant. 

313, 333 
Hole, circular, in conducting plane. clectric 

fields near, 134 
cffective dipole moments of, 133, 205, 422-4 
magnetic ficlds near, 206 

Huygens’s principle, 478 
Hydrodynamic equations for conducting fluid. 

319-20 
Hyperfine interaction energy, 190-1 
Hysteresis, magnetic, 193 

Idcalizations in electromagnetism, 19f 
Image charges, see fmages 
Images, method of, 57f 

for conducting sphere in uniform field, 62f 
for dielectrics, 155-7 
for magnetically permeable media, 229 
for point charge near conducting sphere, S8f 
for two charged spheres, 86-7 

Impact parameter, and scattering angle, 655 
maximum effective, in Coulomb collisions, 

626, 627 
minimum effective, in Coulomb collisions, 

626, 629 
in method of virtual quanta, 725, 729 
quantum-mechanical, 629 

Impedance, of free space, 297 
surface, 355, 475 
of two-terminal device, gencral definition of, 

264f 
wave, in wave guide, 359 

Incoherent scattcring from collection of 
scaticrers, 462 

Index of refraction, 296, 303 
analytic properties of, 337 
and phase and group velocities. 325 
relation to forward scattering amplitude, 504 
of water, as function of frequency, 314-6 
see also Dielectric constant 

Inductance, 215f 
accurate result for circular loop. 234 
coefficients of mutual and self, 215-6 
estimation of self, 216 
high-frequency compared to low-frequency, 

218 

and magnetic energy. 215 
mutual, of two current loops. 234 
sclf, of transmission lines, 232 
units of, 783 

Induction, Faraday's law of, 208f 
Infinitesimal generators of the Lorentz group, 

546, $48 
Inhomogencous plane wave, 298 
Inner bremsstrahlung. 732 
{ategral equations of the first kind, dual, 132 
Interaction cnergy, see Encrgy 
Interface between two media, boundary condi- 

tions at, 16f 
Internal field, at position of molecule in diclec- 

tric, 160 
Invariance, see Adiabatic invariance, Relativistic 

invariance 
Inverse distance between two points, expansion 

in Bessel functions, 126, 140 
expansion, in Legendre polynomials, 102 
in spherical harmonics, 111 
Fouricr integral representation of, 128 

Inverse square law, precise verification of, 5f 
Inversion, see Spatial inversion 
lonosphere, propagation of waves in, 316f, 346-7 
Irrotational vector, definition of, 242 

Jacobian, in Lorentz. transformation of 4-dimen- 
sional volume clement, 

in transformation of coordinates for delta 
function, 120 

Jefimenko’s expressions for fields, 246f 

Kinematics, relativistic, examples of, 573f 
notation for, 565-6 

Kirchhoff diffraction, see Diffraction 
Kirchhoff’s integral, in diffraction, 479 

vector equivalents of, 482f 
Klein-Nishina formula, 697 

effects of, in method of virtual quanta, 730 
Kramers-Kronig relations, 333f, 348-9 

Lagrangian, Darwin, for charged particle inter- 
actions, 597 

for electromagnelic ficlds, S98f 
Proca, for massive photons, 600f 
for relativistic charged particle in external 

fields, S79f 
Lagrangian density, for continuous fields, 398-9 
Lamb shift, 766 
Laplace equation, 34 

boundary conditions for, 37 
in cylindrical coordinates, 111f 

general solution of, in cylindrical coordinates, 
117-9 

in rectangular coordinates, 71-2 
in spherical coordinates, 110 
in two-dimensional coordinates, 77, 89 

in rectangular coordinates, 70f 



in spherical coordinates, 95 
in two-dimensions, Cartesian coordinates, 72f 
in two-dimensions, polar coordinates, 76 
uniqueness of solution of, 37-8 

Laplace transform, use of, 222 
Laplacian operator, and angular momentum op- 

erator, 429 
in four dimensions, 543 

Larmor formula for radiated power, 665 
relativistic gencralization of, 666 

Legendre differential equation, 96 
Legendre functions, associated, 108 

asymptotic form for large », in terms of Bessel 
function, 106 

of order v, 105 
Legendre polynomials, 97 

expansion of inverse distance in, 102 
explicit forms of. 97 
integrals of products of, with powers of cos 

100-1 
orthogonality of, 99 
recurrence relations for, 100 
Rodrigues's formula for, 98 
see also Spherical harmonics 

Lenz’s law, 209 
Level shift, of oscillator frequency, from radia- 

tion damping, 763f 
Liénard’s generalization of Larmor power for- 

mula, 666 

Liénard-Wicchert potentials, 661f 
Lifetime, of pi mesons in relativistic motion, 

529 
see Transition probability 

Light, speed of, 3, 776 
Light cone, 527 
Limiting speed, 518 
Lincar superposition, of electric ficlds, 26 

of plane waves, 296, 322f 
of potentials, example of, 61 
validity of, 9f 

Line breadth, of oscillator with radiation damp- 
ing, 763f 

Localized source, in wave guide, 392-3 
see also Dipole; Multipole; and Multipole 

moment 
London penetration depth, 604 
Longitudinal vector. definition of, 242 
Lorenz condition, 240, 294, 555 
Lorentz condition. See Lorenz condition. 
Lorentz force, 3, 260, 553, 579 

in covariant form, 557, 563, 580 
density, 611 

Lorenz gauge. 241 
Lorentz group, 540 

infinitesimal generators of, 546, 548 
Lorent invariance, of electric charge. experi- 

mental evidence for, 554 
of radiated power, 666 
see also Relativistic invariance 
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Lorentz invariant differential photon spectrum, 
710, 720 

Lorentz-Lorenz relation, 162 
Lorentz transformation, 524f 

of electric and magnetic ficlds, 558 
explicit matrix form of, 546-7 
of 4-vector. 526 
generators of, $ and K, 546 
matrix representation of. 543f 
noncommutativity of. 548 
proper and improper, definitions of, 544 
of time and space coordinates, 525 
see also Relativistic transformation 

Loss, see Attenuation, Power loss 

Macroscopic averages, 249-50 
Macroscopic electromagnetic quantities, 250f 
Macroscopic equations, ¢lementary derivation 

of, for clectrostatics. 1S1f 
for magnctostatics. 191f 

Macroscopic fields. 13, 2. 6 
Macroscopic Maxwell equations, 13, 238 

derivation of, 248f 
Magnct. permanent, 16, 200 

energy of, in external ficld, 190 
method of treating magnetostatic boundary 

value problems involving, 196 
Magnetic dipole, see Dipole fields; Dipole 

moment 
Magnetic charge and current densities, 273-4 

transformation properties of, 274 
Magnetic diffusion, 221-3 
Magnetic ficld, H. boundary conditions on, 18, 

194 
definition of, 14, 192, 257 
see also Magnetic induction 

Magnetic flux density, see Magnetic induction 
Magnetic induction, B, boundary conditions on, 

18, 194 
of charge in uniform relativistic motion, 559 
of charge. limiting form as v > ¢, 573 
of circular loop, 182f 
of current clement, 175 
definition of, 174, 178 
of long straight wire, 176 
of magnetized sphere, 198 
of nonrelativistic moving charge, 176, 560 
relativistic transformation of, 558 

Magnetic moment, adiabatic invariance of, 
592f 

anomalous, of the electron and muon, 565 
density, 186, 256 
effective, of hole in conductor, 205 
of electron, 548 
force on, in nonuniform magnetic ficld, 189 
intrinsic, caused by circulating currents, 191 
radiation emitted, in disappearance of, 735-6 

when in motion, 704 
radiation from time-varying, 413f, 442 
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Magnetic moment (Continued) 
scattering by duced, 457, 460 
torque on, 174, 189-96 
see also Dipole moment 

Magnetic monopole, 273f 
and quantization of electric charge, 275f 
vector potential of, 278, 290-1 

Magnetic multipole fields, see Multipoles, Multi- 
pole ficlds 

Magnetic permeability, 14-5, 193 
Magnetic polarization, 13-4 
Magnetic pressure, 320 
Magnetic scalar potential, 180, 195 
Magnetic shielding, 201f, 228-9 
Magnetic tension, 320 
“Magnetic” waves, 359, 430 
Magnetization, definition of macroscopic, 192, 256 

of current density distribution, 186 
divergence of, as cffective magnetic charge 

density, 196 
effective current density of, 192 
radiation by time-varying, 439f 

Magnetized sphere, 198f 
in external ficld, 200-1 

Magnetohydrodynamics, cquations of, 320 
Magnetostatics, basic equations of, 180, 194 

methods of solving boundary-valuc problems. 
in, W4f 

Mass of photon, consideration of, using Proca 
Lagrangian, 600f 

impossibility of measuring, using lumped cir- 
cuits, 601-2 

limits on, 7-9 
modification of the carth's dipole field by, 621 

Maximum and minimum impact parameters, see 
Impact parameters 

Maximum and minimum scattering anglcs, in 
clastic scattcring by atoms, 641-2 

Maxwell equations, 2, 238 
in covariant form, 557 
derived from a Lagrangian, 599-600 
in different systems of units, 781 
macroscopic, 13f, 238, 248f 
plane wave solutions of, 295f 
spherical wave solutions of. 429f 

Maxwell stress tensor, 261 
Mean-square angle of scattering, 643-4 
Mean-valuc theorem, for clectric field, 149 

for electrostatic potential. 52 
for magnetic ficld, 188 

Meissner effect, 603 
Metals, actual distribution of charge at surface 

of. 21 
ultraviolet transparency of, 314 

Method of Images. see Images 
Metric tensor of special relativity, $42 
Michelson-Morley experiment, 517 

modern successors to, for detection of cther 
drift, S19f 

Microwaves, see Diffraction: Resonant cavity; 
and Wave guide 

Mirror, magnetic, 595-6 
Mixed boundary conditions, 38, 129f, 205 
MKSA units. see Units 
Modes, in cylindrical cavity, 368f 

in cylindrical diclectric wave guide, 388-9, 
404 

normal, in wave guide, 389f 
propagating and cutoff or evanescent, 360 
TE and TM, in wave guide, 359 
in slab diclectric guide, 385f 
in spherical geometry, definition of, 375 
in wave guide, 360 

Molecular multipole moments, 252, 256 
Molecular polarizability, 151 

models for, 162f 
Momentum, canonical, for particle in external 

fields, 582 
conservation of, between particles and fields, 

261, 611 
electromagnetic, covariant expression for, 758 
hidden mechanical, 189, 618 
relativistic, of particle, 536 

Momentum density, clectromagnetic, 262 
and co-moving mechanical momentum in di- 

electric, 262, 294 
as part of covariant symmetric stress tensor, 

609 
in macroscopic media, 262 

Momentum transfer, in Coulomb collision, 625 
maximum effective, in bremsstrahlung, 713, 

715, 718 

minimum effective, in bremsstrahhing, 716, 
717, 718, 721-2 

Monopole radiation ficlds, absence of, 410) 
Mossbauer effect, use in ether drift experiments, 

521-2 
use to detect transverse Doppler shift. 530 

Motion, of charged particle in uniform static 
magnetic ficld, 585-6 

see also Particle motion 
Moving charge, ficlds of, $49, 573, 664 
Moving circuits and law of induction, 209-10 
Multiple scattering of particles by atoms, 643f 
Multipole, trostatic, 146 

clectrostatic, Cartesian, 146-7 
spherical, 146 

magnetostatic, 184f 
radiating, general aspects of, 407f 
time-varying. 407f, 430f 
see also Dipole moment: Magnetic moment; 

and Multipole moment 
Multipole expansion, of clectromagaetic fields, 

429f 
of electrostatic potential, 145f 
of Green function for wave equation, 428 
of interaction energy. 150 
of localized source in wave guide, 419f 



of radiation by lincar antenna, 444f 
of scalar plane wave, 471 
of vector plane wave, 471f 

Multipole fields, 429f 
angular momentum of, 433-5 
connection to sources, 439f 
clectric and magnetic, 430-1 
energy of, 433 
expansion of arbitrary source-free ficlds in, 431 
near-zone properties of, 432 
parity properties of, 436 
Tadiation-zone properties, 433 
use of, in description of scattering, 473f 

Multipole moment, electrostatic, 146-7 
estimates of, for radiating atoms and nuclei, 

442f 
of linear center-fed antenna, 446 

magnetostatic, 184f 
of oscillating source, exact expressions for, 

440 
long-wavelength approximations for, 441-2 

see also Dipole moment; Magnetic moment; 
and Quadrupole moment 

Multipole radiation, angular distributions of, 
37E 

by atoms and nuclei, 442f 
by lincar center-fed antenna, 444f 
lowest order, clementary discussion of, 410f 
quantum-mechanical selection rules for, 436 
sources of, 439f 
total power radiated in, 439 

Neumann boundary conditions, definition of, 37 
use of, in generalized Kirchhoff diffraction 

theory, 480-1 
Neumann function, 113. See also Bessel 

functions 
Nonlinear clectrodynamic effects, 10f 
Nonlinear optics, 16 
Nonlocality, in time, in connection between D 

and E, 330 
in time and space, 14-5, 331-2 

Normalization of fields in wave guide, 391 
Normal mode expansion of ficlds in wave guide. 

389f 
Nuclear quadrupole moment, 151 

interaction cnergy of. 150, 171 
Nuclei. estimates of multipole transition rates in, 

442f 
Numerical methods, in electrostatics, 47f, 79f 

in magnetostatics. 206f 

Obliquity factor in diffraction, 482 
Obstacles in wave guides, 394 
Ohm’s law, 14, 219, 312, 356 

covariant generalization of, 572 
in moving medium. 320 
nonlocality of, in conductors at high frequen- 

cies, 332 
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Operator relations, see Gradient, Laplacian 
Optical fibcrs, attcnuation in, 383, 470-1 

circular, 387f 
eikonal approximation for, 380f 
graded index for, 380, 384, 402 
meridional and skew rays in, 381 
modal dispersion in, 383, 403 
modes in, 38Sf 
propagation in. 378f. 385f 
slab, 385f 

Optical theorem, proof of. SO0f 
Orthogonal functions and expansions, 67f 
Orthogonality, of Bessel functions on finite in- 

terval, 115, 138 
of Bessel functions on infinite interval, 118, 

119 

of complex exponentials on infinite interval, 
69 

of Legendre polynomials, 99 
of sincs and cosines, 68 
of spherical harmonics, 108 
of vector spherical harmonics. 431 

Orthogonal transformations, 268 
Orthonormal, definition of, 67 
Orthonormal expansions, 67f 

Fourier, on finite interval, 68 
on infinite interval, 69 

Fourier-Bessel, 115, 118, 138-9 
‘on infinite interval, 118-9 

Legendre, 99 
spherical Besse) function, 119 
spherical harmonic, 110 

vector. for fields in wave guide, 390-1 
Oscillations, see Radiation; Waves 
Oscillator, absorption of energy by, 655 

in model for dielectric constant, 162, 309 
with radiation damping, 763f 
scattcring and absorption of radiation by, 

766f 
Oscillator strength, 310, 627, 634, 765 

Paramagnetism, definition of, 15 
Parity. of multipole fields, 436. See also Spatial 

Inversion 
Parseval's theorem, example of, 674 
Particle motion, in crossed E and B, 586f 

in dipole field of earth, 619 
in external fields, 579f 
in inhomogencous B, S88f, 592f 
with radiation reaction, 748-50, 769, 771-2 
in uniform static B, 585-6 

Penetration depth, see Skin depth 
in superconductivity, 604 

Perfect conductor, definition of, for magnetic 
ficlds. 204 

Permanent magnetization, 16 
Permeability. incremental, 193 

magnetic, 14, 193 
Permittivity, electric, 14 
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Perturbation of boundary conditions, method of, 
366f, 374, 401 

for dcgcnerate modes. 402 
Phase difference, and clliptic polarization, 299 

between E and B in conductor, 221, 354 
Phase of plane wave, relativistic invariance of, 

519, 529 
Phase shift for scattcring by sphere, 476 
Phase velocity, and group velacity, 325-6 

of Alfvén waves, 321 
and group velocity, in wave guide. 364 

of whistlers, 319 
of plane waves, 296 
in wave guide, 361 

Photon, angular momentum of multipole. 435-6 
Photon mass, effective, in superconductors, 604 

limits on, 7-9 
treatment of, using Proca Lagrangian, 600f 

Photon spectrum, emitted during collisions, 709— 
10 

Lorentz-invariant expression for, 710 
see also Bremsstrahlung; Radiation 

Plane wave, clectromagnetic, 295f 
inhomogencous, 298 
magnetohydrodynamic., 321 
reflection and refraction of, 302f 
scalar, propagation in dispersive medium, 

322f, 326f 
expansion of, in spherical harmonics, 471 
vector, expansion of, in spherical harmonics, 

473 
Plasma, confinement of, by magnetic mirrors, 

595-6 
cnergy loss in, 656-7 
transverse waves in, 313 

in external magnetic field, 316f, 347 
Plasma frequency, and first precursor, 338 

of dielectric medium, 313 
sum rule for, 335 

Poincaré stresses, 755f, 760f 
Poisson cquation, 34 

equivalent integral equation, 36-7 
examples of solution of, 123, 124, 137-8 
formal solution with Green function, 38f 
uniqueness of solution of, 37-8 
see afso Green function in electrostatics 

Polarizability, electronic, 163, 309-10 
effective, of aperture in conducting plane, 

423-4 
models of, 162f 
molecular, 162f 
orientation, 164 

Polarization, charge density, 153, 156 
macroscopic, electric, 14, 152. 255 

magnetic, 14, 192, 256 
magnetic, see Magnetization 
surfacc-charge density, 156, 159 
transition radiation from, 647, 649f 
of vacuum, 11-13 
see als Magnetization 

Polarization effects in energy loss, 631f 
Polarization of radiation, by reflection, 307 

from accelerated charges, 665, 676, 678, 706 
in bremsstrahlung, 712 
Cherenkov, 639 
circular, elliptical, lincar, 299f 
left- and right-handed, definition of, 300 
from multipoles, 411, 414, 437 
scattered by atmosphere, 468 
scattered by small conducting sphere, 460-1 
scattered by small dielectric sphere, 459 
Stokes parameters for description of state of, 

301-2 
from synchrotron, 678-9, 706 
in Thomson scattering, 695 
xray, 712 

Polarization potentials, 280f 
Polarization vectors, 297, 299f 
Polar substances, 164 
Polar vector, definition of, 270 
Potential, clectrostatic, 30 

of dipole layer, 33 
expansion, in Bessel functions, 118 

in Legendre polynomials, 101f 
in spherical harmonics, 110 

of line charge in cylindrical coordinates, 127 
near small hole in conducting plane, 133 
of point charge, between grounded planes, 

141-2 
in cylindrical box, 143 
expansion in cylindrical coordinates, 126 
expansion in spherical coordinates, 102, 

411, 122 
Fourier integral representation of, 128 
in rectangular box, 128-9 

polarization (Hertz vectors), 280f 
in rectangular box, 71-2 
scalar and vector, for time-varying fields, 239 
in two dimensions, 72f 
vector, see Vector potential 

Potential cnergy, see Energy 
Power, instantancous radiated. by accelerated 

charge, 665-6, 701 
radiated by, charge in arbitrary periodic mo- 

tion, 702 
charged particles in linear and circular ac- 

celerators, 667 
electrons in undulators, 689-91 
linear antenna, angular distributions of, 

417. 447 
(é,m) multipole, 437 
oscillating dipole, 411-2, 437 
oscillating quadrupole. 414-5, 437 

Power flow, see Encrgy flow 
Power loss, because of finite conductivity, 221, 

355-6 
in resonant cavity, 371f 
in wave guide, 363f 
per unit area, at surface of conductor, 356 
see also Attentuation 



Poynting’s theorem, 258f 
covariant generalization of, 607, 610 
for dispersive and dissipative media, 262f 
for harmonic fields, 264f 

Poynting vector, 259 
for plane wave, 298 
uniqueness, 259 
in wave guide, 363 

Precession. of spin, Thomas, 548f, 564 
Precession frequency, of particle in magnetic 

field, 317, 585 
Precursor, Brillouin (second), 338 

Sommerfeld (first), 338 
Pressure, radiation, 288 
Proca Lagrangian, 600 
Propagation, in anisotropic dielectric, 346 

in dispersive medium, 322f, 326f 
in ionosphere, 316f, 345 
of signal incident on dispersive medium, 335f 
see also Signal propagation 

Proper time, 528 
Pseudoscalar, -tensor, -vector, definitions of, 270 

Q, of resonant cavity, definition of, 

physical interpretation of, 373 
of right circular cylindrical cavity, 373 
of Schumann resonances, 377, 399 
of spherical cavity, 455 

Quadrupole moment, electrostatic, 146, 
interaction of, with ficld gradient, 150.171 
nuclear, 151 
of oscillating source, 414 
see also Multipole moment 

Quantization of charge, Dirac’s argument for, 
275f 

Quantum-mechanical modifications, in brems- 
strahlung, 717 

in clastic scattering, 641 
in cnergy loss, 629-30 

Quasi-static approximation, 218 

Radiated electromagnetic energy, Lorentz trans- 
formation properties of, 617 

Radiation, by accelerated charge, angular distri- 
bution of, 668f 

Larmor formula for power, 665-6 
angular distribution of, for relativistic parti- 

cles, 668f 
angular and frequency distribution of, for 

charge in periodic motion, 702 
for charge in arbitrary motion, 675-6 
for moving magnetic moment, 704 
for relativistic charge, qualitative aspects of, 

671-3 
in undulators. 689-91 

emitted in, beta decay, 730f 
collisions, 709f. See also Bremsstrahlung 
orbital electron capture, 732 

from electric dipole, 411 
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from electric quadrupole, 414-5 
from linear antenna, 416f, 444f 
from localized source, 407f, 439f 
from magnetic dipole. 413-4 
multipole, see Multipole radiation 

by relativistic charge in instantancously circu- 
lar orbit, 676f 

invariant and coordinate-free form, 702 
from short antenna, 412 
synchrotron, 681-3 
transition, see Transition radiation 
from undulators and wigglers. 683f 

ion condition for asymptotic fields, 479 
ion cross section, definition of 715 

for classical bremsstrahlung, 716 
in complete screening limit, 722 
for nonrelativistic bremsstrahlung, 717 
for relativistic bremsstrahlung, 718-9 

Radiation damping, see Radiative reaction 
Radiation ficlds, 408-9 

of charge in arbitrary motion, 664 
of (/, 7) multipole, 433 

Radiation length, 724 
Radiation pressure, 288 
Radiation resistance, 267 

of short lincar antenna, 412-3 
Radiation zone. 408 

in diffraction, 491 
Radiative cnergy loss. in accelerators, 667-8 

in collisions, nonrelativistic, 718 
relativistic, 723 

Radiative reaction, 745f 
characteristic time 7 of, 746 
effective force of, 748, 749 
equation of motion including, Dirac’s, 71 
integrodifferential equation of motion includ- 

ing, 772 
and line breadth, 763f 
and shift of oscillator frequency, 763f 
simple equation of motion including, 748, 

slow changes of energy and angular momen- 
tum from, 749-50, 769-70 

Radius. classical, of electron, 604, 695, 755 
gyration, of particle in magnetic ficld, 586 

Rapidi icfinition of. 526 
use of, in relativistic kinematics, 539 

Ray, in optical fibers, 378f 
meridional and skew, 381 

Rayleigh’s. approximation in diffraction, 481 
approximation in scattering, 464 
explanation of blue sky, 462f 
law of scattering, 457 

Rayleigh scattering, 466 
Reactance, definition of. in terms of fields, 267 
Reciprocation theorem of Green, 52 
Reficction, from sphere. in diffraction, 497-9 

of charged particle from region of high mag- 
netic field, 595 

of plane wave at interface, 302f 
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Reflection (Continued) 
polarization by, 306-7 
of radio waves by ionosphere, 317-8 
total internal, 307 

Refraction, of plane wave at interface, 302f. See 
also Index of refraction 

Relativistic addition of velocities, 530f 
Relativistic effects in angular and frequency dis- 

tributions of radiation. 669-70, 672-3, 
678f, 686f, 701f, 712 

Relativistic covariance, of electrodynamics, 

of physical laws under Lorentz transforma- 
tions, 517, 540 

Relativistic invariance, of action integral, 
580 

of electric charge, 534 
of 4-dimensional Laplacian, 543 
of 4-dimensional volume clement, 555 
of 4-vector scalar products, 526, 541 
use of, in kinematics, 573-4 
of phase of plane wave, 529 
of photon differential spectrum, 710 
of radiated power, 666 
of radiation cross section, 720 
of speed of light, experiment on, 522-3 

Relativistic kinematics, notation and units for, 
565-6 

Relativistic transformation, of acceleration, 
569 

of charge and current densities, 554 
from cm system to laboratory, 575 
of coordinates, 525 
of electromagnetic fields, 558, 586-7 
of charge in uniform motion, 559, 572 
of 4-vectors and tensors, 526, 540f 
of 4-velocity, 532 

of momentum and energy, 533f 
of potentials, 555 
of spin vector, 562 

of velocities, 530f 
of wave vector and frequency, 530 
see also Lorentz transformation 

Relativity, special theory of, 514f 
experiments testing, 518f 
mathematical structure of, S39f 
postulates of, 517-8 

Relaxation method, in electrostatics, 47f 
in magnetostatics, 206f 

Resistance, definition of. in terms of ficlds, 266— 
7. See also Conductivity: Ohm’s law: Ra- 
diation resistance: Surface resistance 

Resonance fluorescence, 767 
Resonance, in cavity, 372 

Schumann, 376 
width f of, definition of, 372 

Resonant absorption, 310, 768 
and anomalous dispersion, 310, 334 

Resonant cavity, 368f 
earth and ionosphere as, 374f 
encrgy stored in, 373 
modes of oscillation in circular cylinder, 369— 

a 
power losses in walls of, 373 
Q of, 3711, 455 
resonant frequencies of, 369 
spherical, 455 
spherical concentric shell, 399 

Resonant frequency, in cavity, shift of, because 
of power loss. 374 

of atomic oscillator, 162, 309, 627, 655, 764 
shift of, by radiative reaction, 764-6 

Resonant line shape, 372. 765 
Retarded Green function, 245, 614 
Retarded time, 245, 662-3 
Rodrigues’s formula for Legendre polynomials, 

98 
Rotations, 267f 

as Lorentz, transformations, 546-7 
transformation propertics of physical quanti- 

ties under, 271 
Rutherford scattering, connection between an- 

gle and impact parameter in, 655 
cross section, 625 

in terms of momentum transfer, 625, 714 

Scalar, under Lorentz. transformations, 540 
under ordinary rotations, 268 

Scalar potential, 30 
connection 10 work done, 30 
in magnetostatics, 196 
for time-varying ficlds, 239 
see also Potential, electrostatic 

Scaiar product of two 4-vectors, 527, $41 
Scattering amplitude, forward, relation to dielee- 

tric constant, 504 
relation to total cross section, 502 

integral expression for, 485 
ole expansion of, 

Scattering cross section, for particles. classical, 
definition of, in terms of impact parame- 
ter. 655 

for radiation, definition of, 457, 694 
see also Scaltcring of particles; Scattering of 

radiation 
Scattering of particles, by atoms, 640f 

effects of, electronic screening on, 641 
finite nuclear size on, 641-2 

mean square angle of, 643 
multiple, 643f 
Rutherford, 625 
single, tail on multiple scattering distribution, 

645 
romic cross section for, 643 
¢ of radiation, at long wavelengths, 456f 

coherent and incoherent, 462 
Compton, and Klcin-Nishina formula, 696-7 



Delbriick, 10 
by density fluctuations of fluid. 468f 
of light by light, 10 
multipole description of, 473f 
by oscillator with radiative reaction, 766f 
perturbation treatment of, 462f 
by point charge, 694f 

quantum-mechanical modifications of, 
696-7 

Rayleigh, and the blue sky, 466-7 
resonant, 767-8 
shadow, 496-7 
at short wavelengths, by sphere, 495f 
by small conducting sphere, 459f, 477 
by small dielectric sphere, 457f 
Thomson, 694f 

Scattering phase shift, 476 
Schumann resonances, 374f 
Screening by atomic electrons, effect of, on 

bremsstrahlung, 721f 
effect of, on small angle clastic scattering, 641 

Sea water, attenuation constant of. 316 
Selection rules for multipole transitions, 436. 
Sclf-cnergy, classical electrostatic, 754 
Self-cnergy and momentum, 755f 

covariant definition of, 757f 
Self-foree, Abraham-Lorentz evaluation of, 750f 
Self-stresses and Poincaré stresses, 755-7 
Separation of variables, 70 

in cylindrical coordinates, 112 
in rectangular coordinates, 70 
in spherical coordinates, 95-6 

Shielding, magnetic, with permeable shell, 201f 
of two-wire cable, with iron pipe, 228-9 

Signal propagation in a dispersive media, 335f 
Brillouin percursor in, 338, 
Sommerfeld precursor in, 338 
steady-state signal in, 338 

Signal velocity, upper limit on, 33 
Skin depth, 220, 354 

and Q of cavity, 373 
and surface resistance, 356 
in plasma, 313 

Smythe-Kirchhoff integral for diffraction of vee- 
tor ficlds, 487 

approximation for diffraction by circular 
opening, 490f 

Snell's law, 303 
Soft photon emission, 709-10 

cquality of classical and quantum-mechanical 
expressions for, 710-1 

Solenoid, 225-6 
Solenoidal vector. definition of, 242 
Source, localized, in wave guide, 392f 

of multipole radiation, 439f 
Space-like separation of two points in space- 

time, 528 
Space-time, in special relativity, mathematical 

description of, S39 
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Spatial inversion, 269-70 
opposite behavior of clectric and magnetic 

charge densities under, 274 
transformation properties of physical quanti- 

ties under, 271 
Special theory of relativity, see Relativity 
Speed of light. experimental constancy, indepen- 

dent of frequency, 523-4 
experimental constancy, independent of mo- 

tion of source, 522-3 
numcrical value of, 3. 776 

Sphere, conducting, and point charge, 58, 60, 61 
electrostatic Green function for, 64-5 
general solution for potential in, 65, 122f 
with hemispheres at different potentials, 65f 
scattcring of radiation by, 457-8, 459-61, 473f, 

495£ 
in uniform clectric field, 62f, 157f 
uniformly magnetized, 198f 

external ficld, 2008 
Spherical Bessel functions, see Bessel functions 
Spherical coordinates. 95 

delta function in, 120 
Laplace equation in, 95 

Spherical harmonics, Y;,,, 107f 
addition theorem for, 110-1 
and angular momentum, 428-9 
completeness relation for, 108 
explicit forms of, 109 
orthogonality of, 108 
raising and lowering operators for, 428 
sum rule for, 111 
vector, see Vector spherical harmonic 

Spherical wave, scalar. 425f 
vector, 429f 

Spherical wave expansion, of, electromagnetic 
fields, 431 

of Green function, ¢*”/R, 428 
of scalar plane wave, 471 
of vector plane wave, 473 

Spin, -orbit interaction, 552 
relativistic equation of motion for, 561f 
Thomas precession of, 548f, 563-4 
Thomas's relativistic equation of motion for, 

564 
Stability, of classical charged particle, and Poin- 

caré stresses, 755f, 759f 
Standards, units and, 775-6 
Standing waves in resonant cavity, 368 
Stationary phase, method of, 338 
Step function, O(), definition of, 222, 331 
Stokes parametet 
Stokes’s theorem, 31, rail papers 
Stress tensor, and conservation laws, 261, 606, 

609. 611 
canonical, in 4 dimensions, 606 
Maxwell, 261 
self, of classical electron, 756, 760f 
symmetric, in 4 dimensions, 608-9 
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Structure factor, for scattering by collection of 
seattercrs, 461 

Sturm-Liouville equation, 126 
Sum rule, dipole, for oscillator strengths, 310 

for plasma frequency, 335 
Summation convention, for repeated indices, 

540-1 
Superconvergence relation for dielectric con- 

stant, 335 
Superposition principle, see Linear 

superposition 
Surface-charge density, and discontinuity of nor- 

mal FE and D, 18, 31, 154 
on conducting sphere, 59, 64 
effective magnetic, 197 
and force on surface of conductor, 43 
near circular hole in conducting plane, 143 
near conical hole or point, 106 
near edge or corner in 2 dimensions, 78 
polarization, 157, 159 
potential of, 32 
on sphere with line charge inside, 124 

Surface current, and discontinuity of H, 18, 194, 
353 

effective, 221, 356 
effective magnetic, 197 

Surface distribution, of charge, 31-2 
of electric dipole moment, 32-4 

Surface impedance, definition of, 356 
use of as boundary condition in scattering, 

475 
Surface of conductor, charge density at. 21 
Surface resistance, of good conductor, 356 
Susceptibility. clectric, 154, 158f 
Synchrotron light source, 661, 683f 

examples of, 692-3 
typical photon energy spectra from, 693 
undulators and wigglers in, 683f 

Synchrotron radiation, 676f 
angular and frequency distribution of, 678, 

680, 682 
astrophysical examples of, 681-2 
by charge in helical path, 703 
polarization of, 678-9. 706 

Systeme International (SL), standards of mass, 
length and time, 776 

electromagnetic units, 776, 779 

Tensor, electromagnetic angular momentum, 
288, 608, 610 

clectromagnetic field-strength, 556 
dual. 556 

Lorentz transformation properties of. 541 
Maxwell stress, 261 
rotational definition of, 268 
stress, in 4 dimensions, see Stress tensor 

Test function, in finite element analysis, 79 
Theorems from vector calculus, end papers 

Thomas factor, 552 
Thomas precession, $48f, 563-4 
Thomas's relativistic equation for motion of 

spin, 564 
Thomson cross section, 695 
‘Thomsen scattering, 694f 
Thomson’s theorem, 53 
Time dilatation, 527f 

experimental verification of, 529 
Time-like and space-like separation, 527-8 
Time reversal, 270 

transformation of physical quantities under, 
2 

Torque, on current distribution, 178 
‘on magnetic dipole, 174, 190 
‘on spin, 549 
on spin, relativistic equation for. 561f 

Total cross section and optical theorem, 502 
Transformation, see Galilean transformation, 

Lorentz transformation, Relativistic 
transformation 

Transformation properties of physical quantitics 
under rotations, spatial reflections, and 
time reversal, 267f 

table of, 271 
Transition probability, 442 

estimates of, in atoms and nuclei, 442f 
in hydrogen-like atoms. 704, 769-70 

Transition radiation, 646f 
angular and frequency distribution of, 652 
effects of foil thickness and multiple foils on, 

658-9 
formation length for, 649 
qualitative considerations of, 646-9 

Transmission coefficient, for diffraction by cireu- 
lar aperture, 493 

Transmission linc, dominant mode in, 358 
examples of, 397-8 
relation between L and C for, 232 

Transparency, of water in the visible region, 315 
ultraviolet, of metals, 314 

Transverse Doppler shift. 
Transverse electric (TE) waves, attenuation of, 

in wave guide. 365-6 
connection of, with multipole moments, 441 

drical, in wave guide, 359 
in diclectric wave guide, 388 
in rectangular wave guide, 361-2, 391 
spherical, 430 

in concentric sphere cavity, 375 
Transverse electromagnetic (TEM) waves, 358 

absence of in hollow wave guides, 358 
Transverse magnetic (TM) waves, attenuation 

of, in wave guide, 365-6 
connection of, with multipole moments, 441 
cylindrical, in wave guide, 359 
in cylindrical cavity, 369 
in dielectric wave guide, 388 



in rectangular wave guide, 391 
spherical, 430-1 

in carth-ionosphere cavity, 375 
Transverse vector field, definition of, 242 
Transverse waves, in magnetohydrodynamics, 

321 
plane, 295f 

inhomogencous, 298 
Traveling wave solutions, 296, 324, 327, 348 

for signal propagation in dispersive medium, 
335F 

in wave guide, 357 
Two-dimensional corners and edges, ficlds and 

surface charge densities near, 78 
Two-dimensional potentials, 75f 

Uncertainty principle, 324, 329 
use of, in collision problems to obtain quan- 

tum-mechanical modifications of, 629, 
641, 642, 725 

Undulators and wigglers, K parameter of, 685 
angular and frequency spectra from, 689-93 
average rest frame, dynamics and radiated 

power in, 687-9 
see also Synchtrotron light sources 

Uniqueness theorem, for solutions of Poisson or 
Laplace equation, 37-8 

use of, with Legendre polynomial expansion, 
102, 103-4, 234 

Units, and relative dimensions of clectromag- 

netic quantities, 777f 
appendix on, 775f 
basic versus derived, 775-6 
conversion between Gaussian and SI, 782-3 
Maxwell and other equations, in different sys- 

tems of, 781 
table for conversion of, 782-3 
variant of clectromagnetic system of, 782-3 

Vacuum polarization, 11-2 
contribution to atomic potential, 12 

Van Allen belts, of Jupiter, synchrotron radia- 
tion from, 682-3 

problems illustrating principles of, 619 
Variational principle. for capacitance, 53 

in electrostatics, 43f 
for wave guides and cavities, 400 

Vector, under rotations, definition of, 268. 
Vector ficld, decomposition of, into longitudinal 

and transverse parts, 242 
Vector Green’s theorem, 482-3 
Vector plane wave, spherical wave expansion of, 

473 
Vector potential, for time-varying fields, 239 

of localized oscillating source, 408f 
of magnetic dipole, 186 
of magnetic monopole, 278, 290-1 
in magnetostatics. 180, 195 
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of oscillating electric dipole, 410 
of oscillating electric quadrupole, 414 
of oscillating magnetic dipole, 413 
‘on surface of linear antenna, boundary condi- 

tion for, 418 
Vector spherical harmonics, absolute square of, 

table, 437 
definition of. 431 
orthogonality propertics of, 431, 472 
sum rule for, 438 

Vector theorem, divergence, 29 
Green's, 482-3 
Stokes’s, 31 
involving surface and volume integrals, 482-3 
involving vector spherical harmonies, 472 
see cnd papers 

Velocity, addition of, in special relativity, 530f 
E x B drift, 586 
4-vector, 532 
of light, see Speed of light 
relativistic transformation law of, 531 

Velocity ficlds, of charge in arbitrary motion, 
663 

Velocity selector, 587-8, 617 
Virtual quanta, method of, 724f 

spectrum of, for point charge, 727-8 
quantum-mechanical form of, 729 

treatment of relativistic bremsstrahlung, 729f 
use of, examples in atomic and nuclear colli- 

sions, 742-3 
Visible region, of frequency spectrum, reason 

for, 314-5 

Water, index of refraction and absorption coctfi- 
cient of, 315 

Wave equation, 240, 243 
covariant form of, 555, 612 
Green functions for, 243f 

Helmholtz, 243 
for photons with mass, 601 
solutions of, in covariant form, 614-5 
spherical wave solutions of, 425f 
transverse two-dimensional, in wave guide, 

357, 360. 
Wave guide. 356f 

attenuation in, 363f, 367-8 
“bound” state in, 405-6 
boundary conditions in, 359 
cutoff frequency in, 360, 362 

See Optical fibers 
modes, propagating and evanescent, 360 

in rectangular, 361f, 391 
obstacles in. 394 
orthonormal fields in rectangular, 391 
sources in, 392f 
TE and TM modes in, 359 
variational methods in, 400 

Wavelength in wave guide, 361 
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Wave number, and frequency. as 4-vector, 530 
connection of, with frequency, as 4-vector. 

296, 304, 313, 319, 327 
imaginary part of, because of losses, 310, 363, 

367 

spread of, in wave packets, 324 
in wave guide, 360, 364, 367 

Wave packets in one dimension, 322f, 348 
propagation in dispersive medium, 322f 
spreading of, in timc, 326f 

Waves, Alfvén, 321 
in ionosphere, 316f 
magnetohydrodynamic, 319f 
magnetosonic, 322 
see also Plane waves; Spherical waves: Trans- 

verse waves 
Weizsickcr-Williams method, see Virtual 

quanta, method of 

Whistler, 319, 349 
Wiggler, see Undulators and wigglers 
Work, relation to potential cnergy, 30 
Work function of metal and image charges, 61 
World line, 527 
Wronskian. definition of, 126 

of Bessel functions, 126 
of spherical Bessel functions, 427 

Width, finite, of frequency spectrum of cavity 
with losses, 372 

finite, of frequency spectrum of oscillator with 
damping, 764 

x-rays, polarization of, in bremsstrahlung, 712 
from synchrotron light sources, 693 

Yukawa potential, for scalar potential if photon 
has mass, 601 





Where to Find Key Material 
on Special Functions 

SPHERICAL 

Legendre polynomials P,(x) 97-101 
Associated Legendre functions P7’(x) 108 

Spherical harmonics Y,,,(@, &) 108-9 

CYLINDRICAL 

Bessel functions J,(x), N,(x) 113-4 
Modified Bessel functions /,(x), K,(x) 116 
Spherical Bessel functions j,(x), (x). Af! '(x) 426-7 
Roots of J,,(x} = 0 114 

Roots of J,,(x) = 0 370 
Identities involving Bessc! functions 126, 132, 140, 205 
Airy integrals, connection to Bessel functions 678 

ORTHOGONAL FUNCTION EXPANSIONS 

Bessel function (finite interval in p) 114-5, 138-9 
Bessel function (infinite interval in p) 118 
Eigenfunction, of Green function 127-8 
Fourier series 68 
Fourier integral 69-70 
Legendre polynomial 99 
Spherical harmonic 109 
Spherical Bessel function HY 



Cartesian 

(tr. 2. = x,y, 2) 

Cylindrical (p, $2) 

Spherical {r, 6,4) 

Explicit Forms of 
Vector Operations 

Let e, &), €; be orthogonal unit vectors associated with the coordinate directions 
specified in the headings on the left, and A,, A>. A; be the corresponding com- 

ponents of A. Then 
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Vector Formulas 

a+ (bX c) =b-(¢ x a)=c+(axb) 

a Xx (b X ¢) = (a- c)b — (a- b)c 

(a x b)- (¢ x d) = (a- e)(b- d) — (a- d)(b- ce) 

Vx Vy=0 
v-(V xa) =0 
vVx(¥ xa) = V(V-a)— Va 

Vs (pa) =a-Vyt wVea 
Vx (ya)= Vp xatyv xa 

Via+b) = (a+ V)b + (b- V)a + ax (¥ x b) + bx (VX a) 

V-(ax b) =b-(V xa) -a-(V Xb) 
Vv x (ax b) = a(V-b) — b(V +a) + (b+ Va — (a- Vb 

If x is the coordinate of a point with respect to some origin, with magnitude 

r = |x|, n = x/r is a unit radial vector, and f(r) is a well-behaved function of r, 

then 

Vex =3 Vxx=0 

veingnl=2¢+% vx imsn}=0 
10) (a+ Vnf(r) = 22 [a — n(an)] + afa- w) of 

or 

V(x-+a) =a + x(V-a) + KL X a) 

1 3 
where L = ri (x x V) is the angular-momentum operator. 



Theorems from Vector Calculus 

In the following 4, #, and A are well-behaved scalar or vector functions, V is a 

three-dimensional volume with volume element d*x, S is a closed two- 

dimensional surface bounding V, with area element da and unit outward normal 

mat da. 

| VeAd’x = ir A-nda (Divergence theorem) 
v s 

J Vi dx = il yn da 
v s 

fvxads=[mx ada 
v S 

is (Vp + Vb+ Vy) dx = [ on- Vida (Green's first identity) 
s 

i (Vb — bb) dbx = I (@Vy - WV¥d)+nda (Green’s theorem) 
v s 

In the following S is an open surface and C is the contour bounding it, with linc 
element dl. The normal n to S is defined by the right-hand-screw rule in relation 
to the sense of the line integral around C. 

f (V x A) + nda = $. A-d (Stokes’s theorem) 

fn x Vw da = boat 




